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Abstract

Motivation: Genomic studies often involve estimation of variances of thousands of genes (or other

genomic units) from just a few measurements on each. For example, variance estimation is an im-

portant step in gene expression analyses aimed at identifying differentially expressed genes. A

common approach to this problem is to use an Empirical Bayes (EB) method that assumes the vari-

ances among genes follow an inverse-gamma distribution. This distributional assumption is rela-

tively inflexible; for example, it may not capture ‘outlying’ genes whose variances are considerably

bigger than usual. Here we describe a more flexible EB method, capable of capturing a much wider

range of distributions. Indeed, the main assumption is that the distribution of the variances is uni-

modal (or, as an alternative, that the distribution of the precisions is unimodal). We argue that the

unimodal assumption provides an attractive compromise between flexibility, computational tract-

ability and statistical efficiency.

Results: We show that this more flexible approach provides competitive performance with existing

methods when the variances truly come from an inverse-gamma distribution, and can outperform

them when the distribution of the variances is more complex. In analyses of several human gene

expression datasets from the Genotype Tissues Expression consortium, we find that our more flex-

ible model often fits the data appreciably better than the single inverse gamma distribution. At the

same time we find that in these data this improved model fit leads to only small improvements in

variance estimates and detection of differentially expressed genes.

Availability and Implementation: Our methods are implemented in an R package vashr available

from http://github.com/mengyin/vashr.

Contact: mstephens@uchicago.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genomic studies often involve estimation of variances of thousands of

genes (or other genomic units) from just a few measurements on each.

For example, variance estimation is an important step in gene expres-

sion analyses aimed at identifying differentially expressed genes. The

small number of measurements on each gene mean that simple esti-

mates of the variance at each gene (e.g. the sample variance) can be

quite unreliable. A common solution to this problem is the use of

Empirical Bayes (EB) methods, which combine information across all

genes to improve estimates at each gene. In particular they have the ef-

fect of ‘shrinking’ the variance estimates towards a common mean

value, which has a stabilizing effect, avoiding unusually large or small

outlying estimates that may have high error. A key question is, of

course, how much to shrink. While all EB methods aim to learn the

appropriate shrinkage from the data, existing EB approaches make

relatively inflexible modelling assumptions that could limit their ef-

fectiveness. Here we propose a new, more flexible, EB approach,

which can improve variance estimation accuracy in some settings.
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Perhaps the most commonly encountered example of the use of

EB methods is in gene expression analyses that aim to identify differ-

ences in gene expression among conditions. A typical pipeline for

identifying differentially expressed genes computes a P-value for

each gene using a t-test (two condition experiments) or F-test (mul-

tiple condition experiments), both of which require an estimate of

the variance in expression of each gene among samples. In the clas-

sical t-test or F-test, sample variances are used as plug-in estimates

of gene-specific variances. However, when the sample size is small,

sample variances can be inaccurate, resulting in loss of power

(Murie et al., 2009). Hence, many methods have been proposed to

improve variance estimation. For example, several papers (Broberg

et al., 2003; Efron et al., 2001; Tusher et al., 2001) suggested adding

an offset standard deviation to stabilize small variance estimates. A

more sophisticated approach (Baldi and Long, 2001) used paramet-

ric hierarchical models to combine information across genes, using

an inverse gamma prior distribution for the variances, and a

Gamma likelihood to model the observed sample variances. This

idea was further developed by Lönnstedt and Speed (2002) and

Smyth (2004) into an Empirical Bayes (EB) approach that estimates

the parameters of the prior distribution from the data. This im-

proves performance by making the method more adaptive to the

data. Smyth (2004) also introduces the ‘moderated t-test’, which

modifies the classical t-test by replacing the gene-specific sample

variances with estimates based on their posterior distribution. This

pipeline, implemented in the software limma, is widely used in gen-

omics thanks to its adaptivity, computational efficiency and ease of

use.

While assuming an inverse-gamma distribution for the variances

yields simple procedures, the actual distribution of variances may be

more complex. Motivated by this, Phipson et al. (2016) (limma with

robust option, denoted by limmaR) modified the procedures from

Smyth (2004) to allow for some small proportion of ‘outlier’ genes

that have higher variability than expected under the inverse-gamma

assumption. Specifically, the limmaR procedure changes the moder-

ated t statistics from limma by decreasing their degrees of freedom

(df) in a way that varies for each gene, depending on whether the

gene looks like an outlier. Genes that look like an outlier have their

df reduced appreciably, making them less significant, whereas other

genes have their df unchanged or reduced very little. They showed

that, in the presence of such outliers, this procedure could improve

on the standard limma pipeline.

Here we consider a more formal EB approach to this problem,

which generalizes previous EB methods by replacing the usual in-

verse gamma prior distribution with a substantially more flexible

family of distributions. The main constraint we place on this prior is

that the distribution of the variances (or, alternatively, the preci-

sions) is unimodal. This unimodal assumption not only seems likely

to be plausible in many settings, but also provides an attractive com-

promise between flexibility, statistical stability and computational

convenience. Specifically it provides more flexibility and generality

than many parametric models while avoiding potential over-fitting

issues of fully non-parametric methods. (An alternative approach

would be to use some kind of regularization to prevent over-fitting;

see Efron (2016) for example.) We use a mixture of (possibly a large

number of) inverse-gamma distributions to flexibly model this uni-

modal distribution, and provide simple computational procedures to

fit this model by maximum likelihood of the mixture proportions.

Our procedure provides a posterior distribution on each variance

or precision, as well as point estimates (posterior mean). The meth-

ods are an analogue of the ‘adaptive shrinkage’ methods for mean

parameters introduced in Stephens (2016), and are implemented in

the R package vashr (for ‘variance adaptive shrinkage in R’). We

compare our method with both limma and limmaR in various simu-

lation studies, and also assess its utility on real gene expression data.

2 Methods

2.1 Models
Suppose that we observe variance estimates bs2

1; . . . ;bs2
J that are esti-

mates of underlying ‘true’ variances s2
1; . . . ; s2

J . Motivated by stand-

ard normal theory, we assume that

bs2
j js2

j � s2
j v

2
dj
=dj; i:e: bs2

j js2
j � Gammaðdj=2; dj=ð2s2

j ÞÞ: (1)

where the degrees of freedom dj depends on the sample size and we

assume it to be known.

Empirical Bayes (EB) approaches to estimating s2
j (e.g. Smyth,

2004) are commonly used to improve accuracy, particularly when the

degrees of freedom dj for each observation are modest. The EB ap-

proach typically assumes that the variances s2
j are independent and

identically distributed from some underlying parametric distribution g:

s2
j � gð�; hÞ (2)

where the parameters h are to be estimated from the data.

Equivalently, that the precisions (inverse variances), s�2
j , are i.i.d.

from some hð�; hÞ. A standard approach (Smyth, 2004) assumes that

g is an inverse-gamma distribution (i.e. h is a gamma distribution)

which simplifies inference because of conjugacy. Here we introduce

more flexible assumptions for g or h: specifically that either g or h is

unimodal. By using a mixture of inverse gamma distributions for g

(i.e. a mixture of gamma distributions for h), we can flexibly capture

a wide variety of unimodal distributions for g or h, while preserving

many of the computational benefits of conjugacy.

2.2 A unimodal distribution for the variances
Let InvGammað�; a; bÞ denote the density of an inverse-gamma dis-

tribution with shape a and rate b. This distribution is unimodal with

mode at c ¼ b=ðaþ 1Þ. To obtain a more flexible family of uni-

modal distributions with mode at c we consider a mixture of

inverse-gamma distributions, each with mode at c:

gð�; p; a; cÞ ¼
XK

k¼1

pkInvGammað�; ak;bkÞ; (3)

where

bk :¼ ðak þ 1Þc; (4)

and pk are mixture proportions. Each component in (3) has mode at c,

and the variance about this mode is controlled by ak, with large ak cor-

responding to small variance. By setting a to a large fixed dense grid of

values that range from ‘small’ to ‘large’, we obtain a flexible family of

distributions, with hyperparameters p, that are unimodal about c.

We emphasize that the representation (3) is simply a computa-

tionally convenient way to achieve a flexible family of unimodal

distributions. Our goal is that K be sufficiently large, and the grid

of values a be sufficiently dense, that results would not change

much by making the grid larger and denser. In practice modest val-

ues of K (e.g. 10–16) are sufficient to give reasonable performance

(see below for specific details on choice of grid for a). Using a dense

grid makes the hyperparameters p non-identifiable, because differ-

ent values for p can lead to similar values for gð�; p; a; cÞ, but this is

not a concern here because accurate EB inference requires only a
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good estimate for g and not pv. This approach is analogous to

Stephens (2016), which uses mixtures of normal or uniform distri-

butions, with a fixed grid of variances, to model unimodal distribu-

tions for mean parameters.

2.3 Estimating hyper-parameters
For K¼1 we estimate the hyperparameters (a, c) by maximizing the

likelihood

Lða; c;bs2
1; . . . ;bs2

J Þ :¼ pðbs1; . . . ;bsJja; cÞ (5)

¼
YJ

j¼1

pðbsj; a; cÞ (6)

where

pðbsj; a; cÞ ¼
ð

pðbs2
j js2

j Þgðs2
j ja; cÞds2

j (7)

¼ ðdj=2Þdj=2
bsdj�1=2

j Cðaþ dj=2Þba

Cðdj=2ÞCðaÞðdjbs2
j =2þ bÞaþdj=2

; (8)

½b ¼ ðaþ 1Þ=c�: (9)

We use the R command optim to numerically maximize this likeli-

hood. The approach is similar to Smyth (2004), except that we use

maximum likelihood instead of moment matching.

For K>1, as noted above, we use K ‘large’ (e.g. 10–16), fix the

values of ak to a grid of values from ‘small’ to ‘large’, and estimate

the hyper-parameters c;p by maximizing the likelihood

Lðp; c; a;bs2
1; . . . ;bs2

J Þ ¼ pðbs1; . . . ;bsJjp; a; cÞ (10)

¼
YJ

j¼1

X
k

pkpðbsj; ak; cÞ (11)

where pðbsj; ak; cÞ is given by (8). We center the grid of ak values on

the point estimate ba obtained for K¼1, to ensure that the grid val-

ues span a range consistent with the data (typically ak lies between 0

and 100). Moreover, if the data are consistent with K¼1 then the

estimated p will be concentrated on the component with ak ¼ ba, and

thus lead to similar results to limma.

To maximize the likelihood we use an iterative procedure that

alternates between updating c and p, with each step increasing the

likelihood. Given c, we update p using a simple EM step

(Dempster et al., 1977). Given p we update c by optimizing (11)

numerically using optim. We use SQUAREM (Varadhan and

Roland, 2004) to accelerate convergence of the overall procedure.

See Appendix for details.

2.4 Posterior calculations
Using (3) as a prior distribution for s2

j , and combining with the like-

lihood (1) the posterior distribution of s2
j is also a mixture of

inverse-gamma distributions:

pðs2
j jbs2

j Þ ¼
X

k

~pjkInvGammaðs2
j ; ~ajk;

~bjkÞ; (12)

where

~ajk :¼ ak þ dj=2; (13)

~bjk :¼ bk þ djbs2
j =2; (14)

~pjk :¼
pkbsdj�2

j
Cðakþdj=2Þ

CðakÞ
b

ak
k

ðbkþdjbs2

j =2Þ
akþdj=2X

k0

pk0bsdj�2
j

Cðak0 þdj=2Þ
Cðak0 Þ

b
ak0
k0

ðbk0þdjbs2

j =2Þ
ak0þdj=2

: (15)

Following Smyth (2004) we use the posterior mean of s�2
j as a

point estimate for the precision s�2
j :

~s�2
j ¼ Eðs�2

j jbs2
j Þ ¼

X
k

~pjk

~ajk

~bjk

: (16)

Note that each ~ajk=
~bjk can be interpreted as a shrinkage-based esti-

mate of s�2
j , since it lies between the observation bs�2

j and the prior

mean of the kth mixture component ak=bk.

When estimating variances we use the inverse of the estimated pre-

cision (16). While it may seem more natural to use the posterior mean

of s2
j as a point estimate for s2

j , we found that this can be very sensitive

to small changes in the estimated hyper-parameters a, and so can per-

form poorly. And while it may also be more natural to estimate vari-

ances on a log scale, for example using the posterior mean for logðsjÞ,
the absence of closed-form expressions makes this less convenient.

2.5 Unimodal prior assumption on variance or precision
The above formulation is based on assuming a unimodal prior distri-

bution for the variance s2
j , specifically by using a mixture of inverse-

gamma distributions all with the same mode. An alternative is to as-

sume a unimodal prior distribution for the precision 1=s2
j , by using a

mixture of gamma distributions, all with the same mode. This is

equivalent to using a mixture of inverse-gamma distributions for the

variance s2
j as in (3) above, but with

bk :¼ ðak � 1Þ=c (17)

in place of (4), because the mode of a Gammaða;bÞ distribution is at

c ¼ ða� 1Þ=b. We present results for both approaches. In practice

one can assess which of the two models provides a better fit to the

data by comparing their (maximized) likelihoods (11). Note that in

many (but not all) cases the fitted prior distributions under either or

both approaches will end up being unimodal for both the variance

and the precision. However, even in these cases, the optimal likeli-

hood under each approach will typically differ because the family of

unimodal distributions being optimized over is different.

2.6 Testing effect size
In differential expression analysis, testing if bj ¼ 0 is of primary inter-

est. Smyth (2004) suggested using the ‘moderated t-test’, which mod-

erated the sample variance and degree of freedom by the shrunk

variance estimates and its posterior degree of freedom. Here we derive

an analogue of this moderated t-test in our mixture prior setting.

The distribution of bb given bs is:

pðbbjjbs2
j Þ ¼

ð
pðbb jjbj; s

2
j Þpðs2

j jbs2
j Þdsj (18)

¼
ð

Nðbb j; bj; s
2
j Þ �
X

k

~pjkInvGammaðsj; ~ajk;
~bjkÞdsj (19)

¼
X

k

~pjkptðbbj; 2~ak; bj; ~sjkÞ (20)

where ptð�; �;l;rÞ denotes the density of a generalized t-distribution

with degree of freedom �, location parameter l and scale parameter
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r (i.e. the density of lþ rT� where T� is a standard t distribution on

� degrees of freedom).

Hence, under the null (bj ¼ 0), bb jjbsj follows a mixture of general-

ized t-distributions:

pðbb jjbs2
j ;bj ¼ 0Þ ¼

X
k

~pjkptðbbj; 2~ak; 0; ~sjkÞ: (21)

A p-value for testing bj ¼ 0 can therefore be computed as

pj ¼ PrðjXjj > jbb jjÞ; (22)

where Xj follows the mixture of generalized t-distributions in

(21). In the special case where the mixture involves K¼1 compo-

nents this is equivalent to the P value from Smyth’s moderated t

test.

The P-value Pj measure the significance of gene j. To select signifi-

cant differentially expressed genes and control the false discovery

rate, these P values can be subjected to the Benjamini-Hochberg pro-

cedure (Benjamini and Hochberg, 1995), or Storey’s procedure

(Storey, 2002, 2003), for example. Alternatively, the methods in

Stephens (2016) can be extended to incorporate the mixture likeli-

hood (20).

3 Results

3.1 Simulation studies
To compare and contrast our method with limma and limmaR we

simulate data from the model (1)–(3), with G¼10 000, and degrees

of freedom df¼3, 10, 50 (corresponding to sample sizes 4, 11 and

51 respectively) under various scenarios for the actual distribution

of variances (scenarios A–D) or precisions (scenarios E–H), as sum-

marized in Tables 1 and 2.

The simulation scenarios are designed to span the range from a

single inverse-gamma prior as assumed by limma, to more complex

distributions under which we might expect our method to outper-

form limma. Specifically we consider:

• Single IG (or Single Gamma): single component inverse-gamma

prior on variance (or gamma prior on precision), which satisfies

the assumptions of limma.
• Single IG (or Single Gamma) with outliers: two component

inverse-gamma prior on variance (or gamma prior on precision),

where one component models the majority of genes and the other

component, being more spread out, attempts to capture possible

outliers. The method limmaR is specifically designed to deal with

the case where large variance outliers exist.
• IG (Gamma) mixture: a more flexible inverse-gamma mixture

prior on variance (or mixture gamma prior on precision) with

multiple components.

• Long tail log-normal mixture: log-normal mixture prior on vari-

ance or precision, which yields a longer tail than either the

inverse-gamma or the gamma distribution.

We also assume that 90% of the genes are not differentially ex-

pressed (bg ¼ 0), while the rest of the genes are (bg � Nð0; r2Þ).
Here r is held fixed at 2.

For each simulation scenario we simulate 50 datasets and apply

limma, limmaR, and our proposed method (vash) to estimate s2
j (or

1=s2
j ). We compare the relative root mean squared errors (RRMSEs)

of the shrinkage estimators, which we define by

RRMSEprec :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eð1=s2

j � 1=~s2
j Þ

2
q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eð1=s2

j � 1=bs2
j Þ

2
q ; (23)

RRMSEvar :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eðs2

j � ~s2
j Þ

2
q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eðs2

j � bs2
j Þ

2
q : (24)

The RRMSE measures the improvement of a shrinkage estimator

over simply using the sample variance bs2
j or precision 1=bs2

j , with

RRMSE¼1 indicating no benefit of shrinkage. (We also show the

absolute RMSEs, i.e. the numerators of (23) and (24), in

Supplementary Materials; Tables S1, S2.)

Figure 1 and 2 show the RRMSEs of limma, limmaR and vash

for all scenarios. We summarize the main patterns as follows:

1. Across all scenarios, the mean RRMSE of vash is consistently no

worse than either limma or limmaR, and is sometimes appre-

ciably better. In contrast, limmaR sometimes performs better

than limma and sometimes worse. In this sense vash is the most

robust of the three methods.

2. In simulations under the simplest scenario (A and E) where the

assumptions of limma are met, all three methods perform simi-

larly. In particular, the additional flexibility of vash does not

come at a cost of a drop of performance in the simpler scenarios.

3. When sample sizes are small (df ¼ 3) all methods perform simi-

larly under all scenarios. This highlights the fact that the benefits

of more flexible methods like vash are small if samples sizes are

too small to exploit the additional flexibility. Put another way,

for small sample sizes simple assumptions suffice.

4. When sample sizes are large (df ¼ 50) vash can outperform the

other methods, particularly under the more complex scenarios

(C,D; G,H), which most strongly violate the assumptions of

limma. Indeed, in these cases both limma and limmaR can have

RRMSE > 1, indicating that they perform worse than the

unshrunken sample estimators. That is, when sample sizes avail-

able to estimate each variance are relatively large shrinkage

Table 1. Parameters for the simulation scenarios with unimodal

prior on variance

Scenario Description Prior of s2
j

A Single IG InvGamma(10,11)

B Single IG with outliers 0.1InvGamma(3,4)þ
0.9InvGamma(10,11)

C IG mixture 0.1InvGamma(3,4) þ
0.4InvGamma(5,6) þ
0.5InvGamma(20,21)

D Long tail

log-normal mixture

0.7logN(0.0625,0.0625) þ
0.3logN(0.64,0.64)

Table 2. Parameters for the simulation scenarios with unimodal

prior on precision

Scenario Description Prior of 1=s2
j

E Single gamma Gamma(10,9)

F Single gamma with outliers 0.1Gamma(2,1)þ
0.9Gamma(10,9)

G Gamma mixture 0.1Gamma(2,1) þ
0.4Gamma(5,4) þ
0.5Gamma(30,29)

H Long tail

log-normal mixture

0.7logN(0.0625,0.0625) þ
0.3logN(0.64,0.64)
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estimates based on oversimplified assumptions can make estima-

tion accuracy worse rather than better. (In contrast, for small

sample sizes, the benefits of shrinkage greatly outweigh any cost

of oversimplified assumptions.)

We also note that in scenario B where variances are sampled

from a two component inverse-gamma mixture prior (one ‘majority’

component and one ‘outlier’ component), both vash and limmaR

perform similarly on average (and slightly outperform limma), but

results of vash are slightly more variable than limmaR. Possibly this

reflects the fact that limmaR was specifically designed to deal with

such cases.

Another metric for comparing EB methods is in the accuracy of

the estimated prior distribution. We measure this using Dcdf, the

average distance between the estimated and true cumulative distri-

bution functions (cdfs):

Dcdf :¼ 1

M

XM
m¼1

jcdftrueðxmÞ � cdffittedðxmÞj; (25)

where we take xm ranging from 0 to 10 with increment size 0.01.

The results (Supplementary Fig. S1) show that, regardless of sample

size, the estimated mixture prior is consistently as accurate as the

single inverse-gamma prior, and noticably more accurate in scen-

arios C, D and G.

We also compare the final differential expression analysis results.

All genes are ranked by the P-values given by limma, limmaR and

vash (see Section 2.6) respectively. Supplementary Figure S2 shows

the AUC (area under ROC curve) of these methods in simulation

scenarios A–H. The three shrinkage methods perform very similar in

all scenarios.

3.2 Assessment of variances in gene expression data
The results above demonstrate that the more flexible mixture prior

implemented in vash, can in principle provide more accurate vari-

ance and precision estimates than the simple inverse-gamma prior

implemented in limma. However, in practice these gains will only be

realized if the actual distribution of variances differs from the single

inverse-gamma model. Here we examine this issue using RNA

sequencing data from the Genotype-Tissue Expression (GTEx) pro-

ject (Lonsdale et al., 2013). The GTEx Project is an extensive re-

source which studies the relationship among genetic variation, gene

expression, and other molecular phenotypes in multiple human tis-

sues. Here we consider RNA-seq data (GTEx V6 dbGaP accession

phs000424.v6.p1, release date: Oct 19, 2015, http://www.gtexpor

tal.org/home/) on 53 human tissues from a total of 8555 samples

(ranging from 6 to 430 samples per tissues).

Since in practice variance estimation is usually performed as part

of a differential expression analysis (Smyth, 2004), we mimicked

this set-up here: specifically we considered performing a differential

expression analysis between every pair of tissues. We selected the

top 20 000 most highly expressed genes, transformed their read

counts into log-counts-per-million using the ‘voom’ transformation

(Law et al., 2014), and used the lmFit function in the limma package

to estimate the effects and de-trended variances. Since there are 53

tissues this resulted in 1378 datasets of variance estimates.

First, for each dataset, we quantified the improved fit of the mix-

ture prior versus a single component prior by comparing the max-

imum log-likelihood under each prior. (For the mixture prior we

fitted both the unimodal-variance and unimodal-precision priors,

and took the one that provided the larger likelihood.) In principle

the mixture prior log-likelihood should always be larger because it

includes the single component as a special case; we observed rare

and minor deviations from this in practice due to numerical issues.

Across all 1378 datasets the average gain in log-likelihood of the

mixture prior versus the single component prior was 34.1. The 25%

quantile, median, 75% quantile, 90% quantile and maximum of the

difference are given by 2.9, 15.8, 42.9, 77.4 and 705.2 respectively.

A log-likelihood difference of 15.8 is already quite large: for com-

parison the maximum difference in log-likelihood for simulations

under a single component model, Scenario A, df¼50, was 1.9. We

therefore conclude that the mixture component prior fits the data

appreciably better for many datasets.
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Fig. 2. RRMSEprec of three gene-specific variances estimators, limma, robust

limmaR and our proposed estimator (vash) in the 4 simulation scenarios E-H

with unimodal precision prior
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Fig. 1. RRMSEvar of three gene-specific variances estimators, limma, limmaR

and our proposed estimator (vash) in the 4 simulation scenarios A-D with uni-

modal variance prior
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To visualize the deviations from a single component prior pre-

sent in these data, we examine the fitted priors in datasets where the

log-likelihood differences are about 42.9 (75% quantile), 77.4 (90%

quantile) and higher. Figure 3 compares the fitted single component

prior and mixture prior on several typical scenarios. Generally, the

mixture priors use extra components to better fit the middle portion

of distribution. The single component priors can match the tails

pretty well, but often fails to accurately capture the peak.

Overall, our impression from Figure 3 is that differences between

the fitted priors seem relatively minor, and might be expected to

lead to relatively small differences in accuracy of shrinkage esti-

mates, despite the large likelihood differences. To check this impres-

sion we simulated data where the variances are generated from the

fitted mixture priors for four of these datasets (the four datasets on

the right hand side of Fig. 3). Figure 4 compares the RRMSEs of

vash, limma and limmaR in these four scenarios. In general the re-

sults confirm our impression: the three methods perform very simi-

larly in most scenarios, although vash shows some gain in accuracy

in two scenarios with df¼50.

4 Discussion

We have presented a flexible empirical Bayes approach (‘variance

adaptive shrinkage’, or ‘vash’) to shrinkage estimation of variances.

The method makes use of a mixture model to allow for a flexible

family of unimodal prior distributions for either the variances or

precisions, and uses an accelerated EM-based algorithm to effi-

ciently estimate the underlying prior by maximum likelihood.

Although slower than limma, vash is computationally tractable for

large datasets: for example, for data with 10 000 genes, vash typic-

ally takes about 30 s (limma takes just a few seconds).

Our results demonstrate that vash provides a robust and effective

approach to variance shrinkage, at least in settings where the distribu-

tion of the variances (or precisions) is unimodal. When the true vari-

ances come from a single inverse-gamma prior, vash is no less accurate

than the simpler method. When the variances come from a more com-

plex distribution vash can be more accurate than simpler methods if

the sample sizes to estimate each variance are sufficiently large.

In the gene expression datasets we examined here, the gains in

accuracy of vash versus limma are small, and likely not practically

important. While this could be viewed as disappointing, it nonethe-

less seems useful to show this, since it suggests that in many gene ex-

pression contexts the simpler approaches will suffice. At the same

time, it remains possible that our method could provide practically

useful gains in accuracy for other datasets, and as we have shown, it

comes at little cost. In addition, our work provides an example of a

general approach to empirical Bayes shrinkage—use of mixture

components with a common mode to model unimodal prior distri-

butions—that could be useful more generally.

Our method is implemented in an R package vashr available from

http://github.com/mengyin/vashr. Codes for reproducing analyses and

figures in this paper are at https://github.com/mengyin/vash.
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Skin-Not Sun Exposed (Suprapubic)’ and ‘Adrenal Gland vs Stomach’) in Figure 3
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