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Abstract

Motivation: Imaging genetics combines brain imaging and genetic information to identify the rela-

tionships between genetic variants and brain activities. When the data samples belong to different

classes (e.g. disease status), the relationships may exhibit class-specific patterns that can be used

to facilitate the understanding of a disease. Conventional approaches often perform separate ana-

lysis on each class and report the differences, but ignore important shared patterns.

Results: In this paper, we develop a multivariate method to analyze the differential dependency

across multiple classes. We propose a joint sparse canonical correlation analysis method, which

uses a generalized fused lasso penalty to jointly estimate multiple pairs of canonical vectors with

both shared and class-specific patterns. Using a data fusion approach, the method is able to detect

differentially correlated modules effectively and efficiently. The results from simulation studies

demonstrate its higher accuracy in discovering both common and differential canonical correl-

ations compared to conventional sparse CCA. Using a schizophrenia dataset with 92 cases and

116 controls including a single nucleotide polymorphism (SNP) array and functional magnetic

resonance imaging data, the proposed method reveals a set of distinct SNP-voxel interaction mod-

ules for the schizophrenia patients, which are verified to be both statistically and biologically

significant.

Availability and Implementation: The Matlab code is available at https://sites.google.com/site/jian

fang86/JSCCA.

Contact: wyp@tulane.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Imaging genetics is an emerging field of study in brain research

(Hariri et al., 2006; Meyer-Lindenberg, 2012). It aims to discover

genetic variants that explain brain activities, providing more com-

prehensive information that can hopefully inform the diagnosis and

treatment of mental disorders (e.g. schizophrenia). To date, imaging

and genomic data are collected and both modalities include a large

number of variables. However, how to combine the large amount of

multi-modal data remains a challenging problem.

Canonical correlation analysis (CCA) (Hotelling, 1936) and par-

tial least squares (PLS) (Wold, 1985) are common multivariate

approaches to integrate two or more data types. The basic idea is to

maximize the correlation (or covariances in PLS) between linear

combinations of variables from different data types to find the
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components that are associated with each other. Kernel CCA (Lai

and Fyfe, 2000; Larson et al., 2014) and deep CCA (Andrew et al.,

2013) are extensions to extract nonlinear correlation between two

datasets. However, in genomic and brain imaging studies, the di-

mension of the data is usually much higher than the sample size. As

a result, severe overfitting can occur when conventional CCA meth-

ods are applied. To address this problem, penalized CCA and related

methods were introduced by employing sparse penalties to select a

small number of features. Examples include sparse CCA

(Parkhomenko et al., 2009; Witten and Tibshirani, 2009), sparse

PLS (Chun and Keleş, 2010) and sparse reduced rank regression

(Vounou et al., 2010), which have been demonstrated to be effective

in detecting multivariate genomic and brain imaging associations

(Grellmann et al., 2015; Liu and Calhoun, 2014). To incorporate

biological prior knowledge and data structures to guide the search

of associations, group SCCA (Lin et al., 2014) and network-guided

sparse reduced rank regression (Wang et al., 2014) were proposed,

which can further improve variable selection.

In all the above methods, a common assumption is that the data

are collected from the same distributions. However, in real imaging

genetic studies, the data are collected from subjects corresponding

to different disease statuses (e.g. the schizophrenia patients and

healthy controls). A separate estimation will suffer a lack of power

due to the limited size of each individual class, but a simple combin-

ation of the data may miss the identification of the heterogeneity of

the interactions. Therefore, it is desirable to discover both the com-

mon and class-specific interactions simultaneously by joint analysis

of multi-class data. In (Chen et al., 2013), a statistical method was

proposed to jointly study miRNA-gene interactions from multiple

cancers. However, this method is restricted to univariate inference

that is not able to detect complex multivariate correlations. A chal-

lenge was also recognized in (Chen et al., 2013) that the direct appli-

cation of sparse multivariate methods may choose different sets of

interaction pairs for each class. Especially for sparse CCA, similar

patterns may appear in different orders, leading to the problem of

mismatch during joint analysis across classes.

In this paper, we propose a novel sparse CCA method to jointly

estimate multiple CCA models corresponding to different classes. As

illustrated in Figure 1 with two types of data from K classes, the

main idea is to find a common sparse linear combination of the vari-

ables from one type of data (for example the imaging data) and K

joint sparse linear combinations from the other type (e.g. the gen-

omic data) to maximize the summed correlation. In this way, the

method can obtain the brain regions that are important for all

classes and discover their differential interactions with the genetic

variants. Specifically, by restricting the imaging canonical variables

to be common across classes, the method overcomes the problem of

mismatch that can make full combination of the data from multiple

classes (see Fig. 1). We also apply a fused lasso penalty on the K ca-

nonical vectors for genetic data to encourage them to share a similar

(but not the same) structure. The fused lasso penalty is chosen be-

cause it has been successfully applied to jointly estimate multiple

graphical models to find differential dependency networks (Danaher

et al., 2014; Tian et al., 2014; Yang et al., 2015). Inspired by the op-

timization framework for penalized CCA in (Witten et al., 2009),

we design an efficient algorithm based on block coordinate descent

for solving JSCCA. The JSCCA is featured as a multivariate method

for joint interactions analysis, promising to detect complicated ab-

normal interaction modules between genomic variants and brain

activities. We first apply the proposed method to the simulation

data containing three classes. Through a comprehensive compari-

son, we demonstrate the effectiveness of JSCCA in discovering both

shared and class-specific correlations. Next, we apply the JSCCA

method to a schizophrenia dataset with 92 cases and 116 controls.

The data include functional magnetic resonance imaging (fMRI) and

single-nucleotide polymorphism (SNP) data, collected by The Mind

Clinical Imaging Consortium (Gollub et al., 2013). We found a

number of SNP-voxel modules with significantly increased correl-

ation for schizophrenia patients.

The rest of the paper is organized as follows. Section 2 intro-

duces the joint sparse CCA method. The performance of the pro-

posed method is evaluated through both simulations and real data

analysis in Section 3, followed by some discussions and concluding

remarks in the last section.

2 Methods

2.1 Sparse CCA
The CCA is a method that determines the associations between two

datasets. More specifically, given datasets X 2 Rn�p; Y 2 Rn�q with

n samples, where X has p features and Y has q features, the CCA

method aims to find linear combinations of variables in X and Y to

maximize the correlation:

max
w;v

wTXTYv s:t: wTXTXw ¼ vTYTYv ¼ 1; (1)

where we assume that the columns of X and Y are standardized to

have zero mean and unit variance, and w, v are the corresponding

canonical vectors.

However, in genomic and bio-imaging applications, the dimen-

sion of the data is much higher than the sample size. The (1) model

tends to overfit and does not yield desirable results. To circumvent

this problem, sparse CCA has been proposed in recent years. By

imposing sparse regularization on the canonical vectors, sparse CCA

can achieve better model fitting with variable selection. In this

paper, we adopt the formulation in (Witten and Tibshirani, 2009)

with L1 regularization as follows:

min
w;v

�wTXTYvþ kwjjwjj11 þ kvjjvjj11 s:t: jjwjj2 ¼ jjvjj2 ¼ 1; (2)

where kw and kv are the regularization parameters. In (2), the vari-

ance matrix of X and Y is treated as diagonal matrix, which has

shown to be effective and efficient for high-dimensional data

(Grellmann et al., 2015; Witten and Tibshirani, 2009).

2.2 Joint sparse CCA (JSCCA)
In this paper, we consider how to perform multivariate association ana-

lysis of K classes of normalized data, Xk 2 Rnk�p;Yk 2 Rnk�q;

k ¼ 1; . . . ;K, where nk is the number of observations in the kth class.

Fig. 1. An illustration of the JSCCA method for detecting differential imaging

genetics modules. The method finds a common sparse set of voxels and K

joint sparse set of SNPs to maximize the summed correlation. The SNP is se-

lected in the kth class only if it is highly correlated with the voxels. Therefore,

the class specific SNPs have potentially higher interactions with the detected

voxels (Color version of this figure is available at Bioinformatics online.)
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As described in the introduction and Figure 1, the main idea is to jointly

estimate CCA models belonging to multiple classes with one common

canonical vector for X and K related sparse canonical vectors for Y.

More formally, the joint sparse CCA model is given by:

min
w;v

�
XK

k¼1

1

nk
wTXT

k Ykvk þ kwjjwjj11

þ
XK

k¼1

kvjjvkjj11 þ
X
k<k0

sjjvk � vk0 jj11

s:t: jjwjj22 ¼ jjVjj
2
F ¼ 1

(3)

where w and V ¼ ½v1; . . . ; vK� are the canonical vectors of Xk and Yk

respectively, jjVjj2F ¼
P

k jjvkjj22; kw; kv; s are regularization param-

eters. In (3), we apply the general fused lasso penalty (Danaher

et al., 2014; Hoefling, 2010) on V. The L1-penalty on each vk, con-

trolled by kv, encourages the sparsity over each individual canonical

vector. The L1-penalty on the differences between every two canon-

ical vectors from different classes encourages them to share a similar

structure. In this way, all of the components vk from Y are correlated

with the common component w from X; hence their shared and

class-specific interactions can be determined. The parameter s plays

an important role to adjust the degree of fusion. Specifically, when

s¼0, there is no fusion across the canonical vectors. When s¼1,

(3) is obtained only when all canonical vectors are identical to each

other. Moreover, if we add the constraint jjVjj2F ¼ 1 as a whole in-

stead of constraining each canonical vector, we realize a joint esti-

mation. When K¼1, this reduces to regular sparse CCA.

2.3 Numerical algorithm
In this section, we introduce the algorithm to obtain w and V that can

minimize (3). To begin with, we outline the key steps of the optimiza-

tion. In JSCCA, the object function is convex with respect to w when

V is fixed and vice versa. So the block coordinate descent, which is

widely used in SCCA method, can be applied to solve this problem.

Roughly speaking, the iteration procedures mainly contain two steps:

min
jjwjj2¼1

�
XK

k¼1

1

nk
ðXT

k YkvkÞTwþ kwjjwjj11;

min
jjVjjF¼1

�
XK

k¼1

1

nk
wT

k XT
k Ykvk þ kvjjvkjj11 þ

X
k< k0

sjjvk � vk0 jj11

According to (Witten et al., 2009), the solution of the first prob-

lem is given by w ¼ bw
jjbw jj2, where

bw ¼ H
XK

k¼1

1

nk
XT

k Ykvk; kw

 !
;

and H is the soft-thresholding operator defined by Hðx; kÞ ¼
sgnðxÞmaxðjxj � k;0Þ.

To obtain V when w is fixed, we follow the results from Section

2.3 in (Witten et al., 2009) and can easily get (the proof is omitted):

Proposition 1: The solution of

min
jjVjjF¼1

XK

k¼1

�zT
k vk þ kvjjvkjj11 þ

X
k<k0

sjjvk � vk0 jj11;

where zk ¼ ð 1
nk

YT
k XkwkÞT , is given by bV=jj bV jjF, where bV is the opti-

mum of

min
V

XK

k¼1

jjvk � zkjj22 þ kvjjvkjj11 þ
X
k< k0

sjjvk � vk0 jj11 (4)

The problem of (4) is a special case of the fused lasso signal ap-

proximation (Hoefling, 2010). A very efficient algorithm for the so-

lution is available (Danaher et al., 2014; Hocking et al., 2011).

Specifically, (4) can be solved in successively three steps: a fusion

step, a sparsification step and a normalization step. In the fusion

step, a �V is obtained by setting kv¼0, which fuses the variables that

do not have significant difference (dependent on s). Here, we say

that the variable i in Y is fused between the kth and k0th classes if

�vki ¼ �vk0 i. In the sparsification step, bV is derived through soft-

thresholding on �V , that is, bvk ¼ Hð�vk; kvÞ. Finally, in the normaliza-

tion step, V ¼ bV
jjbV jjF leads to the solution.

Since n < < q, a very sparse solution is required to ensure the

reliability. This highly increases the sensitivity of the selection of kw

and kv (Parkhomenko et al., 2009), hence increasing the difficulty in

parameter selection. To mitigate this problem, we adopt the sparsity

level of the solution to guide the selection of the tuning parameters

(Duan et al., 2014; Zongben et al., 2012). Then the selection can be

searched around the sample size n, yielding a much less sensitive

searching process. In particular, we set the kw based on jw, which is

the number of non-zeros in w. There is a correspondence between

kw and jw by setting kw in each iteration to satisfy

kw 2 jwjjwþ1; jwjjw

h i
;

where jwjjw
is the jwth largest absolute magnitude of w.

Meanwhile, it was found in both simulations and real applications

that using the same kv for different classes will result in unstable so-

lutions (see Fig. S1 in supplementary data). To overcome this prob-

lem, we instead keep the sparsity jv the same for each class. We set

the kvk based on the same sparsity jv, where the corresponding rela-

tionship can be obtained accordingly. This procedure will result in

different thresholds, which makes it overestimate the number of

changes among vk. Nevertheless, the difference of the thresholds

was found to be small in practice and we can still detect the changes

by comparing �vk after the fusion step.

Finally, we describe how to obtain multiple canonical vectors.

Suppose we have derived the first K pairs of canonical vectors using

the iterations described above, we calculate the remaining matrix

Xk ¼ Xk �XkwwT ; Yk ¼ Yk �
YkvkvT

k

jjvk jj22
, from which we can obtain

the second K pairs of canonical vectors. The subsequent canonical

vectors can be obtained by repeating the above procedures.

We summarize the JSCCA algorithm in Algorithm 1.

2.4 Parameter selection
There are mainly three tuning parameters jw, jv, s in the JSCCA

model. The first two control the number of selected features and the

third one determines how similar the derived genomic features are.

However, conventional parameter selection methods, such as the

cross validation, is not well suited. On one hand, limited by the sam-

ples size, the optimized parameters selected from cross validation

could still yield many irrelevant features (Wang et al., 2014). On the

other hand, since the imaging and genetic correlation is quite low

(Grellmann et al., 2015) the selected parameters vary a lot during re-

peated trials. As an alternative, we apply a hybrid of Monte Carlo

validation and stability selection (Meinshausen and Bühlmann,

2010) to select the parameter s and correlated features.

Specifically, we perform random sampling from the original

dataset without replacement for B times with the same portion of

observations, leading to training samples Xbk;Ybk; b ¼ 1 . . .;B and
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testing samples XC
bk;Y

C
bk. For each subsample, the JSCCA is fitted

with fixed jw, jv and a candidate set of s, and the canonical vectors

wb
s ; v

b
ks are obtained. First, the s* that maximizes the averaged test

correlation on the test subsamples
P

b

P
k corrðXC

bkwbs;YC
bkvb

ksÞ is

selected, where corr(x, y) calculates the Pearson correlation between

vectors x and y. Second, the canonical vectors wb; vb
k corresponding

to the selected s* are collected. For the imaging canonical vectors,

we measure the importance of a voxel by the empirical selection

probability

pwi ¼
1

B

X
b

Iðjwb
i j > 0Þ; (5)

where I is the indicator function. Based on which a set of important

voxels is selected with a cut-off as Sw ¼ fi : pwi > pwg.
For the genomic canonical vectors, we focus on the differences in

the selected SNPs across multiple classes. We compare the canonical

weights in a pairwise way. In particular, for every two class k; k0, we

measure the degree of specificity from k to k0 by the following

probability

pkk0
vi ¼

1

B

X
b

Iðjvb
kij > jvb

k0ij; j�vb
kij 6¼ j�vb

k0ijÞ; (6)

where the first condition requires that there exists difference. Since

stability selection needs multiple runs on the resampled data and

each run will result in either weaker or stronger jvkij than jvk0 ij, we

only count the cases that jvb
kij > jvb

k0ij in pkk0
vi to make subsequent

analysis more informative (the case of stronger vk0 i is considered in

pk0k
vi ). The second condition requires the difference to be large

enough, determined by whether the canonical weights are fused dur-

ing the fusion step in Algorithm 1. The high-rank SNPs, determined

by a cut-off pv, are then picked as the candidate set of differential

SNPs Skk0
v ¼ fi : pkk0

vi > pvg. In this way, we expect to find class-k

specific (as compared to class k0) SNPs, that frequently have stronger

correlations with the imaging features than in class-k0.

2.5 Differential correlated modules detection
The high-ranked voxels and differential SNPs are more likely to be

differentially correlated, and we propose to detect the differential

correlated modules by selecting cut-offs that properly control the

module FDR (mFDR) of pairwise differential correlation between

elements in Sw and Skk0
v . Specifically, the difference of the Pearson

correlation of each pair of selected voxel and SNP in Sw and Skk0
v is

calculated

Dqk;k0
ij ¼ jcorrðXki;YkjÞj � jcorrðXk0 i;Yk0 jÞj: (7)

and the corresponding significance pij is estimated by the permuta-

tion test. More specifically, to get pij, the null hypothesis of no dif-

ferent correlation between a SNP i and voxel j in class k and k0 can

be formulated as H0 : Dqk;k0
ij ¼ 0 versus the alternative hypothesis,

H1 : Dqk;k0
ij 6¼ 0. To test the hypothesis, we first calculate Dqk;k0

ij . By

comparing the observed statistic with the null statistics

Dqk;k0
ijb ; b ¼ 1; . . . ;T, i.e. with T times permutation of the class label

of the samples, we can evaluate the significance of the correlation by

pij ¼
XT

b¼1

IðDqk;k0
ijb � Dqk;k0

ij Þ=T

Then the mFDR is calculated byX
i2Sw

X
j2Skk0

v

Iðpij > 0:05Þ

jSwjjSkk0
v j

: (8)

Finally, the pw and pv are selected by maximizing the module

size (for example jSwjjSvkk0 j) that satisfies mFDR� pf . In this paper,

we set pf ¼ 0:1 by considering the weak voxel-SNP correlation and

some possible missing edges in the modules.

3 Results and discussions

3.1 Simulations
In a series of simulations, we aim at evaluating the potential power

of JSCCA in detecting imaging genetics associations. We first com-

pared SCCA and JSCCA with varied tuning parameters. Then we

investigated the influence of noise level on the performance of

detection.

3.1.1 Simulation setup

In all simulations, we consider the data belonging to three classes.

Each class consists of n samples of fMRI data and SNP data.

To simulate the correlation between fMRI and SNPs, a latent

variable model similar to (Lin et al., 2014; Parkhomenko et al.,

2009) was used. We first generated one imaging canonical vector a
with l non-zero entries and three genomic canonical vectors bk with

m non-zero entries. Among the m canonical variables, ms of them

had the same value while mc of them were only present in one class

(e.g. having zero entries in the other two, see Fig. 1). Each non-zero

variable in a and bk was drawn independently from a uniform distri-

bution with support on ½�1;�0:5� [ ½0:5; 1�.
Given a pair of canonical vectors a and bkðk ¼ 1; 2;3Þ, we gener-

ated a latent variable h with normal distribution Nð0;rhÞ for each

sample, where rh is the signal to noise level (e.g. a noise variance of

1). For the imaging data, the voxels were simulated using a

Gaussian distribution Nðah; IlÞ for correlated voxels and Nð0; Ip�lÞ
for uncorrelated ones. For the genomic data, the SNP was coded by

0 (no minor allele), 1 (one minor allele) and 2 (two minor allele) and

the minor allele frequency g was uniformly drawn from U [0.2, 0.4].

Algorithm 1 Algorithm for joint sparse CCA

Require: Normalized data Xk 2 Rnk�p;Yk 2 Rnk�q, param-

eters jw;jv; s.

Ensure: Canonical vectors w and V.

1: Initialize w as the first left-singular vector of
P

k
1
nk

XT
k Yk,

2: repeat

3: �V ¼ arg minV

PK
k¼1

jjvk � 1
nk

YT
k Xkwjj þ

P
k<k0 sjjvk � vk0 jj11;

4: for k¼1 to K do

5: kvk ¼ j�vkjjvþ1;

6: bvk ¼ Hðj�vkj; kvkÞ;
7: end for

8: V ¼ bV=jj bV jjF;

9: �w ¼
PK
k¼1

1
nk

XT
k Ykvk;

10: kw ¼ j �wjjwþ1;

11: bw ¼ Hð �w; kwÞ;
12: w ¼ bw=jjbwjj2;

13: until Convergence

14: Calculate Xk ¼ Xk �XkwwT ; Yk ¼ Yk �
YkvkvT

k

jjvk jj22
; return to

Step 2 to get the next L pairs of canonical vectors.
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The ith SNP was simulated from a binomial distribution Bð2; logit�1

ð�bkihþ logitðgiÞÞÞ if it is a correlated variable and B(2,gi) other-

wise. Here logitðpÞ ¼ logð p
1�pÞ is the logit function.

We used the true positive rate (TPR), false positive rate (FPR)

and precision to evaluate the performance of the model. Specifically,

we applied stability selection to JSCCA and SCCA and compared

their ability in identifying the canonical voxels and the differential

canonical SNPs. For JSCCA, we calculated the selection probability

as in (5) and (6), and determined the positives according to a given

cut-off threshold. When applied to multi-group problems, the TPR

and FPR for differential canonical SNPs were calculated based on

the summation of the number of FPs and TPs between every two

groups. For SCCA, we estimate the canonical vectors individually

on each class, and calculated the selection probability on the voxels

using (5) separately but on the differential SNPs using (6) jointly.

Two methods were compared to identify voxels for SCCA. One

used the selection probability from a single class, which is denoted

as SCCA (single). The other refers to SCCA (combined), which iden-

tified voxels when the selection probabilities for all the three classes

exceeded the cut-off threshold. For the SNPs, we followed the same

procedures for JSCCA. In each simulation, the statistics were aver-

aged over 100 replications.

3.1.2 Simulation results

First, we evaluated the JSCCA with varied parameter s. We gener-

ated 100 samples for each class (totally 300 samples) with 1000 vox-

els and 1000 SNPs. We set l¼100, ms¼100, mc¼50, rh¼0.2. The

receiver operating characteristics (ROC) curve was adopted for the

comparisons in identifying the canonical voxels and the differential

canonical SNPs with different s. Specifically, for each s, we set

jw¼200, jv¼200 and draw the curves by varying the cut-off prob-

abilities. The SCCA was also included in the comparisons.

Figure 2(a), (b) displays the TPR against FPR on the selected vox-

els. We can see that the SCCA with single class data and combined

threshold performs much worse than the JSCCA. The combined

threshold performs even worse than single class case. Moreover, as

the parameter s increases, the area under curve does not change too

much. Figure 2(c), (d) evaluates the success in detecting differential ca-

nonical SNPs. The figure implies that JSCCA in all setting performs

no worse than the SCCA. In addition, for JSCCA, as the parameter s
increases from 0 to 0.2, the TPR increases constantly, especially given

a low FPR. But when s¼0.4, the performance decreases. All these re-

sults indicate that the parameter s plays an important role in combin-

ing the power of each individual class to reduce the false detections in

both SNPs and the related voxels. But excessive fusion will hinder the

power in the detection for the differential canonical SNPs. Hence, a

proper balance is required to yield a desirable solution. To study the

proposed method in different scenarios, a set of simulations were con-

ducted to evaluate the effect of l, ms, mc on the performance, which

are available in supplementary data.

We then varied the noise level re from 0.05 to 0.5 to see its effects

on the performance. Figure 3 draws the precision for the detection of

the canonical voxels and differential canonical SNPs. In particular, we

selected the top ranked 100 voxels and 100 differential SNPs for each

method to calculate the precision. Obviously, as the signal to noise

level rh increases, the precision increases for all methods in the two

cases. The JSCCA performs better than SCCA for both the canonical

voxels and differential canonical SNPs. In addition, as the tuning par-

ameter s increases, the precision increases for JSCCA, but the im-

provement is quite small for the detection of canonical voxels. We

also studied the performance with top ranked 50 and 200 features

(see Figs S8 and S9 in supplementary data), which show that less se-

lected features provide more reliable results. All these results indicate

that the JSCCA with proper fusion could yield the best combination

of multi-class data to increase the detection accuracy.

3.2 Application to a schizophrenia dataset
Schizophrenia is a complex mental disorder often characterized by

abnormal thinking, speech and behavior of a patient. It is considered

to be related to a number of genetic factors and the study of the as-

sociations between genetic factors and brain activities will facilitate

our understanding of the biological mechanisms underlying the dis-

ease. Comparing the difference in the association of imaging and

genetics between cases and controls could yield disease-specific

features.

We applied the method to SNP and fMRI data collected by The

Mind Clinical Imaging Consortium (MCIC). The data were from

208 subjects, among them 92 are schizophrenia patients (age:

34 611, 22 females) and 116 healthy controls (age: 32 611, 44 fe-

males). We follow the same preprocessing procedures as in Lin et al.

(a) (b)

(c) (d)

Fig. 2. A comparison of SCCA and JSCCA in identifying the differential inter-

actions. (a) TPR versus FPR on the detection of canonical voxels. (b) The de-

tailed comparison on the detection of canonical voxels. (c) TPR versus FPR on

the detection of differential canonical SNPs. (d) The detailed comparison on

the detection of differential canonical SNPs (Color version of this figure is

available at Bioinformatics online.)

(a) (b)

Fig. 3. A comparison of the precision under different signal to noise levels. (a)

precision for the detection of canonical voxels. (b) precision for the detection

of differential canonical SNPs (Color version of this figure is available at

Bioinformatics online.)
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(2014), resulting in 41, 236 voxels and 777, 635 SNPs. Then, the

voxels with the mean response less than 0.3 were removed while the

SNPs included by the Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway were selected (Kanehisa and Goto, 2000), result-

ing in finally a dataset with 8, 891 voxels and 129, 145 SNPs.

3.2.1 Experimental results

We applied the algorithm in Section 2 to the data provided. The data

were normalized according to samples from each class. The jw and jv

were set to be 200. We found that jw and jv did not affect too much

on the results if they were small enough, e.g. at the same order as the

sample size. We randomly sampled 120 subjects without replacement

for 1000 times, and performed JSCCA on each sub dataset to find the

optimum parameter s. Given the selected s, we then applied stability

selection and picked important voxels by the probability pw and the

degree of specificity of SNPs for cases and controls by the probability

p10
v (0 for control and 1 for case) as described in Section 2. The differ-

ential correlated modules were selected as described in Section 2.5.

The analysis of the first two modules were presented.

We first show the module components. The selected voxels were

plotted in Figure 4. As shown in the figure, for the first group, 95

voxels were selected, which are mainly from the bilateral putamen.

For the second group, 159 voxels were selected, which are mainly

from the right inferior frontal gyrus and right insula. The selected

SNPs were summarized in Table 1. There were 7 SNPs from 6 genes

and 10 SNPs from 8 genes selected by the first and second module,

respectively.

Moreover, we plotted the detailed SNP-voxel correlations be-

tween the selected SNPs and voxels in Figure 5. For both the first

and second module, the correlations are high in case group but are

constantly low in control group. Specifically, the mean difference of

the SNP-Voxel correlation between cases and controls is 0.2917

(P< 1e–6) for the first module and 0.2872 (P< 1e–6) for the second

module (the p value was estimated by permutation test), which fur-

ther proves that these case–specific SNPs have significantly increased

correlations with the detected brain regions.

We tested the selected SNPs for gene set over-representation ana-

lysis using ConsensusPathDB (Kamburov et al., 2013). The Gene

ontology (GO) terms related to neural activity enriched with p-value

less than 0.01 are summarized in Table 2. There are mainly three

GO terms enriched for the first module, by genes CDH4 and SLIT2.

There are mainly eight GO terms enriched for the second module,

primarily by genes EPHA7, NOTCH1, B3GNT2 and CNTNAP2.

3.3 Discussions
In the realm of imaging genetics, CCA is regarded as an efficient al-

gorithm for multivariate analysis of correlations with low computa-

tional complexity, which has been used in our previous studies (Lin

et al., 2014). Our main results in this paper presented an extension

of sparse CCA to discover differential association modules from dif-

ferent disease statuses. Inspired by the idea of a joint sparse model

(Baron et al., 2005) and fused graphical lasso (Danaher et al., 2014;

Yang et al., 2015), we proposed an JSCCA method and verified its

performance in a schizophrenia dataset. The dataset consists of

fMRI data and SNP data with 116 healthy controls and 92 schizo-

phrenia patients. We designed to explore abnormal brain-genomic

associations in schizophrenia patients. We first applied JSCCA to

find a common brain component and two genetic components (for

cases and controls respectively) to maximize their summed correl-

ations. Then the stability selection method was used to pick up a

candidate set of SNPs that are differentially associated with the tar-

get brain components. Finally, modules are detected by controlling

the mFDR of the pair-wise differential correlation. Overall, the dif-

ferences of group-size associations can infer specific genomic func-

tions in brain activities for schizophrenia patients.

3.3.1 Comparison with sparse CCA

In simulation studies, we have shown the advantages of JSCCA over

SCCA in identifying the differential correlated components when

there is only one pair of canonical vectors. The problem would be

(a)

(b)

Fig. 4. Maps showing the brain regions related to the SNPs. The magnitudes

are the corresponding selection probability. (a) The first module, (b) the se-

cond module (Color version of this figure is available at Bioinformatics

online.)

Table 1. The susceptibility schizophrenia-specific canonical SNPs

related to the brain region

SNP ID Gene Chr SNP ID Gene Chr

The first module

rs163907 AGXT2 5 rs6121460 CDH4 20

rs16955972 CES7 16 rs7186424 CES7 16

rs1059611 LPLa 8 rs12512830 SLIT2 4

rs132946 PLA2G6a 22

The second module

rs10183370 B3GNT2a 2 rs12211663 EPHA7 6

rs10251347 CNTNAP2a 7 rs7691506 HADH 4

rs12427675 CSNK1A1L 13 rs3796992 HADH 4

rs1555639 CSNK1A1L 13 rs10513805 MASP1 3

rs7033245 NOTCH1 9 rs17160670 PDE1C 7

aGenes reported to have potential relationship with schizophrenia.

Fig. 5. Heatmaps showing the pair-wise absolute Pearson correlation be-

tween the selected voxels and SNPs given the common colormap on the

right, where the left is for cases while the right is for controls. (a) The first

module, (b) the second module (Color version of this figure is available at

Bioinformatics online.)
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more complicated in real applications. For example, when applying

SCCA separately to cases and controls, we found the voxels selected

by SCCA in the 3rd and 4th component in cases, in the 1st and 10th

component in controls, are most relevant to the voxels in the two

modules detected by JSCCA. Therefore, a matching procedure is

usually required before the comparison among the results given by

SCCA. However, unlike the case in the simulation, the components

cannot always be ideally matched, which may further degrade the

performance. In contrast, as shown in Figure 1, the JSCCA provides

a joint model which naturally pairs the components so that the joint

analysis becomes more reliable. An alternative approach for match-

ing high dimensional imaging genetics data has been proposed

within an independent component analysis framework (Liu et al.,

2008; Pearlson et al., 2015). It would be interesting to do a direct

comparison of these different approaches, which we plan to do in fu-

ture work.

3.3.2 Biological implications

Two brain components were recognized by JSCCA. In particular,

the first brain component includes the region of bilateral putamen.

The putamen is one of the basal ganglia nuclei and part of the stri-

atum, and is associated with the motor skills. Dopamine is concen-

trated within the putamen (Meador-Woodruff et al., 1996) and

dopamine synthesis capacity has been found related to schizophrenia

and symptom severity (Howes et al., 2013). In addition, decreased

volume and total neuron number were found in putamen in schizo-

phrenia patients (Kreczmanski et al., 2007). The second brain com-

ponent includes the region of right inferior frontal gyrus and right

insula. The right inferior frontal gyrus is a component of the pre-

frontal lobe, which is involved in inhibition and attention control

(Hampshire et al., 2010). Decreased neural activation was found in

the right inferior frontal gyrus for schizophrenia patients (Zandbelt

et al., 2011; Zhang et al., 2016). The insula is related to emotional

processing and motor function, and plays an important role in

schizophrenia. The pathological function of the insula in schizophre-

nia was summarized in (Wylie and Tregellas, 2010), which primarily

includes the emotional facial processing, auditory affect processing,

self versus non-self, etc. Moreover, a network connectivity study has

shown aberrant functional connectivity between the right insula and

inferior frontal gyrus (Voegler et al., 2016).

There were two groups (modules) of SNPs identified in this

paper. In the first module, we have discovered seven SNPs from six

genes. Among them, the LPL, PLA2G6 were reported to have poten-

tial relationship with the risk of schizophrenia. The LPL gene is ex-

pressed in the brain regions with functionally relevant cognitive

functions, and was found to be related to schizophrenia (Le-

Niculescu et al., 2007; Xie et al., 2011). PLA2G6 (Phospholipase A2

group 6) gene is important for normal brain development and syn-

aptic functioning. The role of PLA2G6 in schizophrenia was re-

viewed in (Law et al., 2006), which indicated their potential

relationship. In the second module, we have discovered 10 SNPs

from 8 genes. The B3GNT2 and CNTNAP2 were reported to have

potential relationship with the risk of schizophrenia. The B3GNT2

is an immune-related gene and was implicated to be tied to schizo-

phrenia (Sanders et al., 2013). The CNTNAP2 gene is among the

top schizophrenia genes and has been reported with increased sus-

ceptibility (Friedman et al., 2008; O’Dushlaine et al., 2011; Wang

et al., 2010). In addition, several GO terms related to the neuron

projection, neuron and brain development were enriched by CDH4,

SLIT2, EHHA7, NOTCH1, B3GNT2 and CNTNAP2. All these

findings further demonstrate the biological significance or implica-

tions of the selected modules.

Finally, we are interested in how their interactions affect and dis-

tinguish schizophrenia. One study in (Ross et al., 1999) suggested

decreased PLA2 activity in putamen for schizophrenia patients. It

was also shown in (Whalley et al., 2011) that the association be-

tween CNTNAP2 gene and brain activity exists in the right inferior

frontal gyrus in healthy individuals during a language task, which

may indicate the potential risk to mental illness.

3.3.3 Potential limitations

In JSCCA, the assumption on a completely common imaging feature

is too strict in practice, although this assumption provides a fair way

for comparison between classes. To overcome this problem, we are

working on some postprocessing methods (e.g. partial correlation

network) to further eliminate unrelated and indirectly related

connections.

The parameter selection method for penalized CCA is still an

open problem. Especially when the correlation is weak between

genetic variant and brain activity, it is more important to detect re-

liable associations while reducing the FDR (Grellmann et al.,

2015). Stability selection is a recently proposed strategy that can

better control Type-1 error rate (Meinshausen and Bühlmann,

2010; Wang et al., 2014), hence it is adopted in our proposed

method. The simulations in the supplementary data also demon-

strate that the stability selection can yield better results than cross

validation. However, the selection of the cut-off probability for sta-

bility selection remains a challenging issue, especially for high di-

mensional data. Although the proposed module detection method

Table 2. The enriched gene ontology terms that are related to the neural activity

GO term Gene P-value

Neuron projection extension 3.5e–4

Neuron projection guidance CDH4, SLIT2 4.5e–3

Positive regulation of nervous system Development 4.7e–3

Neuron projection development 3.2e–4

Neuron development 5.6e–4

Neuron differentiation EPHA7, NOTCH1, B3GNT2, CNTNAP2 1.2e–3

Neurogenesis 2.1e–3

Nervous system development 8.9e–3

Brain development 2.2e–3

Head development EPHA7, NOTCH1, CNTNAP2 2.6e–3

Central nervous system development 5.1e–3
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worked effectively, it is still far from optimal. We will continue to

work on this problem.

In this paper, the method was evaluated on a case–control study.

We proposed a method to detect the differential correlated modules.

However, the method introduced in Section 2.5 cannot be directly

applied to detect common modules. This is because the calculation

of mFDR is based on the permutation test, where the null hypothesis

is built for detecting differences but not for detecting similarities.

More robust and appropriate statistical methods will be studied in

the future to enable the detection of both common and differential

correlations simultaneously. Moreover, the proposed model could

be more powerful for analyzing data from more than two classes or

from multiple conditions. For example, we can easily extend the

study to imaging genomic data collected from a combination of dif-

ferent research groups and different mental disorders. This would be

a very interesting topic.

4 Conclusion

The main contributions of the present paper can be summarized as

follows. First, we propose a JSCCA method, which can discover re-

lationship among data from observations corresponding to distinct

classes to infer their common and different association patterns.

Second, we present an efficient algorithm to solve the model.

Third, we study the numerical performance of JSCCA via a series

of simulations. Our results show that an appropriate fusion of mul-

tiple data can improve the detection accuracy of both common and

differential associations. Finally, we applied the proposed

method to the analysis of schizophrenia data. We discovered some

novel abnormal interactions between a group of SNPs with

some interesting brain regions. The differential interaction can

infer some important information on how the dysfunction of genes-

brain interactions can imply the risk of schizophrenia. The inter-

pretation of these interactions should be further confirmed via

replications and additional biological evidences, which needs fur-

ther research.
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