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Abstract

Motivation: Detecting drug-drug interaction (DDI) has become a vital part of public health safety.

Therefore, using text mining techniques to extract DDIs from biomedical literature has received

great attentions. However, this research is still at an early stage and its performance has much

room to improve.

Results: In this article, we present a syntax convolutional neural network (SCNN) based DDI extrac-

tion method. In this method, a novel word embedding, syntax word embedding, is proposed to em-

ploy the syntactic information of a sentence. Then the position and part of speech features are

introduced to extend the embedding of each word. Later, auto-encoder is introduced to encode the

traditional bag-of-words feature (sparse 0–1 vector) as the dense real value vector. Finally, a com-

bination of embedding-based convolutional features and traditional features are fed to the softmax

classifier to extract DDIs from biomedical literature. Experimental results on the DDIExtraction 2013

corpus show that SCNN obtains a better performance (an F-score of 0.686) than other state-of-the-

art methods.

Availability and Implementation: The source code is available for academic use at http://202.118.

75.18:8080/DDI/SCNN-DDI.zip.

Contact: yangzh@dlut.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Adverse drug reactions (ADRs) lead to 300 000 deaths per year in

the USA and Europe (Businaro, 2013). Drug-drug interaction (DDI),

which is broadly described as a change in the effect of one drug by

the presence of another drug (Baxter and Preston, 2010), is an im-

portant subset of ADRs. Landau reported that about 2.2 million

people in USA, aged 57–85, faced potentially dangerous drug com-

binations (Landau, 2009). As a result, detecting DDIs has become a

vital part of public health safety. With rich DDIs knowledge, the pa-

tients can be prevented from taking two or more drugs simultan-

eously which will cause harmful interactions.

Currently, some drug related databases, like DrugBank (Knox

et al., 2011) and Stockley’s Drug Interactions (Baxter and Preston,

2010), have been created to help detect DDIs. However, since the

volume of biomedical literature is growing rapidly, a large number

of valuable DDIs remain hidden in the unstructured biomedical

texts. Thus, the automatic extraction of DDIs information from bio-

medical literature has become an important research area.

In recent years, DDIExtraction 2011 (Segura Bedmar et al.,

2011) and 2013 challenges (Segura Bedmar et al., 2013) have been

held successfully. DDIExtraction 2011 only focuses on the identifi-

cation of all possible DDIs while the 2013 challenge requires, in

addition to DDI detection, the classification of each DDI, i.e. the

DDIs need to be classified into four predefined DDI types: ADVICE,

EFFECT, INT and MECHANISM (Herrero-Zazo et al., 2013).

ADVICE is assigned when a recommendation or advice regarding
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concomitant use of two drugs involved is described; EFFECT is as-

signed when the effect of the DDI is described; INT is assigned when

a DDI appears in the text without any additional information pro-

vided; MECHANISM is assigned when a DDI is described by its

pharmacokinetic mechanism.

Existing DDI extraction methods can be roughly divided into two

categories: the one-stage and two-stage methods. The one-stage

method accomplishes DDI detection and classification simultaneously

by training a multiclass SVM. It directly classifies each candidate in-

stance into one of the five DDI types (ADVICE, EFFECT, INT,

MECHANISM and NEGATIVE for the negative instances). The

two-stage method divides the learning problem into two stages: first,

all the DDIs are detected and second, the detected DDIs are classified

into one of the four specific DDI types (ADVICE, EFFECT, INT and

MECHANISM).

In DDIExtraction 2013 challenge, FBK-irst team used a two-

stage method (Chowdhury and Lavelli, 2013). It employs a hybrid

kernel to detect DDIs and, then, assign them to one of the four DDI

types by training four separate models (one-against-all), respectively.

The method achieves an F-score of 0.651, which ranks top in the

challenge. Later, Kim et al. (2015) also proposed a two-stage

method based on linear SVM using rich features, and obtained a

higher F-score of 0.670 on the same corpus. The method uses the

word feature, word pair feature, parse tree feature and noun phrase-

constrained coordination feature. In addition, its one-against-one

multiclass classification strategy also contributes greatly to its per-

formance while the other methods choose one-against-all strategy.

An example of the one-stage method is the one presented by

UTurku team (Björne et al., 2013) in DDIExtraction 2013 challenge.

It accomplishes DDI detection and classification tasks simultan-

eously by training a multiclass SVM (Crammer and Singer, 2002)

and classifies each candidate instance into one of the five DDI types

(ADVICE, EFFECT, INT, MECHANISM and NEGATIVE). The

method achieves the third best performance (an F-score of 0.594) in

DDIExtraction 2013 challenge.

Although many methods have been proposed, DDI extraction re-

search is still at an early stage and its performance has much room to

improve. For example, in DDIExtraction 2013 challenge, the best

performance achieved is 0.651 in F-score (Chowdhury and Lavelli,

2013). In addition, the state-of-the-art DDI extraction methods are

all feature engineering based ones, i.e. they need to design effective

features elaborately using various NLP tools and knowledge re-

sources, which is still a labor-intensive and skill-dependent task.

Therefore, the performance of these methods is heavily dependent on

the choice of features. Finally, since DDIExtraction 2013 challenge is

a multiclass classification problem, a multiclass classifier is needed.

However, most methods with top performance train several binary

SVMs to solve the multiclass classification problem (Chowdhury and

Lavelli, 2013; Kim et al., 2015). In fact, K or K (K-1)/2 (here K is the

number of target classes) binary classifiers are needed when one-

against-all or one-against-one strategies are chosen, respectively (Hsu

and Lin, 2002). Although such methods can achieve better perform-

ances, they increase the complexity of the DDI extraction.

To solve these problems, we propose a syntax convolutional

neural network (SCNN) based DDI extraction method. The method

uses a novel word embedding (word embedding is a parameterized

function that maps words to high-dimensional vectors and was first

introduced by Bengio et al. (2003) to fight the curse of dimensional-

ity in the process of learning language model using neural network),

the syntax word embedding, to introduce the syntactic information

of a sentence which has proven to be helpful in boosting the

performance of relation extraction (Bunescu and Mooney, 2005).

Then the syntax word embedding is extended by the position feature

(Zeng et al., 2014) and the part of speech (POS) feature to introduce

the position and POS information. The latter is first introduced in

our method to capture the POS information of each word. Later,

auto-encoder (Hinton and Zemel, 1994) is introduced to transfer

the traditional sparse 0–1 features to the dense real value features

before they are combined with the embedding-based convolutional

features. Finally, the combined features are passed to the softmax

(Zeng et al., 2014) to learn the DDI classifier.

2 Materials and methods

In this section, we first introduce a SCNN-based one-stage method

(SCNN1) which directly classifies each candidate instance into one

of the five DDI types (ADVICE, EFFECT, INT, MECHANISM

and NEGATIVE). Then a SCNN-based two-stage method (SCNN2)

is presented since the performances of the two-stage methods are

usually better than those of the one-stage ones.

Our one-stage method SCNN1 contains six processing steps as

shown in Figure 1:

1. Negative instance filtering step that rebalances the datasets’ class

distribution by removing possible negative instances.

2. Preprocessing step that constructs an easily understood corpus

for classifiers.

3. Learning word embedding step that generates the syntax word

embedding using Enju parser (Miyao and Tsujii, 2008) and

word2vec (Mikolov et al., 2013).

4. Feature extraction step that extracts the convolutional and trad-

itional features.

5. Training the classifier5 step that learns a five-class classifier

based on the extracted features.

6. DDI detection and classification step that classifies each instance

of the test set into one of the five DDI types using the convolu-

tional neural network (CNN) model.

Fig. 1. The processing flow of our one-stage method SCNN1
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The details are described in the following sections.

2.1 Negative instance filtering
Classification of the data with imbalanced class distribution has en-

countered a significant drawback of the performance attainable by

most standard classifier learning algorithms which assume a rela-

tively balanced class distribution and equal misclassification costs

(Sun et al., 2009). DDIExtraction 2013 challenge also suffers from

the imbalanced class distribution problem (e.g. the ratio of the posi-

tive instances to the negative instances in the training set is 1:5.91).

To alleviate this problem, we construct a less imbalanced corpus by

removing possible negative examples with the following two rules:

Rule 1: The instances in which two candidate drugs refer to the

same drug are removed as any drug is unlikely to interact with itself

(Chowdhury and Lavelli, 2013). More specifically, the following

two cases are considered: (i) two drugs have the same name; (ii) one

drug is the abbreviation of the other drug (the method of finding the

abbreviation is described in the Supplementary Material: the method

of finding the abbreviation). Two examples are given as follows.

Same name: Interactions for Vitamin B2 (Riboflavindrug1):

Alcohol impairs the intestinal absorption of riboflavindrug2

Abbreviation: Methyldopa does not interfere with measurement

of vanillylmandelic_aciddrug1 (vanillylmandelic (VMA)drug2), a test

for pheochromocytoma, by those methods which convert VMA to

vanillin

Rule 2: The instances in which two candidate drugs are in coord-

inate relations are filtered out since they are prone to false positives

(Segura Bedmar et al., 2014). For example, the following instance

will be removed with rule 2.

Methscopolamine may interact with antidepressants (tricyclic

type), monoamine oxidase (MAO) inhibitors (e.g. phenelzinedrug1, line-

zoliddrug2, tranylcypromine, isocarboxazid, selegiline, furazolidone).

2.2 Preprocessing
Appropriate preprocessing can boost the final performance signifi-

cantly. In our method, two preprocessing operations are conducted,

i.e. tokenization and transforming the numbers to two uniform

forms.

2.2.1 Tokenization

In our method, tokenization process is performed since it is one of

the standard preprocessing steps. We employ the tokenization tool

developed specifically for biomedical literature by Jiang and Zhai

(2007). Besides the normal tokenization strategies, the tool uses the

rules to handle the complicated biomedical entities (e.g. Macrophage

inflammatory protein (MIP)-1alpha, 1, 2, 3, 4-TeCDD, 2’, 5’-linked

3’-deoxyribonucleotides).

2.2.2 Transforming the numbers to two uniform forms

Numbers (integers and decimals) occur frequently in the DDI corpus.

For example, in the sentence ‘The serum concentration of pheny-

toindrug1 increased dramatically from 16.6 to 49.1 microg/mL when

fluvoxamine was coadministered, although the daily dosage of pheny-

toindrug2 and other drugs had not changed’, there are two decimals

(‘16.6’ and ‘49.1’). Transforming the two decimals to a uniform form

(‘float’) won’t change the DDI’s semantic expression. Therefore, the

sentence becomes ‘The serum concentration of phenytoindrug1

increased dramatically from float to float microg/mL when fluvox-

amine was coadministered, although the daily dosage of pheny-

toindrug2 and other drugs had not changed’. Then we train a word

embedding on the processed sentences with word2vec (Mikolov et al.,

2013) (a widely used tool for learning word embedding) and it will

generate an embedding for ‘float’ instead of for ‘16.6’ and ‘49.1’.

Since word2vec trains a sentence based on sliding window mechan-

ism, the ‘float’ will be trained twice while ‘16.6’ and ‘49.1’ are trained

once only. As more training times will generate more accurate embed-

ding, replacing all the integers and decimals with ‘num’ and ‘float’, re-

spectively, will provide more powerful embedding for ‘num’ and

‘float’. In addition, it will significantly reduce the size of the vocabu-

lary and make the embedding more compact.

2.3 Syntax word embedding
The syntactic information plays a key role in the sentence level relation

classification problems (Bunescu and Mooney, 2005; Fundel et al.,

2007). Therefore, it is also employed by deep learning methods to

solve the relation classification problems. Xu et al. (2015) proposed a

CNN-based relation classification model that utilizes the shortest de-

pendency paths information. It takes the word sequence on the short-

est path order as the input instead of the original sentence order. Yan

et al. (2015) solved the relation classification problem with long short

term memory networks along the shortest dependency path, whose in-

formation is used to generate the new ordered input sequence.

However, these methods use the syntactic information to generate the

new ordered input sequence instead of training the word embedding.

A word embedding is a parameterized function that maps words

to high-dimensional vectors. Word embedding was first introduced by

Bengio et al. (2003) to fight the curse of dimensionality in the process

of learning language model using neural network. Since then, various

word embeddings were proposed for learning language models

(Collobert et al., 2011; Huang et al., 2012; Mikolov et al., 2013). In

addition, word embeddings were also widely used in various NLP

tasks. Collobert et al. (2011) achieved the state-of-the-art performance

on POS tagging, chunking, Named Entity Recognition and Semantic

Role Labeling (SRL) using CNN with the word embedding as the in-

put. Zeng et al. (2014) proposed a word embedding based convolu-

tional neural network to solve the relation classification problem.

However, the word embeddings mentioned above are all based

on the linear contexts (i.e. the surrounding words in linear order of

a sentence). They ignore the syntactic information that plays a key

role in the sentence level classification problems like DDI extraction.

Levy and Goldberg, (2014) proposed the dependency-based syn-

tactic contexts to learn the word embedding. Hashimoto et al. (2014)

learned the word embedding using predicate-argument structure con-

texts and used it to measure semantic similarity between short phrases.

In their methods, the syntactic information is introduced by construct-

ing the syntactic contexts instead of the normal linear contexts (i.e. the

surrounding words in linear order of a sentence) for the training pro-

cess. Compared with the latter, the syntactic context yields more inclu-

sive and more focused embeddings (Levy and Goldberg, 2014).

In our method, we propose a novel word embedding that contains

the syntactic information, syntax word embedding, by changing the

input of the word2vec tool (Mikolov et al., 2013), i.e. the word se-

quences on the shortest path in the predicate-argument structure in-

stead of the original linear order word sequences are inputted into the

word2vec. Take the sentence ‘Trimethoprim may inhibit the hepatic

metabolism of phenytoin’ as an example. We first use Enju parser

(Miyao and Tsujii, 2008) to parse the sentence and generate the

predicate-argument structure of the sentence as shown in Figure 2.

Then the word sequence, ‘Trimethoprim inhibit metabolism of pheny-

toin’, is obtained by combining the words on the shortest path con-

necting the first and last words. It retains the backbone of the
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sentence which is vital for representing a sentence’s syntactic structure

while filtering out the less important adjunct words (e.g. ‘may’, ‘the’

and ‘hepatic’). In this way, the syntax word sequence becomes more

concise. Then these shortest path order sequences are inputted into

word2vec to generate the syntax word embedding. We use Eword

2 Rm�n to represent the syntax word embedding, where m is the size

of the vocabulary and n is the dimension size of the syntax word

embedding.

In contrast to previous syntactic context word embeddings

(Hashimoto et al., 2014; Levy and Goldberg, 2014), our embedding

is learned only based on the concise syntax word sequence, which

represents a sentence’s syntactic structure while discards the less im-

portant words. It is simple but proven to be effective for DDI extrac-

tion by our experiments.

2.4 Feature set
Collobert et al. (2011) proposed a CNN-based architecture to solve

sentence level tasks like SRL. Then Zeng et al. (2014) applied this

architecture to relation classification problems. In this article, we

also propose a CNN-based method to extract DDIs from biomedical

literature. The method uses both the embedding-based convolu-

tional features (dense real value vectors) and the traditional bag-of-

words features (sparse 0–1 vectors). Then auto-encoder is utilized to

narrow down their difference. Thus, we can integrate two kinds of

features more effectively.

2.4.1 Convolutional features

2.4.1.1 Word representation. Collobert et al.’s architecture enables

each word’s feature vector to be extended to any discrete features

which are helpful to the task of interest. Zeng et al. (2014) extended

the position feature to specify two target nouns in a relation extraction

problem. In our method, as shown in Figure 3, a word is represented

with the syntax word embedding, position feature and POS feature.

Syntax word embedding. As described in Section 2.3, the shortest

path order sequences are inputted into word2vec to generate the

syntax word embedding.

Position feature. DDI extraction task considers the relationship of two

candidate drugs in a sentence. But the syntax word embedding itself

cannot capture the position information of two drugs which is im-

portant for a relation extraction problem. Therefore, the position fea-

ture presented by Zeng et al. (2014) is also used in our method. The

position feature consists of two relative distances, [d1, d2], where d1

and d2 represent relative distances of the current word to drug1 and

drug2, respectively. Take the following sentence as an example.

Hyaluronan_lyasedrug1 had a limited effect and collagenasedrug2 was

ineffective. The relative distances of the word ‘effect’ to drug1

(Hyaluronan lyase) and drug2 (collagenase) are �4 and 2, respect-

ively. Then the relative distances are mapped to a ten bit binary vec-

tor, where the first bit stands for the sign and the remaining bits for

the distance. The position feature (Ep 2 R19�10) is shown in

Supplementary Table S4 due to space limitation.

As can be seen from the table, more attention is paid to the

words near the two drugs, especially the ten surrounding words. On

the other hand, the words whose relative distances exceed thirty are

all treated the same. It is consistent with the intuition that the closer

words contain more information than the more distant words do for

the current word.

Fig. 2. The predicate-argument structure of the example sentence. The nodes and edges on shortest path connecting the first and last words in the predicate-ar-

gument structure are shown in bold and the rest in dotted line. The rectangular nodes represent words. The ellipse vertices represent specific relationships be-

tween the predicates and their arguments

Fig. 3. Convolutional feature extraction. Xi (i¼ 0, 1, . . ., t) represents ith word in a t length sentence
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POS feature. In our method, besides the position feature, the POS

feature is also proposed to extend the syntax word embedding.

Intuitively, the POS information of the words will be helpful to DDI

extraction. Take the following instance as an example.

Fluvoxaminedrug1 [inhibits] the CYP2C9 catalyzed biotransform-

ation of tolbutamidedrug2.

Drug1 (Fluvoxamine) is more likely to interact with drug2 (tol-

butamide) since there is a verb ‘inhibits’ (annotated with a POS tag

‘vb’) between them. Therefore, the POS feature is informative for

DDI extraction and is introduced in our method. The similar POSs

generated by Enju parser are assigned to the same group and all 37

POSs (as shown in Supplementary Table S5) are divided into eight

groups. Then each group is mapped to an eight bit binary vector

using POS feature. In this way, the dimension of the POS feature is

reduced.

The POS feature is represented with the traditional bag-of-words

feature (sparse 0–1 vector). Intuitively, concatenating the embedding

based features (dense real value vectors) and sparse 0–1 vectors dir-

ectly is not elegant enough. Therefore, we introduce the auto-

encoder (Hinton and Zemel, 1994) to solve this problem as dis-

cussed in the following section.

2.4.1.2 Auto-encoder. Auto-encoder is a non-linear unsupervised

learning model that is widely used as one of the building blocks in

the greed layer-wise training process of deep learning (Bengio et al.,

2013). It is a neural network (NN) trained to compute a representa-

tion of the input from which it can be reconstructed with as much

accuracy as possible (Hinton and Zemel, 1994). Coding and decod-

ing processes of the input are obtained from Equations (1) and (2),

respectively.

hjðxÞ ¼ f ðajðxÞÞwhere ajðxÞ ¼ bj þ
X

i

Wjixi (1)

x�k ¼ gðakÞwhere ak ¼ ck þ
X

j

W�
kjhjðxÞ (2)

where x is the input, h(x) is the hidden representation that we need

and x* is the reconstruction result. We utilize tanh and sigmoid as

the activation functions for f() and g(), respectively, as the input val-

ues range from 0 to 1 and the hidden representation values should

be real numbers which can be negatives. To avoid the network

learning a trivial identity function, we set WT ¼W� as did in the

work of Larochelle et al. (2009). As the goal is minimizing the re-

construction error, the loss function of auto-encoder can be defined

as Equation (3):

Lðx�; xÞ ¼
X

n

ðxðnÞ
�
� xðnÞÞ2 þ b

2
W2 (3)

Then, back-propagation algorithm is used to learn the auto-

encoder model with the training data which is represented with our

POS feature vector. Using the learned auto-encoder model, we en-

code the sparse POS feature vector as the dense real value feature

vector (Epos 2 R8�8).

Finally, given a sentence (X1,X2,. . .,Xi,. . .,Xt) of length t,

the ith word Xi will be represented as

Vi ¼ ½Eword
i ;E

p
i�drug1;E

p
i�drug2;E

pos
i � 2 Rn0 , where each element of Vi

represents the syntax word embedding, position feature for drug1,

position feature for drug2, and POS feature of the word Xi, re-

spectively, and n0¼nþ10þ10þ8 where n is the dimension size

of the syntax word embedding.

2.4.1.3 Window approach. After representing each word with a

n0-dimensional vector, we use the window approach to capture each

word’s context information. Given a word, we will combine a fixed

size (win) of its surrounding words’ vectors. And a new vector

WinVi¼ [Vi-win/2,. . .,Vi-1,Vi,Viþ1,. . .,Viþwin/2]2Rn1 is obtained with

the window approach, where i is the word’s index in a sentence and

n1¼win�n0. Take the following sentence as an example.

Hyaluronan_lyase[1] had[2] a[3] limited[4] effect[5] and[6] col-

lagenase[7] was[8] ineffective[9]

After the window process, the word ‘limited’, whose index in the

sentence is 4, will be represented as WinV4¼ [V3,V4,V5] where

win¼3.

2.4.1.4 Convolution. DDI extraction task is a sentence level relation

classification problem which predicts relation types for each sentence

that is marked with two target nouns. Therefore, it is necessary to

utilize all the local features of the sentence (Zeng et al., 2014). In our

method the convolutional approach (Collobert et al., 2011; Zeng

et al., 2014) as expressed by Equation (4) is employed to merge all the

local information obtained with the window approach.

ConS ¼WinS �M (4)

where WinS ¼

WinV1

WinV2

. . .

WinVt

2
666664

3
777775
2 Rt�n1 , t is the number of words in a

sentence and Mn1�n2 is the transformation matrix that is the same

across all local features of t in the sentence. ConS 2 Rt�n2 is the

transforming result of WinS using M, where n2 is a hyper-

parameter. Then the max pooling operation is conducted over times

on ConS. Suppose ConS(. ,i) is the ith column of ConS and MaxSi is

the maximum value of ConS(. ,i). These MaxSi are found out over

time on ConS with Equation (5) and are regarded as the most useful

features in each dimension of features.

MaxSi ¼ maxðConSð�; iÞÞ; 1 < i < n2 (5)

Finally, the hyperbolic tanh activation function (Equation 6) is

used to learn the complicated non-linear features.

MaxF ¼ tanhðMaxSÞ (6)

where MaxF 2 Rn2 . We can find that the varying length sentences

will be represented by the same dimensional (n2) feature vectors

after the convolution process. Thus standard NN can be applied eas-

ily to the max feature vectors (MaxF).

2.4.1.5 Convolutional feature. After the preceding process, max fea-

ture vector (MaxF) is obtained and then a feed forward layer is

stacked over MaxF, using Equation (7), to learn the higher level con-

volutional features.

ConvF ¼ tanhðMaxF �WconvÞ (7)

where Wconv 2 Rn2�n3 , n3 is the dimension of the convolutional fea-

ture vector (ConvF).

2.4.2 Traditional features

Some traditional features, such as the context of two target

entities and information on the shortest path connecting them, can
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provide important cues for predicting two entities’ relationship in a

sentence. Therefore, in our method, the context and shortest path

features are used.

2.4.2.1 Context features. Our context features include two drug

names, their predicate words, their surrounding words, and their

surrounding words’ predicate words.

One word’s predicate word is found in the predicate-argument

structure of a sentence. As shown in Figure 2, the predicate of

Trimethoprim is inhibit. Thus, the contexts of both linear and syn-

tactic structure are considered. Finally, all these words’ syntax word

embeddings are concatenated to generate the context feature vectors

(ContF 2 Rn4 where n4 is the dimension of the context feature

vector).

2.4.2.2 The shortest path features. Our shortest path features in-

clude the words, the dependency types and biomedical semantic

types of the words on the shortest path connecting two drug names.

As shown in Figure 2, the dependency types on the shortest path

connecting Trimethoprim and phenytoin are verb_arg and prep_arg.

And the biomedical semantic types of the words are generated by

MetaMap (Aronson, 2001), which is a tool that maps biomedical texts

to corresponding concepts of UMLS Metathesaurus (Bodenreider,

2004). MetaMap can generate 104 kinds of semantic types, including

ftcn (functional concept), chem (chemical), anim (Animal), etc.

Like the POS feature, the shortest path information is represented

with traditional bag-of-words feature (sparse 0–1 vector). Therefore,

in the similar way as discussed in Section 2.4.1.2, the auto-encoder is

utilized to encode it as the dense real value feature vector

(ShortF 2 Rn5 where n5 is the dimension of the encoded shortest path

feature vector) so that it can be concatenated with the embedding

based features (dense real value vectors) more effectively.

2.4.2.3 Traditional feature generation. Then the context feature

(ContF) and encoded shortest path feature (ShortF) are concatenated

to generate the context and shortest path features (CSF ¼
½ContF; ShortF� 2 Rn6 , where n6¼n4þn5). Similar to the convolu-

tional features, a feed forward layer is stacked over CSF, using

Equation (8), to learn the higher level traditional feature (TradF)

TradF ¼ tanhðCSF �WtradÞ (8)

where Wtrad 2 Rn6�n7 , n7 is the size of the traditional feature vector.

2.5 Classifier training
The convolutional features and the traditional features are concaten-

ated into one feature vector, OutF¼ ½ConvF; TradF� 2 Rn8 , where

n8¼n3þn7. Then the OutF is fed into the output layer:

out ¼ OutF �Wout (9)

Wout 2 Rn8�n9 , n9 is the size of the output layer that is equal to the

number of the DDI types in DDI classification problem. The output

can be represented as out¼ [out1,out2,. . .,outi,. . .,outn9], where outi is

interpreted as the confidence score of the corresponding DDI type i.

The parameters of the model can be stated as a quad h¼ (M,

Wconv, Wtrad, Wout). The probability value of each DDI type is ob-

tained through the following softmax operation over all DDI types

using Equation(10):

pðijx; hÞ ¼ eoutiXn9

j¼1
eoutj

(10)

Then the log likelihood of the parameters is calculated using

Equation (11) when all training instances (T¼ {(x(i),y(i))}) are given:

JðhÞ ¼
X

i

logðpðyðiÞjxðiÞ; hÞÞ (11)

As in the work of Zeng et al. (2014), the stochastic gradient des-

cent technique is used in our method to maximize the log likelihood.

2.6 Two-stage method
As shown in Figure 1 of Supplementary Materials, our SCNN-based

two-stage method (SCNN2) includes the following processing steps:

1. Negative instance filtering step that rebalances the datasets’ class

distribution by removing possible negative instances.

2. Preprocessing step that constructs an easily understood corpus

for classifiers.

3. Learning word embedding step that generates the syntax word

embedding using Enju parser and word2vec.

4. Feature extraction step that extracts the convolutional and trad-

itional features.

5. Training the classifier2 step that trains a binary classifier based

on the extracted features.

6. DDI detection step that detects the DDIs from the test set using

the classifier2.

7. Training the classifier4 step that trains a four-class classifier

based on the extracted features.

8. DDI classification step that classifies the extracted DDIs in step

6 into four specific DDI types using the classifier4.

Like other two-stage methods, our two-stage method divides

the DDI extraction task into DDI detection stage and DDI classifica-

tion stage. The only difference between our one-stage and two-stage

methods is that the latter needs training two SCNN classifiers

(the output layer sizes are two and four, respectively) while the for-

mer only needs training one SCNN classifier with the output

layer size five.

3 Experimental results and discussions

3.1 Experimental settings
Our SCNN model is coded with Python and trained using

Numbapro (http://docs.continuum.io/numbapro/index-archived),

a Python compiler from Continuum Analytics (https://www.con

tinuum.io/), which can compile Python code for execution on

CUDA-capable GPUs or multicore Central Processing Units. With

a Graphics Processing Unit (GPU) of Nvidia Tesla k20, it takes

only a few hours to train our model. However, the syntax word

embedding learning will take almost one month and most of the

time is spent on parsing the massive amount of texts with Enju

parser to generate the syntactic information. Since the larger cor-

pus will generate the better embedding (Lai et al., 2015), besides

the original DDI corpus, a total of 4 653 097 Medline abstracts

were downloaded from PubMed website (http://www.ncbi.nlm.

nih.gov/pubmed/) to learn the syntax word embedding with a

query string ‘drug’.

Our method was evaluated on the DDIExtraction 2013 corpus

which consists of 1017 texts (784 DrugBank texts and 233 MedLine

abstracts) and was manually annotated with a total of 18 491 pharma-

cological substances (drug names) and 5021 DDIs (Herrero-Zazo

et al., 2013; Segura Bedmar et al., 2013). The corpus contains four dif-

ferent DDI types: ADVICE, EFFECT, INT and MECHANISM. As

mentioned in Section 2.1, we use the negative instance filtering to
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construct a more balanced corpus. Then the ratios of the positive

instances to the negative instances increase from 1:5.9 and 1:4.9 to

1:2.3 and 1:2.2 for the training and test sets, respectively. In add-

ition, as in Chowdhury and Lavelli’s (2013) work, any positive

instance removed from the test set is automatically considered a

false negative during the calculation of F-score. Table 1 shows the

statistics of the DDI corpus before and after the negative instance fil-

tering process.

The existing DDI extraction methods use the balanced F-score

measure for quantifying the performance (Segura Bedmar et al.,

2013). This metric is defined as F-score¼ (2PR)/(PþR), where P de-

notes the precision and R denotes the recall. To compare with these

methods, we also use F-score to evaluate the performance.

3.2 Performance comparison with other methods
The performance comparison between our method and others is

shown in Table 2. As can be seen from it, the two-stage methods

usually outperform the one-stage methods. For example, the best

two results in DDIExtraction 2013 challenge (FBK-irst (Chowdhury

and Lavelli, 2013) and WBI (Thomas et al., 2013)) are both

achieved with the two-stage methods. Later, Kim et al. (2015) also

employed a two-stage method to achieve an even better perform-

ance. This may clash with the intuition that the two-stage method

cannot outperform the one-stage one since it has a drawback that

the errors in the DDI detection stage will propagate to the DDI clas-

sification stage.

The reasons are as follows. First, dividing the DDI extraction

problem into two stages decreases the imbalance degree of the corpus,

which is denoted by the ratio of the sample size of the small class to

that of the prevalent class (Sun et al., 2009). The number of instances

in the original training set for five DDI types (ADVICE, EFFECT,

INT, MECHANISM and NEGATIVE) are 826, 1687, 188, 1319 and

23 772, respectively. For a one-stage method, the ratio of the small

type (INT) to the prevalent type (NEGATIVE) is 1:126. However, for

a two-stage method, in DDI detection, the ratio of the small type (the

sum of ADVICE, EFFECT, INT and MECHANISM) to the prevalent

type (NEGATIVE) is 1:5.9 and, in DDI classification, the ratio of the

small type (INT) to the prevalent type (EFFECT) is 1:9, where the im-

balance degree decreases significantly compared with the one-stage

method. Since most classification methods, including neural net-

works, suffer from the class imbalanced corpus problem (Sun et al.,

2009), it is reasonable that the two-stage methods outperform the

one-stage methods by alleviating the problem.

Another possible reason why the two-stage methods outperform

the one-stage methods is that, intuitively, the difficulty degree of a

classification problem will rise along with the increase of the target

class number. For the one-stage methods, DDI Extraction 2013 chal-

lenge task is a five-class classification problem since it needs to classify

each candidate instance into one of the five DDI types (ADVICE,

EFFECT, INT, MECHANISM and NEGATIVE). But for the

two-stage methods, the task is divided into two classification prob-

lems, i.e. the DDI detection and DDI classification problems. The for-

mer predicts whether an instance is a DDI or not (a binary

classification problem), and then the latter classifies each DDI candi-

date into one of the four DDI types (ADVICE, EFFECT, INT and

MECHANISM) (a four-class classification problem). It can be seen

as decomposing a complicated problem into two simpler ones.

Since the classifiers usually can solve a simple problem better than a

complicated one, the two-stage methods usually outperform the one-

stage ones.

In DDIExtraction 2013 challenge, the teams UTurku (Björne

et al., 2013) and NIL_UCM (Bokharaeian and Dıaz, 2013) used the

one-stage methods. As shown in Table 2, our one-stage method

(SCNN1) achieves an F-score of 0.670 which is much better than

those of UTurku and NIL_UCM (0.594 and 0.517 in F-score, re-

spectively). The improvements have been proven to be significant

using MCNemar’s test (Dietterich, 1998) at the 0.05 level. The per-

formance is even the same with the known best result achieved with

a two-stage method (Kim et al., 2015). The reason is that CNN is a

powerful multiclass classifier (Krizhevsky et al., 2012). With the

introduction of the syntax word embedding extended by the position

and POS features and the utilization of auto-encoder for transferring

the sparse traditional feature vector to the dense real value vector,

the performance is further improved.

To compare with the existing two-stage methods, we propose a

two-stage one (SCNN2) as well. In this method, we use the SCNN-

based method for the DDI detection by setting n9 (the size of the

output layer, refer to Equation 9) to 2. Then another SCNN model

(n9 is set to 4) is applied to classify the detected DDIs into four spe-

cific DDI types, i.e. ADVICE, EFFECT, INT and MECHANISM.

Compared with the two top-performing two-stage methods (Kim

et al., (2015) and FBK-irst), our method achieves almost equal or

lower F-scores in DDI detection (0.772 Versus 0.775 and 0.800).

The reason is that, as may happen when a complicated model is

used to learn an easy problem (Wan et al., 2013), SCNN may over-

fit the DDI detection, an easy binary classification problem.

However, in the DDI classification, its performance exceeds those of

other two methods (F-scores of 0.686 Versus 0.670 and 0.651). The

improvement of SCNN2 over FBK-irst has been proven to be signifi-

cant using MCNemar’s test at the 0.05 level. However, the signifi-

cant test between SCNN2 and Kim et al.’s (2015) method cannot be

performed since their detailed classification results are not available.

This verifies that SCNN is a large capacity model which is more

powerful for a complicated problem (e.g. four-class or five-class

DDI classification problems).

In addition, SCNN is based on CNN, a multiclass classifier

inherently (Krizhevsky et al., 2012). It can solve the multiclass clas-

sification problem better than the methods combining multiple

SVMs do since SVM is originally designed for the binary classifica-

tion problem. For example, compared with the best method in

DDIExtraction 2013 challenge (FBK-irst, which trains four binary

SVMs in the classification stage), the performance of SCNN2 is

much better (0.686 Versus 0.651 in F-score) though its DDI detec-

tion performance is inferior to that of the latter (0.772 Versus 0.800

in F-score).

In the meantime, as shown in Supplementary Table S7, SCNN

can obtain the state-of-the-art performance with fewer classifiers.

Table 1. The statistics of the DDI corpus

Corpus Positives Negatives Total Ratio

OriginalTraining Set 4020 23 772 27 792 1:5.9

NewTrainingSet 3840 8989 12 829 1:2.3

OriginalTestSet 979 4782 5761 1:4.9

NewTestSet 971 2084 3055 1:2.2

Notes. Ratio denotes the ratio of the positives to the negatives in the cor-

pus. OriginalTrainingSet and OriginalTestSet denote the original training and

test sets, respectively. NewTrainingSet and NewTestSet denote the new train-

ing and test sets obtained after possible negatives are removed, respectively. It

should be noted that 22 interactions in the training set whose corresponding

sentences can’t be parsed correctly by the Enju parser are removed and, there-

fore, the number of positives (4020) in OriginalTrainingSet is slightly differ-

ent with that (4042) of the DDIExtraction 2013 corpus.
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For the DDI classification, Kim et al. (2015) and FBK-irst team

learned the multiclass classifiers by combining several binary SVMs.

They used six (n9 � (n9�1)/2, n9 is four) and four (n9) binary SVMs,

respectively, as they chose one-against-one and one-against-all strat-

egies (Hsu and Lin, 2002). SCNN2 uses only one classifier, but its

performance is better than those of other two methods. This advan-

tage will be demonstrated more fully when there are more target

classes. Along with the increase of the target class number, for the

other two methods, the number of binary classifiers will increase

rapidly while this won’t happen to SCNN. In fact, there are many

multiclass classification problems with large target classes. For ex-

ample, SemEval-2010 Task 8 (Hendrickx et al., 2009) is a relation

classification problem of nineteen target classes. Large Scale Visual

Recognition Challenge (Krizhevsky et al., 2012) is an image classifi-

cation problem of one thousand target classes. It would be a disaster

to train a one-thousand-class classifier with one-against-one strat-

egy, as it needs 499 500 binary SVMs (1000 � (1000�1)/2).

Furthermore, the DDIExtraction 2013 corpus consists of two

parts, i.e. documents from the DrugBank database and MedLine ab-

stracts. The performance comparisons of various methods on

DrugBank and MedLine test sets are made in Supplementary

Materials due to space limitation.

3.3 The effect of the strategies and features on

performance
In addition, to evaluate the effectiveness of the strategies and fea-

tures of our method, the corresponding experiments are conducted

with SCNN2: we remove a feature or a strategy each time and then

calculate the F-score and the corresponding decrease compared with

the one before it is removed as shown in Table 3.

Negative instance filtering: after the negative instance filtering

strategy is removed, the F-score decreases by 4.1%. By further ana-

lysis, we found that alleviating the imbalanced class distribution

problem contributes to an F-score improvement of 1.4% and remov-

ing the false positives from the final result that otherwise will be gen-

erated by the classification model contributes the rest 2.7%.

In fact, some of our negative instance filtering rules are first

introduced in our method. For example, the instances in which two

candidate drugs are in coordinate relations are filtered out since they

are prone to false positives. These rules will remove numerous pos-

sible negatives from both the training and test sets. On the one

hand, the reduction of numerous negatives can improve the classifi-

cation performance of our SCNN model by constructing a more bal-

anced training set. But on the other hand, it leads to the loss of

much information about the filtered negatives. The final perform-

ance depends on the trade-off between the above two factors.

Therefore, our pre-filtering rules may be not necessarily effective for

any classification model as it is for ours, which has been verified by

the experimental results on the UTurku system (http://jbjorne.

github.io/TEES/, the only DDI classification system we could suc-

cessfully download, install and run). For UTurku, when our pre-

filtering rules are only applied on the test set, the F-score is improved

only a little (0.7 point in F-score from 0.593 to 0.6). The reason is

that, trained with numerous negatives in the original training set,

UTurku has achieved enough ability to recognize the negatives in

the test set and, therefore, the pre-filtering rules cannot boost the

performance significantly any more. When the rules are also applied

on the training set, the F-score of UTurku even drops 2.6 points

(from 0.6 to 0.574). The cause behind is that, for UTurku, the loss

of much information about filtered negatives due to the pre-filtering

overwhelms the performance improvement brought with a more

balanced training set, leading to its worse final performance.

Therefore, the final effect of our negative instance filtering strat-

egy on performance is closely related to the classification model and

it cannot be regarded as a simple rule necessarily effective for any

classification model by accurately filtering the negatives from the

test set. Experimental results show that it is suitable for our SCNN

model and significantly improves the performance. In some sense, it

can be regarded as one part of our SCNN approach.

Syntax: replacing syntax word embedding with normal word

embedding decreases the F-score by 3.6%. The syntax word se-

quence is concise since it only retains the backbone of the sentence

Table 2. Performance comparison on DDIExtraction 2013 test set

Method Classification Detection

P R F-score � P R F-score

One-stage SCNN1 0.691 0.651 0.670 7.6% 0.747 0.768 0.757

UTurku (Björne et al., 2013A) 0.732 0.499 0.594 0.858 0.585 0.696

NIL_UCM (Bokharaeian and Dıaz, 2013) 0.535 0.501 0.517 0.608 0.569 0.588

Two-stage SCNN2 0.725 0.651 0.686 1.6% 0.775 0.769 0.772

Kim et al., (2015) – – 0.670 – – 0.775

FBK-irst (Chowdhury and Lavelli, 2013) 0.646 0.656 0.651 0.794 0.806 0.800

WBI (Thomas et al., 2013) 0.642 0.579 0.609 0.801 0.722 0.759

Notes. SCNN1 denotes our SCNN-based one-stage method and SCNN2 denotes our SCNN-based two-stage method. D denotes the performance improvement

of SCNN1 over UTurku, and SCNN2 over that of Kim et al. (2015). The boldfaced numerals are the highest values in the corresponding column.

Table 3. The effect of the strategies and features on performance

Strategy or feature removed P R F-score D

None 0.725 0.651 0.686 –

Negative instance filtering 0.685 0.610 0.645 �4.1%

Syntax 0.711 0.599 0.650 �3.6%

POS 0.707 0.623 0.662 �2.4%

POS Encoding 0.690 0.652 0.670 �1.6%

Shortest Path 0.671 0.586 0.626 �6.0%

Shortest Path Encoding 0.661 0.616 0.638 �4.8%

Position 0.680 0.636 0.657 �2.9%

Word Embedding 0.639 0.572 0.604 �8.2%

Context 0.657 0.599 0.627 �5.9%

ConvolutionLayer1 0.611 0.576 0.592 �9.4%

ConvolutionLayer2 0.577 0.648 0.611 �7.5%

Notes. D denotes the corresponding F-score decrease percentage when a

strategy or feature is removed.
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by filtering out the adjunct words. Thus the syntax word embedding

is learned based only on the core words, which are vital for repre-

senting a sentence’s syntactic structure. It is the reason that the syn-

tax word embedding works better than the common one does.

POS, shortest path and their encodings: removing the POS and

shortest path features lead to the decreases of F-score by 2.4% and

6.0%, respectively. The reason is that the shortest path feature con-

tains much more information than the POS feature since their fea-

ture dimensions are 1705 and 8, respectively. In addition, removing

the encoding mechanism for the shortest path feature and POS fea-

ture leads to the decreases of F-scores by 4.8% and 1.6%, respect-

ively. This shows that encoding the sparse POS and shortest path

feature vectors (0–1 vectors) as the dense real value feature vectors

can boost the DDI classification performance.

Position: the position feature is indispensable to the relation clas-

sification problem as the F-score decreases by 2.9% when it is

removed. Without the position feature, the two target nouns’ infor-

mation, which is essential for the relation classification problem,

will be missed.

Word embedding and context: removing the word embedding

from the convolutional feature set (only the position and POS fea-

tures are left) lowers the performance significantly (8.2% in F-score)

while, when the context feature is removed from the traditional fea-

ture set, the F-score drops dramatically by 5.9%. This shows that

the word information plays a key role in our feature sets.

Convolutionlayer: a CNN is a normal NN with additional con-

volutional layer. Therefore, we tested the influence of removing the

convolutional layer on performance. However, different from CNN

that allows the inputs with different sizes, NN requires the fixed in-

put size (the number of words). Therefore, we used the following

two methods to solve this problem: Convolutionlayer1, extending

each sentence by a padding word to the size of the maximal sentence

length (74 words in our corpus), where the padding word’s embed-

ding is a zero-vector; Convolutionlayer2, extracting two target

drugs and their 10 surrounding words from a sentence. Both mech-

anisms lead to much worse performances: the F-scores drop by

9.4% and 7.5%, respectively. It shows that the convolution process

can integrate all words’ information more effectively than the

method of simply concatenating them does. More detailed discus-

sions are provided in Supplementary Material: The effect of the

strategies and feature on performance.

In addition, the combination of the convolutional and traditional

feature sets is explored in Supplementary Material: Combinations of

the convolutional and traditional features.

4 Conclusions

In this article, we present a SCNN based DDI extraction approach. In

this approach, a novel word embedding (syntax word embedding) is

proposed to exploit the syntactic information of a sentence. Then the

syntax word embedding is extended by the position and POS features

to introduce the position and POS information. In addition, auto-

encoder is employed to transfer sparse bag-of-words feature vectors to

dense real value feature vectors before they are combined with the con-

volutional features. Finally, their combination is passed to a softmax

to learn the DDI classifier. Experimental results on the DDIExtraction

2013 corpus show that our method achieves an F-score of 0.686 which

is superior to those of the state-of-the-art methods.

The main contributions of our work can be summarized as fol-

lows: (i) Utilizing concise syntax word sequence to learn the syntax

word embedding. (ii) Applying POS feature to extend the syntax

word embedding. (iii) Using auto-encoder to transfer the sparse bag-

of-words features to the dense real value feature vectors. In addition,

SCNN is designed for the multiclass problem, and, with the fewer

classifiers, it outperforms other methods that implement the multi-

class classifiers by combining several binary SVMs.

However, the performance of SCNN on DDI detection is not as

satisfactory as on DDI multiclass classification since, as a large cap-

acity model, it fits a complicated problem well, but may over-fit an

easy problem (e.g. the two-class DDI detection problem). This is a

problem to be further studied. In addition, considering the limited

generalization ability of the rule-based negative instance filtering

method, in the future, we will try to improve the SCNN method to

make it be less influenced by the unbalanced class distribution.
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