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Abstract

Allostery is a nearly ubiquitous feature of biological systems in which ligand binding or covalent 

modification at one site alters the activities of distant sites in a macromolecule or macromolecular 

complex. The molecular mechanisms underlying this phenomenon have been studied for decades. 

Nevertheless there are many aspects that remain poorly understood. ITC yields detailed 

information on the thermodynamics of biomacromolecular interactions and their coupling to 

additional equilibria, therefore in principle it is a powerful tool for better understanding how 

allostery is achieved. A particularly powerful approach involves simultaneously fitting multiple 

ITC data sets together with those of complementary techniques, especially nuclear magnetic 

resonance and circular dichroism spectroscopies. In this review, we describe several group-fitting 

methods for discriminating between different binding models and for improving the accuracy of 

thermodynamic parameters extracted from variable-temperature ITC data. The techniques were 

applied to the antibiotic resistance-causing enzyme aminoglycoside-6′-acetyltransferase Ii, 

uncovering the existence of competition between opposing mechanisms and ligand-dependent 

switching of the underlying mechanism. These novel observations underline the potential of 

combining ITC and spectroscopic techniques to study allostery.
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1. Introduction

The term allostery was first introduced by Jacques Monod in 1961 to explain the results of 

end-product inhibition of the enzyme L-threonine deaminase.[1, 2] It describes the process 

through which covalent modifications or ligand binding influence regions distal to the site of 

interaction in a macromolecular system.[3–5] Allostery plays an essential role in many 

cellular processes including cell signaling and metabolism and represents a promising target 

for drug design.[6–10] Therefore understanding allostery at the molecular level can shed 

light on cellular function and can potentially lead to new therapies for human diseases. 

Allostery can be classified into two categories: heterotropic and homotropic. In heterotropic 

allostery, the interaction with one ligand affects additional processes which can include 

binding ligands chemically different from the first, altering catalytic rates, or undergoing 
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large structural rearrangements such as pore opening/closing.[11–13] Meanwhile, 

homotropic allostery involves interactions with two or more identical ligands. Often this is 

referred to ‘cooperative binding’ and can be either positive (subsequent binding events are 

stronger than the previous) or negative (subsequent binding events are weaker than the 

previous). As the events in heterotropic allostery are intrinsically different, characterizing 

the interaction between an allosteric effector and its targets is in principle facile. However, in 

homotropic allostery this becomes more challenging, as the ligand is both the allosteric 

effector and the target of the allosteric interaction. Historically the molecular mechanisms of 

homotropic allostery in oligomeric proteins have been explained in terms of two paradigms. 

In the concerted model (MWC) of Monod, Wyman and Changeux, Figure 1A,[7] all 

subunits of a homo-oligomeric protein undergo simultaneous conformational changes driven 

by ligand binding. In the sequential model (KNF) of Koshland, Nemethy, and Filmer, Figure 

1B,[10] individual subunits undergo independent conformational changes upon binding, 

modulating the strength of inter-subunit interactions. More recently, models have been 

proposed that emphasize thermodynamics and dynamic equilibria, as exemplified by the 

energy allosteric model (EAM), Figure 1C.[14] According to the EAM, the 1-bound state of 

a protein homodimer exists in dynamic equilibrium between symmetric (MWC-like) and 

asymmetric (KNF-like) forms. The thermodynamic balance between the two forms is 

governed by the energetic cost of subunit conformational changes and the strengths of inter-

subunit interactions. These models help to explain how information is transferred between 

distant sites in a macromolecular complex, but determining which model, if any, applies to a 

given system is an ongoing challenge.

Isothermal titration calorimetry (ITC) is a powerful approach in which the heat released or 

absorbed throughout a titration experiment is measured. From a single experiment it is 

possible to determine the changes in enthalpy (ΔH), entropy (ΔS) and Gibb’s free energy 

(ΔG) that accompany binding as well as binding stoichiometry.[15, 16] By performing 

experiments at different temperatures one can additionally determine differences in heat 

capacity (ΔCp) between free and bound states.[17, 18] ITC is commonly applied to simple 

1:1 binding reactions, but can be used to characterize more complicated systems in which 

ligands bind cooperatively at multiple sites and/or involve coupling to additional equilibria 

such as protonation/deprotonation, heterotropic allosteric effectors, changes in oligomeric 

state, or conformational changes.[19–21] Studying complex binding equilibria and 

determining mechanisms of allostery by ITC is challenging. For example, the same ITC data 

can sometimes match quite different physical models of interaction, and it can be difficult to 

ascertain which is correct. Characterizing the thermodynamic linkage between ligand 

binding and additional equilibria requires multiple sets of ITC data where maximizing the 

accuracy and self-consistency among the datasets is paramount. As well, ITC data contain 

little or no structural information in and of themselves. Thus their interpretation in terms of 

macromolecular conformational changes remains a challenge.[19],[22] Our laboratory has 

developed several approaches for addressing these issues. In this review we describe global 

fitting procedures to identify correct binding models from ITC data obtained at different 

concentrations, and to optimize the accuracy of binding parameters extracted from ITC 

datasets obtained at different temperatures. Finally, we describe an approach for combining 
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ITC, nuclear magnetic resonance (NMR) and circular dichroism (CD) data to reveal 

molecular details of homotropic allosteric interactions.

We have used the enzyme aminoglycoside 6′-N-acetyltransferase-Ii (AAC(6′)-Ii) as a model 

system to develop and test ITC-based methods for characterizing protein allostery. This 

homodimeric enzyme confers antibiotic resistance to most aminoglycosides by transferring 

an acetyl group from Acetyl Coenzyme A (AcCoA) to the 6′ amine of these drugs.[24] The 

structure of AAC(6′)-Ii has been solved by X-ray crystallography bound to CoA and 

AcCoA[25–27] or inhibitors.[28] Each subunit of the enzyme contains a distinct active site 

and both sites are able to bind ligands simultaneously in the dimer. We also used a 

monomeric version of the enzyme in which tryptophan 164 in the dimer interface is 

substituted with alanine (AAC W164A).[29] Through the group analysis of ITC, NMR, and 

CD data, we have shown that the enzyme binds both AcCoA and an aminoglycoside ligand 

with homotropic allosteric mechanisms that are thermodynamically coupled to partial 

unfolding of the enzyme. The binding mechanisms of AcCoA and aminoglycoside are quite 

different however, shedding new light on the molecular determinants of allostery.[22, 23, 30, 

31]

2. Identifying Correct Binding Models

ITC is commonly applied to simple binary complexes which are described by a single 

equilibrium association constant (KA=exp{−ΔG/(RT)}) and binding enthalpy (ΔH).[15, 17, 

32, 33] In more complicated systems comprising multiple non-equivalent binding sites, at 

least two fundamentally different models can apply, as illustrated in Figure 2A,B for the case 

of two such sites: A) Multiple Independent Sites: This model comprises two different 

classes of binding site that interact with the ligand independently. There are n1 type 1 sites 

with affinity KA1 and binding enthalpy ΔH1 (□), and n2 type 2 sites with affinity KA2 and 

binding enthalpy ΔH2 (○). B) Cooperative Sites: This model comprises pairs of identical 

sites such that the first ligand to bind either site does so with affinity KA1 and binding 

enthalpy ΔH1. Homotropic allostery or cooperativity then alters the binding properties of the 

unoccupied site and the second ligand is bound with affinity KA2 and binding enthalpy ΔH2. 

While these models appear similar, they represent very different binding mechanisms. The 

independent model predicts that a macromolecule contains multiple structurally distinct and 

non-interacting binding surfaces, while the cooperative binding model predicts that the 

macromolecule contains two identical binding sites that are energetically coupled. Even 

though these models describe physically different events it is possible for them to agree with 

experimental data equally well, obscuring the molecular mechanism underlying binding.[22]

2.1. Varying the c-value

We have found that it is possible to discriminate between different binding models by 

analyzing multiple ITC datasets collected with different protein concentrations. In the case 

of a single class of non-interacting binding sites, it is convenient to express the protein 

analyte concentration [P]T, in terms of the parameter c which was introduced by Wiseman et 
al. as follows:
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(1)

where n is the number of identical non-interacting binding sites present on the macro 

molecule.[33] ITC experiments are typically performed with c-values between 1 and 100 in 

order to accurately determine KA.[33] Experiments with larger c values (>50) produce 

relatively sharp transitions [33]. Experiments performed at low c values produce much 

shallower transitions which extend to much larger [X]T:[P]T ratios.[33] Thus for any given 

affinity and binding enthalpy, varying the protein concentration defines a family of related 

isotherms, Figure 3A. This trend also follows for more complex systems with multiple 

binding sites, as illustrated in Figure 3B for 2-site cooperative binding.[34] Varying the 

protein concentration defines a family of related curves for any given set of binding 

parameters KA1, KA2, ΔH1, and ΔH2. These families differ markedly depending on whether 

binding is positively or negatively cooperative and on the relative magnitudes of the binding 

enthalpies for the first and second ligands. Similarly, in the case of multiple independent 

sites, varying the protein concentration defines a family of curves for any given set of KA1, 

KA2, ΔH1, ΔH2, n1, and n2 values. A challenge in elucidating binding mechanisms is that 

different models can produce very similar ITC isotherms for a single protein concentration 

or c-value. The key to the variable-c approach is that even when several different models can 

reproduce a single ITC isotherm equally well, typically only the correct model can 

adequately account for the family of curves generated by varying the protein concentration. 

Note that we have employed a traditional ITC arrangement throughout, in which 

concentrated ligands are titrated into dilute solutions of protein. In certain situations (i.e. 

poor ligand solubility) it is recommended to titrate concentrated protein into a dilute solution 

of ligand. In this case very different families of curves would be generated. It is likely that 

these, too, would be suitable global analyses of the kind described below, however more 

research is required to verify this in practice.

2.2. Calculating variable-c isotherms

In the case of both independent and cooperative models, isotherms may be calculated using 

a heat function, Q, defined such that the heat released or absorbed during ith injection is 

given by the expression

(2)

which takes into account the sample displaced from the working volume of the cell by the 

injection.[35] Vi is the volume of the ith injection, Vc is the working volume of the sample 

cell, Q(i) is the value of the heat function following the ith injection, and Q0 is an offset 

parameter that accounts for heats of mixing. The total concentrations of ligand, [X]T, and 

protein, [P]T, present in the working volume of the cell after n injections with a total volume 
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of  may be calculated assuming that each increment of volume displaced from the 

working cell, dV, contains ligand and protein at the concentrations present throughout the 

working cell. Accordingly,

(3)

(4)

and

(5)

(6)

where [X]0 is the concentration of ligand in the syringe and [P]0 is the initial protein 

concentration. Note that equations (5) and (6) apply to all values of ΔV, and differ slightly 

from those listed in the MicroCal handbook, which are approximations valid when ΔV<Vc. 

Deviations between the two sets of expressions for the volumes employed in these 

experiments are generally less than 0.1%. Heat functions may be calculated in terms of [X]T, 

[P]T, and the binding parameters for both independent and cooperative binding models as 

follows:

Independent sites—This model describes binding to a macromolecule containing n1 

independent sites with microscopic association constants KA1 and n2 independent sites with 

microscopic association constants KA2. The fractions of type 1 and type 2 sites that are 

occupied by ligand may be calculated according to

(7)

where [X] is the concentration of free ligand and KD1,2=(KA1,2)−1. The total concentration 

of ligand is given by the expression
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(8)

Substituting Equation (7) into (8) gives the following third-order polynomial in [X]

(9)

where

The concentration of free ligand [X] for any combination of [X]T, [P]T, and binding 

parameters corresponds to the positive, real root of equation (9), which may be determined 

analytically [36, 37] or numerically, for example by using the bisection method.[38]The 

values of f1 and f2 can then be determined by substituting [X] into equation (7). Finally the 

heat function for the independent sites model is given by the expression

(10)

where ΔH1 and ΔH2 are the binding enthalpies (Hbound-Hfree) of each type 1 or type 2 site, 

respectively.

Cooperative sites—This model describes a protein with two identical, energetically-

coupled sites. The first ligand binds to either site of the free protein, P→PX, with an 

association constant KA1

(11)

The second ligand binds the unoccupied site of a singly-bound protein, PX→PX2, with an 

association constant KA2,

(12)
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The fractions of proteins in the singly-bound, f1, and doubly-bound, f2, states are given by 

the expressions

(13)

and

(14)

where KD1,2=(KA1,2)−1. The total ligand concentration in the sample is

(15)

Substituting equations (13) and (14) into equation (15) gives the following cubic expression 

in [X]

(16)

where

Similarly to the independent sites model, the positive real root of equation (16) gives the 

concentration of free ligand, [X], which substituted into equations (13) and (14), provides 

the values of f1 and f2. Finally, the heat function for this model is

(17)

where ΔH1=HPX−HP and ΔH2=HPX2−HPX.

ITC data are fit by adjusting binding parameters to minimize the sum of residual squared 

differences (RSS) between experimental data points and those calculated using equation (2),
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(18)

where the sum runs over all data points in all ITC titrations performed at multiple protein 

concentrations. Uncertainties in the fitted parameters may be obtained from the covariance 

matrix, which is given by the expression[39]

(19)

where

and the derivatives are evaluated numerically at the optimized values of the binding 

parameters. W is a diagonal matrix of the fitting weights, which in this case are equal to 1, 

and ν is the number of degrees of freedom of the fit. The diagonal elements of V are the 

variances of the KA and ΔH parameter estimates.

1.1. Application to AAC(6′)-Ii

We applied the variable-c approach to determine the correct model for the dimeric enzyme 

AAC(6′)-Ii which binds a molecule of AcCoA in each of its two subunits.[26, 27] ITC 

experiments were performed on 6 different samples with protein concentrations ranging 6 to 

192 μM. We first fit the independent and cooperative models on an individual basis, with 

different binding parameters extracted for each sample (protein concentration). Slightly 

lower residual-sum-of-squared deviations (RSS) were obtained for the independent sites 

model, compared to the cooperative model, RSS = 4.2×105 versus 5.5×105, respectively. 

This reflects the fact that the independent sites model contains additional stoichiometric 

parameters (n1 and n2) not present in the cooperative model and consequently has fewer 

degrees of freedom. In contrast, when the fits were performed globally with a single set of 

binding parameters for all samples, the cooperative model clearly outperformed the 

independent sites model, despite having fewer adjustable parameters, with RSS = 9.7×106 

versus 2.4×107 (Figure 4). This is particularly evident in Figure 4A,B, where the cooperative 

but not the independent model accounts for the initial negative slopes of the ITC data. The 

improvement in fit offered by the cooperative model over the independent sites model is 

statistically significant to a high level of confidence, p=2×10−8. Thus analyses of ITC data 

obtained with any single [P]T value do not effectively discriminate between the two binding 
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models, while a global analysis of the variable-c dataset conclusively shows that the 

cooperative model is the more appropriate description of AcCoA binding.

2. Characterizing linkage to additional thermodynamic equilibria

There are two main classes of binding models, which we will refer to as being 

phenomenological and mechanistic. For any molecule with N binding sites, the 

phenomenological model is defined by the binding polynomial, Z, and average enthalpy 

<H>, according to[40]

(20)

(21)

(22)

where the KA,i
app are apparent affinity equilibrium constants and ΔHA,iapp is the difference 

between the apparent enthalpy of molecules bound to i ligands and that of the free state, H0. 

The N different binding constants KA,i
app and enthalpies ΔHA,i

app entirely describe the 

binding behaviour regardless of whether the sites are independent or coupled and whether 

they are identical or distinct. An advantage of phenomenological models is that they require 

no knowledge of the underlying binding mechanism.[40] In contrast, mechanistic models 

describe the molecular events associated with ligand binding, such as coupling to additional 

processes including protein folding or protonation/deprotonation reactions.[21, 41–46] 

These are important as they shed light on how protein function is achieved at the atomic 

level. ITC results are typically interpreted in a two-step process.[40] Data are obtained at a 

series of different sample conditions, such as a range of temperatures or concentrations of a 

heterotropic allosteric effectors. The raw ITC isotherms are first fit using a 

phenomenological model for the appropriate stoichiometry (N), providing values for the 

apparent changes in enthalpy (ΔHA,i
app) and apparent association constants (KA,i

app). A 

mechanistic model is then selected and the corresponding model-specific thermodynamic 

parameters fitted to the phenomenological enthalpy and affinity values obtained for the 

range of sample conditions, shedding light on allosteric events involved in protein-ligand 

binding.[21, 23, 30, 41, 42]

2.1. Coupled folding/binding

A common example of a mechanistic binding model is coupling between protein folding and 

ligand binding, as illustrated in the scheme below for a molecule with a single binding site:
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(23)

The folded protein, F, is binding-competent and the unfolded protein, U, is binding-

incompetent. The parameters ΔHF, ΔHA, and ΔCp,F, ΔCp,A, are changes in enthalpy and heat 

capacity for the folding and binding steps, while KF = [F]/[U] and KA = [FL]/[F][L] are 

equilibrium constants. In this case, the phenomenological binding model at any individual 

temperature is completely defined by the apparent affinity constant KA
app and the apparent 

binding enthalpy ΔHA
app which are related to the ITC isotherm by the single-site heat 

function:

(24)

The temperature dependence of ΔHA
app gives the apparent change in heat capacity upon 

binding:[47]

If a protein undergoes a thermal denaturation (F→U) within the temperature range studied, 

the ΔHA
app versus T plot can be strongly curvilinear.[41] The transition from U to F is 

exothermic (ΔHF < 0) therefore at low temperatures the protein is predominantly folded and 

the apparent binding affinity and enthalpy are simply given by KA and ΔHA, respectively. At 

higher temperatures an appreciable fraction of the free protein exists in the unfolded state. 

ITC measurements therefore involve transitions from the U to FX states and the heat 

absorbed or released contains contributions from both folding and binding reactions. The 

mechanistic model parameters (ΔHF, ΔHA, ΔCp,F, ΔCp,A, KF and KA) are related to the 

phenomenological binding parameters (KA
app and ΔHA

app obtained over a range of 

temperatures) as follows:

(25)

(26)

where
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(27)

(28)

Y = F or A, and T0 is an arbitrary reference temperature.

In principle, it is possible to extract the mechanistic model parameters from the 

phenomenological thermodynamic values determined by ITC over a range of temperatures. 

In practice, however, there is a high degree of covariation between the fitted parameters, 

leading to unreliable estimates of their values based on ITC data alone. Ladbury and 

coworkers have shown that combining ITC data with those of circular dichroism (CD) data 

can alleviate this problem as protein folding is typically accompanied by changes in molar 

ellipticity, [Θ].[41] The temperature dependence of the molar ellipticity is given by

(29)

where [θ]F and [θ]U are the molar ellipticities for the folded and unfolded forms of the 

protein at T=T0 and mF and mU are the baseline slopes. We applied the combined ITC/CD 

approach to the interaction of the W164A mutant of AAC(6′)-Ii with AcCoA. This mutant is 

monomeric and binds AcCoA with 1:1 stoichiometry. Temperature dependent ITC and CD 

data are shown in Figure 5. A plot of the apparent binding enthalpy, ΔHA
app, versus 

temperature shows pronounced curvature around 310 K, corresponding to an increase in the 

amount of heat released upon ligand binding. The molar ellipticity measured at a wavelength 

of 222 nm decreases over the same temperature range. Both alpha-helices and beta-sheets 

exhibit large and negative molar ellipticities,[48, 49] while those of unstructured 

polypeptides are close to zero or slightly positive at this wavelength.[48–50] Thus the ITC 

and CD data are consistent with W164A-AAC undergoing an endothermic transition from a 

binding-competent to a binding-incompetent species around 310 K. Importantly, it is not 

necessary to have atomic-resolution structural data in order to draw this conclusion. 

However, we note that these data do not exclude the possibility of more complicated 

mechanisms, for example ones in which the unfolded form of the protein retains weak ligand 

affinity or the bound state undergoes thermal transitions. However, coupled folding and 

binding (Equation 23) provides the simplest and most likely explanation for our 

observations. Furthermore, the excellent agreement we obtain using this model implies that 

additional thermodynamic parameters associated with more complicated mechanisms would 

not be well defined. Consequently the coupled folding binding model has been used 

throughout.
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The temperature dependent ΔHA
app, KA

app, and [Θ] values can be analyzed to yield 

mechanistic coupled folding/binding thermodynamic parameters (blue curves in Figure 5). 

However the experimental errors for the apparent thermodynamic parameters are large, 

leading to significant scatter. This obscures their temperature dependences and leads to large 

uncertainties when extracting the mechanistic parameters.

2.2. Global fitting of variable-temperature ITC data

The ability to discriminate among different mechanistic models relies on the availability of 

accurate phenomenological binding parameters. A number of different situations can 

produce elevated errors in ΔHA
app and KA

app, such as when affinities are low,[51] enthalpy 

changes are small, or when macromolecules contain multiple non-equivalent binding sites.

[52] If errors in the phenomenological thermodynamic parameters are large, developing 

robust, quantitative descriptions of the molecular binding process becomes challenging if not 

impossible, as seen in Figure 5. The accuracy of extracted parameters can be improved by 

fitting multiple ITC isotherms simultaneously.[10, 23, 30, 32, 53, 54] Thus global fitting 

methods are potentially very useful in situations with a high experimental uncertainty. 

However, in order to perform global fitting on variable temperature datasets, all ITC 

isotherms must be related mathematically. The standard phenomenological binding models 

provide no description to relate data sets performed at different temperatures. Instead, a 

mechanistic model can be fitted directly to a variable temperature dataset.[32, 53, 54] 

However, this requires a priori knowledge of the binding mechanism which may not be 

readily available.

While phenomenological models do not provide a description how the system changes when 

the temperature is varied, fundamentally ΔHA
app and KA

app are related through the van ‘t 

Hoff relation:

(30)

where T is the measurement temperature. All models must follow this relation to be 

physically reasonable, regardless of the underlying molecular mechanism. We have used this 

relation to constrain the global fit and relate all isotherms at different temperatures 

mathematically.[30, 34] In the van ‘t Hoff global fitting approach, HA
app is optimized for 

each temperature, but only a single binding constant, K0
app, is fitted. All subsequent binding 

constants are determined by trapezoidal integration of the van ‘t Hoff equation which is 

given be the expression

(31)

where K0
app is the apparent binding constant at the reference temperature (T0), and the ith 

set of ITC experiments are performed at a temperature Ti and fitted with a binding enthalpy 
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ΔHi
app, Figure 6.[23, 30] In practice, for an ITC dataset of NR replicate experiments 

collected at each of NT different temperatures, a van ‘t Hoff global fit has NT adjustable 

ΔHA values (one for each temperature), and a single adjustable equilibrium constant (K0
app). 

Global fitting then comprises the following steps:

1. Starting with the initial values of the parameter set listed above, calculate the 

remaining (NT-1) equilibrium constants using K0
app and the set of NT ΔHA

app 

values, according to Equation (31).

2. For each of the NR×NT isotherms, calculate the heat function, Q, using the KA
app 

and ΔHA
app value for the corresponding temperature according to Equation (24).

3. Calculate each isotherm according to Equation (2).

4. Repeat steps 1–4, varying the adjustable parameters in order to minimize the 

RSS given by Equation (18), using a standard least-squares minimization 

algorithm.

The van ‘t Hoff global fit reduces the total number of adjustable parameters and increases 

the number of degrees of freedom, compared to fits performed independently at each 

temperature. This leads to more accurate and unbiased determinations of ΔHA
app and KA

app 

values.[30, 34] An application of this approach to the raw W164A-AAC binding data of 

Figure 5 is shown in Figure 7. The scatter of the phenomenological ΔHA
app and KA

app 

values is clearly reduced, resulting in better determination of the coupled folding/binding 

parameters.

2.3. Coupled folding and binding in systems with multiple sites

Molecules with more than one binding site can also experience coupling between binding 

and folding equilibria. In the case of two site binding, the joint ITC/CD mechanistic binding 

model comprises sixteen adjustable parameters. Binding of the first and second molecules of 

ligand to the folded protein are each associated with affinity constants (KA1, KA2), changes 

in enthalpy (ΔHA1, ΔHA2), and heat capacity (ΔCpA1, ΔCpA2), respectively. Partial unfolding 

of subunits in the protein bound to 0 and 1 molecules of ligand are associated with 

equilibrium constants (KU0, KU1), changes in enthalpy (ΔHU0, ΔHU1), and heat capacity 

(ΔCpU0, ΔCpU1). Four additional parameters describe the slopes and y-intercepts of the 

folded and unfolded baselines of the CD data. The temperature dependences of the 

mechanistic equilibrium constants and enthalpies are given by

(32)

and

(33)

Freiburger et al. Page 13

Methods. Author manuscript; available in PMC 2016 December 23.

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript



where K′ and ΔH′ are the equilibrium constant and enthalpy change at an arbitrary 

reference temperature T′ and ΔCp is the change in heat capacity.

The phenomenological binding model in this case comprises 4 parameters (KA1
app, 

ΔHA1
app, KA2

app, and ΔHA2
app) at each temperature studied, for binding of the first and 

second molecules of ligand. The phenomenological parameters are related to the 

mechanistic model as follows[23]:

(34)

(35)

(36)

and

(37)

at each temperature. Combining Eq (29), (34), (35), (36) and (37) the mechanistic model 

parameters are extracted by minimizing the target function against ITC and CD data 

simultaneously

(38)

Values of KA, ΔH, and θ can differ by several orders of magnitude. Thus fractional 

differences are used in the the sum of fitting residuals (Equation 38) to ensure each 

parameter is weighted equally. Molecules with more than one binding site are challenging to 
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characterize by ITC as extracted parameters can suffer from covariation. This presents a 

hurdle to elucidating robust mechanistic information. For example, wild-type AAC(6′)-Ii 

cooperatively binds two molecules of substrate (AcCoA or aminoglycoside) per dimer. 

Phenomenological binding parameters for AcCoA determined over a range of temperatures 

are plotted in Figure 8. While the ΔHA1,2
app versus T profiles are clearly curvilinear, 

suggestive of a coupled folding/binding equilibrium, the large amount of scatter in the data 

points obstructs precise analyses in terms of a mechanistic model. This issue can be 

overcome using the global van ‘t Hoff fitting method. KA1
app is related to ΔHA1

app and 

KA2
app is related to ΔHA2

app according to Equation (31). We applied the van ‘t Hoff fitting 

method to ITC data for AAC(6′)-Ii binding to AcCoA and to the aminoglycoside 

paromomycin collected over a range of temperatures. In this case, KA1,2
app are calculated 

using Equation (31) as before. The values of KA1,2
app and ΔHA1,2

app are used to calculate 

isotherms according to Equations (17) and (2) and the phenomenological parameters are 

varied to minimize the target function, Equation (18). CD measurements were subsequently 

performed on apo-AAC(6′)-Ii to obtain the molar-ellipticity as a function of temperature, 

Figure 9E. The globally-fit phenomenological binding parameters can subsequently be 

analyzed according to the coupled folding/binding mechanistic model combining ITC and 

CD data, Equations (29) and (32) to (37) as illustrated in Figure 9. A comparison of Figure 8 

and Figure 9C,D highlights the improvement in the accuracy of extracted thermodynamic 

parameters afforded by global fitting.

3. Allostery mediated by protein conformational changes

ITC is extremely sensitive to the energetics of conformational transitions and 

macromolecular interactions. However it can be difficult to relate these measurements to 

specific changes in molecular structure and flexibility without additional information. For 

example it is not possible to discriminate between the allosteric models represented in 

Figure 1 based on calorimetric data alone. In this regard, it is very powerful to combine ITC 

data with those of NMR spectroscopy. NMR is exquisitely sensitive to macromolecular 

conformation and dynamics at the level of individual atoms, but thermodynamic information 

is obtained indirectly. Combining NMR and calorimetric measurements thus allows one to 

develop models of allostery and other molecular functions that are thermodynamically 

rigorous with atomic resolution. One caveat for the use of NMR is that it is technically a 

more demanding technique than either ITC or CD spectroscopy. Proteins must be 

isotopically enriched, and stably monodisperse at concentrations of roughly 200 μM or 

greater. Furthermore, NMR becomes more challenging with increasing molecular weight, 

necessitating specific labelling schemes[56, 57] and relaxation-optimised experiments [58, 

59].

Protein NMR spectra can be collected with ligand present at a range of concentrations under 

conditions matching those of ITC titrations. Consider a hypothetical protein binding site that 

contains an NMR-active nucleus that precesses at a resonance frequency ωF in the absence 

of ligand. Ligand binding alters the local electronic environment of the nucleus, resulting in 

a shift of the resonance frequency to ωB. The resulting NMR signal from the ensemble of 

nuclei in the sample depends on the fraction of binding sites that are occupied by ligand, fB, 

the difference in chemical shift between the free and bound states, Δω = ωB - ωF, and the 
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rate at which the ligand associates and dissociates, kex = kon′ + koff. Note that in this 

example, kon′ is a pseudo-first order rate constant that depends on the second order 

association rate constant and the concentration of free ligand, kon′ = kon [X]. When kex ≪ 
Δω, the system is in the slow exchange regime and spectra contain separate peaks at ωF and 

ωB. If ligand is gradually added, the intensity (IF) of the “free” peak at ωF decreases while 

the intensity (IB) of the “bound” peak at ωB increases, according to IB ∝ fB[P]T and IF ∝ (1-

fB)[P]T (Figure 10A). In contrast, when kex ≫ Δω, the system is in the fast exchange regime 

and the spectrum contains a single peak at the population-weighted average precession 

frequency. If ligand is titrated into the sample, the position of the peak gradually shifts from 

ωF to ωB, according to ωobs = ωF + fB·Δω (Figure 10C). Thus analyses of peak intensities or 

positions can yield quantitative information on the populations of different conformational 

states at atomic resolution. Furthermore, fluctuations in ω on the millisecond to microsecond 

time scale, for example due to exchange between ligand-free and ligand-bound states or 

internal motions, leads to enhanced transverse relaxation and increases in the line widths of 

NMR signals (Figure 10B).

In the case of AAC(6′)-Ii, two dimensional 1H/15N NMR correlation spectra of the free 

(apo) and the AcCoA- or paromomycin-saturated (holo) forms are very different. The apo-

spectrum exhibits poor chemical shift dispersion and a high degree of overlap, with 

approximately 20% of the expected signals missing (Figure 11A). This is likely due to 

pervasive dynamic exchange broadening and/or hydrogen exchange with water, 

characteristic of extensive conformational mobility. In contrast to the free form, the spectra 

of the AcCoA-saturated (Figure 11B) or paromomycin-saturated enzyme are typical of a 

folded globular protein, suggesting that large structural and dynamic changes accompany 

ligand binding. Adapted from Mittermaier and Meneses [60].

We have found that the combination of NMR titration data with those of calorimetry can 

distinguish among different allosteric paradigms. In what follows, apo and holo are used to 

describe peaks appearing in NMR spectra of the ligand-free and ligand-saturated protein, 

and 0-bound, 1-bound, and 2-bound to describe the various ligated states of the enzyme. 

Exchange occurs slowly on the NMR chemical shift timescale therefore both apo and holo 

peaks are simultaneously visible in spectra collected midway through titrations and peak 

intensities are proportional to the concentrations of subunits in the apo and holo 

conformational forms. The expected fractions of enzyme in the 0-bound (f0), 1-bound (f1), 

and 2-bound (f2) forms are calculated based on the binding parameters determined by ITC 

for AcCoA (Figure 12A) or paromomycin (Figure 12D). The value of f1 is predicted to 

increase to between 20% and 30% at partial ligand saturation, before decreasing at higher 

concentrations. However none of the signals in the spectra follow this pattern of intensities. 

This implies that all signals from the 1-bound form are either coincident with those of the 0-

bound or 2-bound states (i.e. contribute to the apo or holo peaks or are located in overlapped 

regions) or are dynamically broadened beyond detection. In order to combine the NMR and 

ITC data, the intensity profile of each well-resolved apo and holo peak (Itot
apo, Itot

holo) is 

fitted using the ITC-derived f0, f1, and f2 values, adjusting only the relative contribution of 

the 1-bound state to the apo or holo peak as follows: the initial intensity of each apo peak is 

normalized to 2, and the final intensity of each holo peak is normalized to 2, corresponding 
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to the two subunits of the homodimeric enzyme. Peak intensities throughout the titrations are 

calculated as:

(39)

(40)

The values of  and  quantify the contributions of the 1-bound state to the apo and 

holo signals, respectively. By optimizing these parameters, excellent agreement with NMR 

peak intensities can be obtained throughout the titrations (Figure 12B, E). With AAC(6′)-Ii 

the extracted values for  cluster about a value of 1 (Figure 12C). This strongly suggests 

that a single subunit of the 1-bound enzyme resembles those of the holo form, reminiscent 

the KNF allosteric model (Figure 1B). Interestingly, the values obtained for the  are 

fairly heterogeneous, ranging from 0 to 1. This could result from increased dynamic 

broadening, hydrogen exchange with solvent or movement of peaks to overlapped regions of 

the spectrum. With paromomycin, the values obtained for  cluster around 2 and the 

values obtained for the  are clustered around 0 (Figure 12F). This strongly suggests that 

upon binding a single molecule of paromomycin, both subunits adopt a conformation which 

is similar to that of the holo enzyme, reminiscent of the MWC allosteric paradigm (Figure 

1A).

3.1. Competing mechanisms and ligand-dependent switching of allostery in AAC(6′)-Ii

The combination of ITC, CD, and NMR data show that allosteric binding of AcCoA by 

AAC(6′)-Ii can be explained by a model comprising a hybrid of the KNF and EAM 

paradigms. The subunits undergo partial thermal unfolding (F→U), although the enzyme 

remains dimeric, even at higher temperatures.[23] Therefore the free enzyme exists as a 

mixture of FF, FU, UF, and UU states. When a subunit binds AcCoA it undergoes a large 

conformational change to adopt the B state, while the unbound subunit retains an apo-like 

configuration that can undergo thermal unfolding. Thus the 1-bound enzyme exists as a 

mixture of xBF, xBU, FBx, and UBx forms. The 2-bound enzyme exists simply as xBBx. 

The energy of AAC(6′)-Ii binding to AcCoA can be separated into two distinct 

contributions. Firstly, the native dimer binds with intrinsically positive cooperativity 

following a classical KNF explanation of allostery in which the 1-bound state is 

asymmetrical.[10] Secondly, the unbound subunits undergo partial unfolding as the 

temperature is raised, such that subunits are more stable in the context of the 0-bound 

compared to the 1-bound state. At higher temperatures, this results in partial unfolding of the 

unbound subunit of the 1-bound enzyme (xBF→xBU), with a concomitant reduction in 

affinity for the second AcCoA molecule (KA2
app) and a shift towards negative cooperativity. 

This effect represents a modification of the EAM (Fig. 1C).[61] In the EAM model, ligand-

induced folding of one subunit alters the folding equilibrium of the adjacent subunit. In 

AAC(6′)-Ii, each subunit can adopt at least three distinct conformational states, and it is 
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largely the F to B transition that modulates partial unfolding of the adjacent subunit. Thus 

the shift from positive to negative cooperativity observed for AcCoA binding (Figure 9C) 

results from competition between a positively cooperative KNF mechanism and a 

negatively-cooperative EAM (Figure 13A) .

Similarly to AcCoA, the enzyme bound to two molecules of paromomycin adopts the xBBx 
conformation while the free enzyme exists as a mixture of FF, FU, UF, and UU. In this case 

however, NMR data indicate that the native 1-bound state is symmetrical, although the 

unbound subunit can undergo partial unfolding: xBB, xBU, BBx, and UBx. Once again, 

allostery is governed by two superposed mechanisms. Firstly, the native dimer binds with 

intrinsically positive cooperativity following a classical MWC paradigm. Secondly, the 

unbound subunit is more stable in the context of the paromomycin 1-bound form than in the 

free protein. This leads results in additional positive cooperativity, following a modified 

EAM paradigm (Figure 13B). Thus the enzyme follows strikingly different allosteric 

mechanisms (KNF vs. MWC) depending upon which substrate is bound. We attribute this 

switching behaviour to the locations of the AcCoA and aminoglycoside binding pockets 

within the active site of the enzyme. The structure of the enzyme has been solved in complex 

with bisubstrate inhibitors comprising CoA covalently tethered to aminoglycosides.[28, 62] 

The aminoglycoside portion of the bisubstrate inhibitor is located very near the dimer 

interface and approaches to within 4 Å of the adjacent subunit. Reorientation could 

potentially bring it into direct contact. In contrast, CoA is bound more than 10 Å away from 

the interface. The proximity of one paromomycin molecule to both subunits of the enzyme 

likely stabilizes the interface and drives simultaneous F→B transitions. Conversely, the 

distance of a single AcCoA molecule from the adjacent subunit does not stabilize the 

interface to as great an extent and only the bound subunit experiences an F→B transition.

The MWC and KNF allosteric paradigms represent limiting cases of a thermodynamic 

continuum in which binding of ligands to one subunit alters conformational equilibria in 

adjacent subunits via modulation of interface energies [14]. When the BB interface is 

sufficiently favourable to completely drive the F→B transition in the unbound subunit of the 

1-bound state, the MWC model applies. Conversely, if the F→B transition is so 

unfavourable that the unbound subunit remains almost entirely in the F conformation in the 

1-bound state, then the KNF model applies. In general however, allostery can be operative 

while the unbound subunit populates both F and B states to non-negligible extents [14, 55]. 

The joint ITC/NMR fitting approach described above can distinguish between 

predominately KNF versus MWC behaviour, however small populations of a symmetric 1-

bound state in a KNF system, or small amounts of asymmetric 1-bound state in an MWC 

system, could go undetected. The application of additional NMR experiments capable of 

detecting high-energy states[63, 64] could help to resolve this ambiguity. This represents an 

interesting avenue for future research.

4. Conclusion

The application of global fitting techniques to ITC data represents a powerful approach for 

gaining insight into the molecular mechanisms of allostery. By simultaneously analysing 

isotherms obtained with a range of protein concentrations, one can determine with 
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confidence whether allosteric interactions are indeed present. Global analyses of ITC data 

obtained over a range of temperatures produce binding parameters with improved accuracy 

compared to those extracted from individual fits. Fits that combine ITC and CD data permit 

coupled folding/binding equilibria to be characterized in detail. Finally, the combination of 

ITC and NMR data provides an avenue for determining how protein conformational changes 

are linked to ligand binding. By applying these global analysis techniques to AAC(6′)-Ii, we 

have uncovered the existence of competition between opposing allosteric mechanisms and 

ligand-dependent switching of the allosteric paradigm. Thus ITC in combination with other 

techniques has the potential to shed new light on how energetic communication is 

accomplished in biological macromolecules.
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Figure 1. 
Schematic representation of homotropic allosteric models for a dimeric protein. ○ and □ 
correspond to subunits in binding-incompetent, and binding-competent states, respectively. 

(A) Monod-Wyman-Changeux (MWC): The symmetry of the dimer is preserved, so that 

only ○○ and □□ states are permitted. In the absence of ligand, both states are populated, 

while ligand binding forces the dimer into the □□ state. If the initial equilibrium favors the 

○○ state, binding is positively cooperative, since the energetic cost of the ○○ to □□ 
transition is paid by binding the first, but not the second ligand. Note that in the standard 

MWC model, both ○○ and □□ bind ligand, but with different affinities. For the sake of 

simplicity we have shown the limiting case where ○○ is binding-incompetent. (B) 
Koshland-Nemethy-Filmer (KNF): Each subunit converts from the ○ to the □ state only 

upon binding ligand. Cooperativity is explained in terms of the strengths subunit-subunit 

interactions. If the transition from the ○○ to ○□ interface is energetically more favorable 

than from the ○□ to □□, binding is negatively cooperative, and the first ligand is bound 

more strongly than the second. If the transition from the ○○ to ○□ interface is less 

favorable than from the ○□ to □□, binding is positively cooperative, and the second ligand 

is bound more strongly than the first. (C) Energy allosteric model (EAM): Each unbound 

subunit can populate either the ○ or □ state, and the equilibrium of each subunit is 

influenced by the state of the adjacent subunit. If the binding competent (□) state of one 

subunit stabilizes the □ state of the adjacent subunit, binding is positively cooperative. 

Conversely, if the binding competent □ state of one subunit stabilizes the binding-

incompetent ○ state of the adjacent subunit, binding is negatively cooperative. Adapted 

from Freiburger et al [23]
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Figure 2. 
Schematic representation of (A) non-identical, non-interacting sites and (B) identical, 

interacting sites for 2-site binding. In (A), both n1 and n2 have been set to 1 for clarity.
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Figure 3. 
A) Theoretical ITC isotherms generated with different c-values for a single-set of equivalent 

sites model. B) Theoretical ITC isotherms generated according to a 2-site cooperative 

model, with [P]T = 0.5, 1.5, 4.5, 13.5 μM for the solid, dashed, dotted, and dash-dotted lines 

respectively. In B) left-most panels show positively-cooperative, and right-most panels show 

negatively-cooperative datasets. Centre panels correspond to systems where both ligands 

bind with equal affinities, but with different enthalpies. The top panels, |ΔH2|>|ΔHi|. In the 

bottom panels, |ΔH2|<|ΔHi|. Values of KA1 (×105 M), KA2 (×105 M), ΔH1(kcal/mol), 

ΔH2(kcal/mol) employed are: upper-left) 1,10,-1,-2; upper-centre) 1,1,-1,-2; upper-

right)10,1,-1,-2; lower-left)1,10,-2,-1; lower-centre)1,1,-2,-1; lower-right)10,1,-2,-1. These 

correspond to c-values ranging from 0.05 to 13.5. Adapted from Freiburger et al [22].
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Figure 4. 
ITC binding isotherms (circles) of AAC(6′)-Ii at A) 6, B) 12, C) 24, D) 48, E) 96,F) 192 μM 

titrated with AcCoA at 20°C. Dashed red and solid blue lines correspond to global fits using 

the independent and cooperative models, respectively. Values of c range from 0.4–11and 2–

64 for the first and second binding events. In general, of c values starting at less than or close 

to 1and extending over about an order of magnitude are appropriate for this method. 

Adapted from Freiburger et al [22].
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Figure 5. 
Coupled folding/binding analysis of (A) ΔHA

app, and (B) KA
app, values obtained from fits of 

individual ITC isotherms, together with (C) circular dichroism spectroscopic data (222 nm). 

In A and B, blue symbols indicate the values obtained for individual replicate experiments 

(two per temperature), while the red symbols are the pair-wise averages. Red error-bars 

correspond to combination in quadrature of the blue error bars. In (C), the upper and lower 

dashed lines correspond to the unfolded and folded ellipticity baselines, respectively. CD 

melts were completely reversible up to 323 K. At temperatures above this we observed a 

gradual decay of CD signal likely due to slow aggregation. Therefore we used data from 

273.25 to 320K in our analysis. Adapted from Freiburger et al [30].
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Figure 6. 
Schematic representation of trapezoidal integration of ΔHA

app/RT2. The points represent the 

fitted values of ΔHA
app, divided by the corresponding values of RT2. The difference in 

binding affinity between temperatures Ti and Tii corresponds to the shaded area, i.e. 

KA
app(ii) = KA

app(i) + shaded area. Thus the ΔHA
app/RT2 profile together with the single 

value of KA
app(i) specifies the affinity constants at all other temperatures. Adapted from 

Freiburger et al [30].
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Figure 7. 
Coupled folding/binding analysis of (A) ΔHA

app and (B) KA
app values obtained from a 

global van ‘t Hoff fit of ITC isotherms obtained at 8 temperatures in duplicate, together with 

(C) circular dichroism spectroscopic data (222 nm). In (C), the upper and lower dashed lines 

correspond to the unfolded and folded ellipticity baselines, respectively. Curvature of the 

blue fitted line at low temperatures is due to cold denaturation. Adapted from Freiburger et 

al [30].
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Figure 8. 
Values of ΔHA

app and KA
app determined for binding of the first (light blue) and second (dark 

red) molecules of AcCoA to AAC(6′)-Ii, from independent (non-global) fits of individual 

ITC isotherms.
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Figure 9. 
Global van ‘t Hoff analysis of paromomycin and AcCoA binding to AAC(6′)-Ii. ITC-

derived (A,C) apparent association constants and (B,D) apparent enthalpies for binding to 

(A,B) paromomycin and (C,D) AcCoA. Blue and red symbols and curves correspond to the 

first and second binding events, respectively. (E) CD-derived molar ellipticity of apo-

AAC(6′)-Ii determined as a function of temperature. Curves in all panels represent the best 

fit to a global model of allostery as described in the text. Solid and dashed lines in (E) 

correspond to folded and unfolded CD baselines, respectively. Adapted from Freiburger et al 

[55].
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Figure 10. 
Effect of ligand binding on an NMR signal. Superposition of simulated 1D NMR spectra for 

a nucleus with a resonant frequency ωF in the free state and ωB in the bound state of a 

protein that is 1%, 25%, 50%, 75%, and 99% ligand-bound. The spectrum of the free state is 

transformed into that of the bound state in a manner which depends upon the rate of 

exchange between the two states. (A) slow exchange regime where kex ≪ Δω, (B) 

intermediate exchange regime where kex ≈ Δω (C) fast exchange regime where kex ≫ Δω, 

where kex = koff + kon[X] and Δω = |ωB−ωF| = 100π rad s−1, in the simulations.
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Figure 11. 
1H/15N NMR correlation spectra of AAC(6′)-Ii free (A) and saturated with AcCoA (B)
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Figure 12. 
Joint NMR/ITC analysis of AAC(6′)-Ii binding to AcCoa (A-C) and paromomycin (D-E). 

Fraction of enzyme in the 0-bound, 1 bound and 2 bound states determined by ITC (A,D). 

Intensities of a representative apo peak (dashed line) and holo peak (solid line) throughout a 

titration (B, E). Histograms of the relative contributions of the 1 bound state to apo (I1
apo) 

and holo (I1
holo) peaks of AAC(6′)-Ii (C,F).
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Figure 13. 
Schematic representation of allosteric equilibria of AAC(6′)-Ii binding to AcCoA (A) and 

paromomycin (B) where x, B, F, and U represent ligand and enzyme subunits the holo, apo, 

and partially unfolded forms, respectively.
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