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ABSTRACT

Background. The involvement of multiple genes and missing heritability, which are
dominant in complex diseases such as multiple sclerosis (MS), entail using network
biology to better elucidate their molecular basis and genetic factors. We therefore aimed
to integrate interactome (protein—protein interaction (PPI)) and transcriptomes data
to construct and analyze PPI networks for MS disease.

Methods. Gene expression profiles in paired cerebrospinal fluid (CSF) and peripheral
blood mononuclear cells (PBMCs) samples from MS patients, sampled in relapse or
remission and controls, were analyzed. Differentially expressed genes which determined
only in CSF (MS vs. control) and PBMCs (relapse vs. remission) separately integrated
with PPI data to construct the Query-Query PPI (QQPPI) networks. The networks were
further analyzed to investigate more central genes, functional modules and complexes
involved in MS progression.

Results. The networks were analyzed and high centrality genes were identified. Explo-
ration of functional modules and complexes showed that the majority of high centrality
genes incorporated in biological pathways driving MS pathogenesis. Proteasome and
spliceosome were also noticeable in enriched pathways in PBMCs (relapse vs. remission)
which were identified by both modularity and clique analyses. Finally, STK4, RBI,
CDKNI1A, CDK1, RAC1, EZH2, SDCBP genes in CSF (MS vs. control) and CDC37,
MAP3K3, MYC genes in PBMCs (relapse vs. remission) were identified as potential
candidate genes for MS, which were the more central genes involved in biological
pathways.

Discussion. This study showed that network-based analysis could explicate the complex
interplay between biological processes underlying MS. Furthermore, an experimental
validation of candidate genes can lead to identification of potential therapeutic targets.

Subjects Bioinformatics, Computational Biology, Immunology, Neurology
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INTRODUCTION

Multiple sclerosis (MS) is a complex disease affecting the central nervous system
(CNS) in which genetic, environmental and immunological factors are considered as

its etiology (Ebers, 2008; Svejgaard, 2008). Although MS shows both autoimmune and
neurodegenerative features, the pathophysiological processes which may occur both
within and outside of the CNS remain obscure and don’t have an uniform distribution
within the MS population (Brynedal et al., 2010). To study such complex diseases, which
involved noticeably missing heritability (Goris ¢ Liston, 2012; Manolio et al., 2009), it is
more efficient to describe perturbed processes and dysregulated pathways rather to identify
individual genes (Kim, Wuchty & Przytycka, 2011).

Transcriptome analysis of the target organ, i.e., the central nervous system, should reflect
an unbiased survey of expression profiles for genes with altered transcript levels in disease
states. Since it is difficult to achieve CNS samples, cerebrospinal fluid (CSF) cells have been
used in many studies as a surrogate for the target organ in CNS disorders (Brynedal et al.,
2010). Furthermore, peripheral blood mononuclear cells (PBMCs) are being considered
as an easily accessible and informative source of biological material in MS transcriptome
studies (Achiron et al., 2004; Bomprezzi et al., 2003; Singh et al., 2007). In this line, it has
been reported that the study linking peripheral and CSF immune responses were essential
to understand the immunopathogenesis of MS (Christensen et al., 2012).

Since the expression level change of a gene in a transcriptomic profile may be a result
of an expression change of another gene and may not be the direct cause of the cellular
phenotype, additional information is required to put them in context (Wachi, Yoneda &
Wu, 2005). Network-based analyses of protein—protein interaction (PPI) or interactome
delineate the known associations among proteins in the context of biochemistry, signal
transduction and biomolecular networks (Rezaei-Tavirani et al., 2016; Zali ¢~ Rezaei-
Tavirani, 2014; Wu et al., 2009). The integration analysis of large scale gene expression and
PPI data will place the differentially expressed genes in the biological context (Bapat et al.,
20105 Li et al., 2012; Safari-Alighiarloo et al., 2014; Safari-Alighiarloo et al., 2016). Protein
networks reflect the functional grouping of interacting up/down regulated genes. The
roles of the subsets of these genes, therefore, may be resolved using the combined data
(Wachi, Yoneda ¢ Wu, 2005).

Recently, the topological analyses have been applied to PPI networks by tools or
algorithms such as modularity and centrality analyses by which the biological significance
of proteins has been determined (Huang et al., 2013; Lee et al., 2011). Graph centrality
measures like degree, betweenness and closeness centrality are very useful in the
identification of nodes that are functionally crucial in the network by ranking the elements
of the network (Hindumathi et al., 2014). In the PPI network the nodes with high degree
defined as hub proteins and the nodes with high betweenness defined as bottleneck proteins,
which both play a pivotal role in networks (Yu et al., 2007). The interest gene sets which
usually presented as gene modules, protein complexes or pathways have been analyzed in
integrative databases such as the Database for Annotation, Visualization and Integrated
Discovery (DAVID) (Huang, Sherman ¢ Lempicki, 2008), the Kyoto Encyclopedia of
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Genes and Genomes (KEGG) and Reactome to identify the sets of biological processes and
molecular pathways of genes.

This study integrated transcriptome-interactome data to construct PPI networks for MS
using abnormally expressed genes in paired CSF and PBMCs samples. Topological analyses
were performed to determine the significant network biomarkers. Underlying biological
processes and pathways have been sought by modularity and clique analyses. Finally,
potential disease markers were identified, which were high centrality genes significantly
involved in functional modules or complexes.

METHODS

Transcriptome data collection and processing

Gene expression profiles in both CSF cells and PBMCs were obtained from the ArrayExpress
Database under the accession number of EMTAB- 69 based on the Human Genome 133
plus 2.0 arrays (Brynedal et al., 2010). Accordingly, this study consisted of 26 multiple
sclerosis patients, of whom 12 and 14 patients were sampled during relapse and remission,
respectively. The MS patients were selected from a large cohort of newly diagnosed MS
patients, and none of the patients had ever received immunomodulatory drugs. Control
population included 18 subjects with other neurological diseases to assess MS specific
transcriptome. The microarray raw data were converted to gene expression values using
the RMA algorithm by the affy package within R software (Gautier et al., 2004). After
preprocessing, each expression profile containing 54, 675 probe sets that ones with less
discriminative power were removed according to the measurement of overall variance by
the varFilter function using the genefilter package from the Bioconductor project within
R software (Gentleman et al., 2011). After the preprocessing, a total of 27,336 probe sets
from each sample were used for further analysis. To identify differential expression of the
selected probes, the limma package in R software was used to perform the moderated ¢-test
(Smyth, 2005). Where a gene had more than one probe on the microarray, the average
expression value of all the related probes was used to estimate expression level of the gene.

Interactome data

The human PPI network was gathered from four major IMEx (Orchard et al., 2007) public
databases: IntAct (Kerrien et al., 2012), MINT (Ceol et al., 2010), DIP (Xenarios et al.,
2002) and InnateDB (Lynn et al., 2008). Indeed, public PPI databases which only stored
experimentally verified interactions used to eliminate possible spurious interactions and
avoid misleading conclusions. Our recent study showed IMEx databases (especially IntAct
and DIP databases) had a greater number of significant correlations for their proteins’
topological features than the all other paired comparisons between BIND, HPRD, MINT,
IntAct and DIP databases (Safari-Alighiarloo, Taghizadeh ¢ Rezaei-Tavirani, 2015).

QQPPI networks construction and topological analysis

To construct Query-Query PPI (QQPPI) networks, the differentially expressed genes in
CSF (MS vs. control) and PBMCs (relapse vs. remission) were separately located on human
PPI network. QQPPI networks only consistent of the query genes as the nodes and direct
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interactions among them. The subnetworks of QQPPI were constructed and visualized
by Cytoscape software (Shannon et al., 2003). Centrality parameters of QQPPI networks
were analyzed using the Cytoscape and CentiBin softwares (Junker, Koschiitzki ¢ Schreiber,
2006). The following parameters were calculated to determine biologically significant nodes
(Zhang, 2009). Degree: the number of links to a given node. The Betweenness centrality of
node v is calculated as:

pst (v)
CB(V):Zs;ér#veV pst ()

where the number of all shortest paths between node s and t regarded as pst, and the
number of shortest paths which passing through a node v out of pst regarded as pst(v).
Indeed, this formula represents the ratio of the number of shortest paths passing through
node v to the number of all shortest paths between s and ¢. The current flow betweenness
centrality of a node v is the average of the current flow over all source—target pairs. Closeness
centrality is defined as the reciprocal of the total distance from a node v, to all other nodes.
Therefore, high values of closeness should indicate that all other nodes are in proximity to
node v.

1
Y uey dis(u,v)

The centroid value is the most complex node centrality index and is computed by focusing

Ccv) = (2)

the calculus on couples of nodes (v,w). The centroid value of an individual node v’ is
calculated by considering the number of nodes that have minimum shortest path which
are closer to ‘v’ than ‘w’. A node v with the highest centroid value is the node with the
highest number of neighbors separated by the shortest path to v,

Ceen(v) =min(f (v, w)), (3)

where f (v,w) =yv(w) —yw(v) and yv(w) denotes the number of nodes that are closer to
v than w. Eigen vector centrality assign the relative significance of all nodes in the network
by weighting connections to highly important nodes more than connections to nodes of
low importance.

MCrv =ACy, (4)

where Cjy donates the Eigen vector and A donates the Eigen value.

Hub and bottleneck nodes were extracted from the networks in two steps; (1) In the
networks, nodes with degree greater than or equal to the sum of mean and twice the
standard deviation (S.D.), i.e., mean + 2*S.D. of the degree distribution, were considered
as hubs (Ray, Ruan ¢ Zhang, 2008). (2) We defined bottlenecks as the proteins that were
in the top 5% in terms of betweenness centrality.

Identification and annotation of functional modules
Network clustering was implemented by Clustering with overlap neighborhood expansion
(ClusterONE) algorithm in order to identify the connected regions within the networks
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with possible overlap (Nepusz, Yu & Paccanaro, 2012). The modules were identified to
have a minimum density of >0.05 and a degree of >5. A cluster with a p-value of <0.05
was determined to be a module. The functional meaning for identified modules was
further explored, and they considered as candidate functional modules if their genes were
significantly enriched in the biological process of Gene Ontology (GO) annotation or
KEGG pathway.

Identification of complexes containing clique

CFinder software was applied to extract biologically meaningful protein complexes from the
PPI networks (Adamcsek et al., 2006). CFinder (http://www.cfinder.org/) was downloaded
and implemented locally. Cliques with 3 nodes and 4 nodes (3-cliques, 4-cliques) were
identified in the QQPPI networks by this software. The cliques were searched against
CORUM database (Ruepp et al., 2010) to find significant protein complexes. Then, all the
proteins associated with a specific complex were identified using the in house algorithm.
Complexes containing 3 or more query proteins, as a cut-off, were listed in this study.

Functional enrichment analysis

An enrichment analysis was performed using Functional Annotation Chart in DAVID
bioinformatics. To determine functional modules, only the enriched GO terms and
pathways with p-values < 0.05 were considered significant. Furthermore, Cytoscape
Enrichment Map plugin was used to visualize significant terms enriched in entire networks
by following parameters: p-value cut-off = 0.001, g-value cut-off = 0.05, overlap coefficient
cut-off = 0.6 (Merico et al., 2010).

RESULTS

Expression analysis

We used the Limma package to analyze gene expression profile, E-MTAB-69, for
comparison of four transcriptomes in MS (CSF: MS vs. controls and relapse vs. remission,
PBMCs: MS vs. controls and relapse vs. remission). There were 3,062 genes with FDR <
0.05 whose expression was different in the CSF of MS patients as compared to the controls,
but none in the respective PBMCs comparison. The number of up and down regulated
genes was 1,080 and 1,982, respectively. On the contrary, when MS patients in relapse to
those in remissions were compared, 1,163 differential expression genes with FDR < 0.1
were seen in PBMCs, but none in the CSF. The number of up and down regulated genes
was 301 and 762, respectively. The full lists of annotated differentially expressed probe sets
are shown in Table S1 for the MS vs. control comparison in CSF cells, and in Table S2 for

the relapse versus remission in PBMCs cells.

Networks’ topological analysis

We used only direct interactions of differentially expressed genes to construct QQPPI
networks. The CSF PPI network consisted of 1,440 nodes and 3,500 edges and PBMCs
PPI network involved 483 nodes and 941 edges. Topological features were processed to
characterize the biology network from the random network. The power law of node degree
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Figure 1 The degree distribution of nodes followed power law distribution. (A) Degree distribution of
differentially expressed genes in CSF QQPPI network. (B) PBMCs QQPPI network. The graph represents
a decreasing trend of degree distribution with an increase in the number of links showing scale-free topol-

ogy.

Table 1 Hub-bottleneck identification. Cut-off determination for hubs & number of hubs and bottle-

necks.
Mean (M) Standard Devi- Cut-off Number of Number of bottle-
ation (S.D) (M + 2*S.D) hubs necks
CSF 4.86 7.3 19.4 56 72
PBMCs 3.89 6.06 16.01 20 25

distribution is one of most important criteria (Maslov ¢ Sneppen, 2002; Zhu, Gerstein

& Snyder, 2007). The distribution of node degree approximately followed power law
distributions, where P (k) is a distribution of node degree, k is a degree and A is a degree
exponent, with A =1.94 and A =2.08 for CSF and PBMCs networks, respectively, and
Fig. 1 indicates that the QQPPI networks were scale-free. The hubs and bottlenecks were
extracted from the QQPPI networks by the criterion described in the method section
(Table 1). Besides, we calculated four others centrality measurements involving closeness
centrality, centroid value, Eigen vector centrality and current flow betweenness centrality
and identified more central genes in the networks. The list of all nodes and their centrality
measurements are prepared in Tables S3 and S4 for CSF and PBMCs in which candidate
markers have been highlighted. The graphical structure of CSF and PBMCs PPI networks
containing 5% top central genes are represented in Fig. 2.

Modularity analysis

The ClusterONE algorithm was selectively implemented on CSF and PBMCs networks to
mine the functional modules, which may reveal a lot of hidden biological significant
processes. We further performed GO and pathway analysis using DAVID tool to
characterize functional modules; 14 and six functional modules were discovered for
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Figure 2 QQPPI networks generation by mapping of differentially expression genes on PPI data. (A)
CSF QQPPI network. (B) PBMCs QQPPI network. Nodes with high centrality measures are shown by big-
ger size than others. Green and red nodes represent proteins encoded by up- and down-regulated genes,

respectively. Graphical representation of nodes was implemented by “Spring Embedded” layout in Cys-
toscape.
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Table 2 Modularity analysis. The list of pathways enriched in modules for CSF (MS vs. controls).

Module ID Pathway p-value
M1 hsa04062 : chemokine signaling pathway 7.7E-3
hsa04060 : cytokine—cytokine receptor interaction 1.5E-2
hsa04672 : intestinal immune network for IgA production 3.8E-2
M2 hsa05010 : Alzheimer’s disease 3.0E-3
hsa05014 : Amyotrophic Lateral Sclerosis (ALS) 3.1E-2
hsa04720 : long-term potentiation 4.0E-2
M4 hsa04640 : hematopoietic cell lineage 4.7E-6
hsa04060 : cytokine—cytokine receptor interaction 1.4E-4
hsa04210 : apoptosis 8.6E—4
hsa05020 : prion diseases 2.1E-2
hsa05332 : graft-versus-host disease 2.3E-2
hsa04940 : type I diabetes mellitus 2.5E-2
M7 hsa00590 : arachidonic acid metabolism 3.3E-2
M9 hsa04620 : toll-like receptor signaling pathway 1.7E-5
M13 hsa05217 : basal cell carcinoma 2.3E-3
hsa04340 : hedgehog signaling pathway 2.3E-3
M14 hsa04010 : MAPK signaling pathway 1.5E-2
MI15 hsa04110 : cell cycle 1.2E-2
M20 hsa04115 : p53 signaling pathway 3.3E-10
hsa04110 : cell cycle 2.5E-8
hsa04914 : progesterone-mediated oocyte maturation 1.8E-3
M22 hsa04810 : regulation of actin cytoskeleton 1.6E-2
hsa04666 : Fc gamma R-mediated phagocytosis 2.4E-2
hsa04530 : tight junction 4.4E-2
M23 hsa04144 : endocytosis 1.5E-2
hsa04540 : gap junction 2.7E-2
M25 hsa04510 : focal adhesion 2.7E-2
hsa04512 : ECM-receptor interaction 3.1E-2

CSF and PBMC:s (p-value < 0.05), respectively. In the case of CSF, enriched modules were
relevant to the comparison of MS versus controls in which modules correlated remarkably
with many immune-related pathways such as, cytokine—cytokine receptor interaction,
chemokine signaling pathway, Toll-like receptor signaling pathway, T cell receptor signaling
pathway and Hematopoietic cell lineage. Further to them, some modules were enriched for
apoptosis, p53 signaling pathway, MAPK signaling pathway, Hedgehog signaling pathway
and Fc gamma R-mediated phagocytosis. The other major enriched pathways in modules
included focal adhesion, cell cycle, endocytosis, gap junction, tight junction, ECM-receptor
interaction, regulation of actin cytoskeleton (Table 2).

For PBMCs, enriched modules corresponded to the comparison of relapse versus
remission in which the majority of enriched pathways contributed to immune-related
pathways like antigen processing and presentation, primary immunodeficiency, RIG-I-like
receptor signaling pathway, Toll-like receptor signaling pathway and cytosolic DNA-sensing
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Table 3 Modularity analysis. The list of pathways enriched in modules for PBMCs (relapse vs. remis-

sion).
Module ID Pathway p-value
M1 hsa04612 : antigen processing and presentation 6.6E-8
hsa05340 : primary immunodeficiency 2.7E-2
hsa05332 : graft-versus-host disease 3.0E-2
hsa02010 : ABC transporters 3.4E-2
M7 hsa04115 : p53 signaling pathway 3.5E-3
hsa04110 : cell cycle 1.2E-2
M8 hsa04623 : cytosolic DNA-sensing pathway 2.5E—4
hsa04622 : RIG-I-like receptor signaling pathway 5.2E—4
hsa04620 : toll-like receptor signaling pathway 1.5E-3
M9 hsa04120 : ubiquitin mediated proteolysis 2.3E-2
M10 hsa03050 : proteasome 1.3E-9
Mi11 hsa03040 : spliceosome 1.0E-3
hsa04350 :TGF-beta signaling pathway 4.1E-2

pathway. TGF-beta signaling pathway and p53 signaling pathway were the two noticeable
signaling pathways in modules. The last enriched pathways were spliceosome, proteasome,
ubiquitin mediated proteolysis and cell cycle (Table 3).

Identification of cliques and complexes

CFinder software was implemented to identify several 3-cliques and 4-cliques in the
QQPPI networks. The corresponding complexes were retrieved from the CORUM
database and shown in Table 4. In the case of CSF (MS vs. controls), these complexes
mediated various biological functions such as protein processing (proteolytic), proteasomal
degradation, stress response, protein binding, protease activator (ID: 32, 192 and 193),
DNA conformation modification, transcription repression, protein modification by
acetylation, deacetylation (ID:58), DNA conformation modification, transcription
repression and posttranscriptional control (ID:105, 995,996 and 974), mitotic cell cycle and
protein modification (ID:310 and 313), chromosome segregation/division (ID:1464), cell
junction (ID:1839), actin cytoskeleton organization and biogenesis (ID:3008), ribosome
biogenesis (ID:3055), protein modification and cellular signaling (MAPKKK cascade
(ID:5909 and 5886).

For PBMC:s (relapse vs. remission), the identified complexes involved in many biological
processes like protein processing (proteolytic), proteasomal degradation, stress response,
protein binding, protease activator (ID: 38, 39, 181, 191, 192, 193, 194), RNA processing and
RNA binding (ID: 351 and ID: 1181), protein targeting, sorting and translocation, protein
transport and homeostasis (ID:437), protein kinase (ID:5199), NIK-I-kappaB/NF-kappaB
cascade and cytokine activity (ID: 5269), apoptosis (ID: 5473, 5860, 5859, 5799 and 5800).

Functional enrichment analysis of the networks
To gain a full view of the networks potential functions, the networks’ nodes were annotated
using the Functional Annotation Chart in DAVID and visualized using the Enrichment
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Table 4 Clique analysis. The list of complexes enriched for CSF and PBMCs.

Gene symbol

Complex

CSF (MS vs. controls)

PSMA3, PSMB1, PSMB3, PSMB9, PSME1, PSMD7
GPS2, NCOR2, TBL1X

EED, EZH2, RBBP4

CCNB1, CCNB2, CCND1, CDK1, CDKN1A
CCND1,CCND3, CDKNI1A

CBX5, DSN1, ZWINT

CTNNA1, CTNNBI, SDCBP

TUBAI1A, TUBA1B, TUBA1C

IGF2BP1, ILF2, NOLC1, RPLP2, RPS11, RPS16, SRPK1,
TUBAIA, YBX1

MAP2K1, SEN, YWHAG

PBMC:s (relapse vs. remission)

PSMA1, PSMA2, PSMA7, PSMB10, PSMB3,
PSMD3, PSMD4

DHX15, PABPC1, PRPF19, SF3B3, SNRPB

ACTB, ANXA6, MYHY, SPTAN1

HNRNPHI1, HNRNPM, PABPC1, PRPF19, SF3B3, SNRPB
CDC37, HSP90AB1, MAP3K3

CDC37, HSP90AB1, IKBKE

CASP8 FADD FAS

ACTB, MYH9, SPTAN1

Proteasome (ID:39, 192,193)
SMRT complex (ID:58)

Polycomb repressive complex 2,3 (PRC 2,3) (ID:105,
996,995), EED-EZH2 complex (ID:974)

Cell cycle kinase complex CDC2 (ID:310)

Cell cycle kinase complex CDK5 (ID:313)

Mis12 centromere complex (ID:1464)
SDCBP-CTNNB1-CTNNA1-CDHI1 complex (ID:1839)
60S APC containing complex (ID:3008)
Nop56p-associated pre-rRNA complex (ID:3055)

Ksrl complex (Ksrl, Mek, 14-3-3, Mapk), EGF stimulated
(ID:5909, 5886)

Proteasome (ID: 38, 39, 181, 191, 192, 193, 194)

Spliceosome (ID:351)

PA700-20S-PA28 complex (ID:437)

C complex spliceosome (ID:1181)

Kinase maturation complex 1 (ID:5199)
TNF-alpha/NF-kappa B signaling complex 8 (ID: 5269)

FAS-FADD-CASP8 complex (ID: 5473, 5860), FAS-FADD-
CASP8-CASP10 complex (ID: 5859), Death induced
signaling complex DISC (ID: 5799, 5800)

Emerin complex 1 (ID: 5604)

Map plugin in Cytoscape. As shown in Fig. 3, each node represented one functional

annotation term. Nodes with more enriched genes were larger. Edge width was indicated
the extent of overlapping between these categories (overlap coefficient cut-off 0.6). In case
of CSF (MS vs. control), the ten most enriched entries in Gene Ontology (GO) biological
processes were GO:0009611~Response to wounding, GO:0006955~Immune response,
GO:0007242~Intracellular signaling, GO:0010604~Positive regulation of macromolecule
metabolic processes, GO:0007049~Cell cycle, GO:0002684~Positive regulation of immune
system processes, GO:0042981~Regulation of apoptosis, GO:0006954~Inflammatory
response, GO:0016044~Membrane organization, GO:0008283~Cell proliferation. In case
of PBMC:s (relapse vs. remission), ten most enriched terms included GO:0043068~Positive
regulation of programmed cell death, GO:0006974~Response to DNA damage stimulus,
GO:0043065~Positive regulation of apoptosis, GO:0006917~Induction of apoptosis,
GO:0044265~Cellular macromolecule metabolic processes, GO:0033554~Cellular
response to stress, GO:0022402~Cell cycle processes, GO:0010033~Response to
organic substance, GO:0002684~Positive regulation of immune system process,
G0O:0051249~Regulation of lymphocyte activation.
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Figure 3 Functional categories of the networks were visualized using the Enrichment map plugin of
the Cytoscape. Significant biological processes are represented by one node in (A) CSF QQPPI network.
(B) PBMCs QQPPI network. Nodes’ sizes indicate the significance of the enrichment (p-value). Edges
show gene overlap between nodes and thickness indicates the number of overlapping enriched genes.

Mining and identification disease markers in modules and complexes
We screened more central nodes in CSF and PBMC:s to investigate detailed analysis about
their association in functional modules and complexes. Interestingly it was found that
eight genes (STK4, RB1, CDKN1A, CDK1, RACI1, ARRB2, ARRBI1, FN1) were located
in functional modules and 15 genes (RBBP4, ILF2, RPS16, PSMA3, EED, EZH2, CDK1,
CDKNI1A, CTNNBI, SDCBP, SRPK1, TUBAI1A, YBX1, SEN, YWHAG) were associated in
complexes in CSF-QQPPI network. In case of PBMCs-QQPPI network, four genes (CDK2,
PSMA1, IKBKE and MYC) were located in functional modules and genes (PSMAL,
PSMA2, PSMA7, PSMB3, PSMD3, HNRNPM, FAS, ACTB, CDC37, HSP90AB1, MAP3K3,
IKBKE, CASP8) were associated in complexes. Besides, it was obvious from the mining
of functional modules and complexes that more central genes incorporated in driving
pathways of MS pathogenesis (Table 5, also see Tables 2, 3 and 4). The more central
genes and their expression values in CSF and PBMCs networks are illustrated in Fig. 4
and candidate markers are represented in Fig. 5. Since these differentially expressed genes
in microarray dataset corresponded to topologically significant nodes in PPI networks,
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Table5 Central genes. The list of more central genes enriched in functional modules and complexes for

CSF and PBMCs.

Module/complex ID Gene symbol

CSE(MS vs. controls)

M13 SMADI1

M14 STK4

M15 RB1

M20 CDKN1A, CDK1

M22 RAC1

M23 ARRB2, ARRBI1

M25 EN1

1D:39, 192,193 PSMA3

ID:105, 974,996,995 EED, EZH2, RBBP4
1D:310,313 CDKI1, CDKNI1A

ID:1839 CTNNBI1, SDCBP

1D:3008 TUBAIA

1D:3055 SRPK1, YBX1, ILF2, RPS16
1D:5909, 5886 SEN, YWHAG

PBMC:s (relapse vs. remission)

M7 CDK2

M8 IKBKE

M10 PSMA1

Ml11 MYC

ID: 38, 39, 181, 191, 192, 193, 194 PSMAI1, PSMA2, PSMA7, PSMB3, PSMD3
ID:1181 HNRNPM

1D:437,5604 ACTB

ID:5199, 5269 CDC37, HSP90AB1, MAP3K3, IKBKE
ID: 5473, 5860, 5859, 5799, 5800 CASP8,FAS

which have functional importance because of their involvement in functional modules and
complexes, they called as candidate disease markers in our study.

DISCUSSION

Although myriad genetic studies investigate the MS pathogenesis, our understanding have
remained incomplete about the exact mechanism and its genetics (Baranzini et al., 2009,
Zhang et al., 2011). The analysis of network-based biological data provides prominent tool
to decipher the genetic basis of complex diseases by unraveling genes and processes not
recognizable by genetic association approaches (Sharma et al., 2013; Yu et al., 2013). Due
to implication of both intrathecal and peripheral immune activation in MS pathogenesis
(Brynedal et al., 2010; Christensen et al., 2012; Veroni et al., 2015), we constructed PPI
networks of abnormally expressed genes in paired tissues (CSF and PBMCs) for MS by
integrating interactome and transcriptomes data. Using the analysis of the networks, we not
only recognized several underlying biological processes, we also identified some important
candidate markers for MS.
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Figure 4 Nodes with high centrality measures which involved in significant biological pathways and
their expression values. More central nodes in (A) CSF QQPPI network. (B) PBMCs QQPPI network.

By studying two different tissues, neither being the actually affected tissue in MS, largely
different but potentially significant and noticeable results have been achieved. Since the
CNS is embedded in CSF, it is presupposed that CSF would represent more of the processes
occurring within the CNS (Brynedal et al., 2010). Besides, the implication of peripheral
immune response in MS progression has been substantiated (Kebir et al., 2009). The
simultaneously obtained CSF and PBMCs samples showed only differentially expressed
genes in CSF, comparing MS patients versus controls, and PBMCs comparing relapse
versus remission. Lack of differential expression in CSF (relapse vs. remission) implies
that outside events of the CNS such as pathogens and other environmental triggers not
influencing the cells of the CSF, may primarily affect MS bouts (Brynedal et al., 2010). To
further explore underling biological processes in MS, functional modules and complexes
were characterized in these different tissues. More central genes involved in immune
response, apoptosis, cell cycle and cell adhesion pathways, which considered as main
biological processes in MS pathogenesis. Furthermore, in PBMCs (relapse vs. remission),
proteasome and spliceosome complexes were enriched by both modularity and clique
analyses and in CSF (MS vs. control) only proteasome enriched by clique analysis. The

Safari-Alighiarloo et al. (2016), PeerJ, DOI 10.7717/peerj.2775 13/22


https://peerj.com
http://dx.doi.org/10.7717/peerj.2775

Peer

Figure 5 Candidate markers involved in functional modules and complexes. The functional enrich-
ment of candidate markers in (A) CSF QQPPI network. (B) PBMCs QQPPI network. Modules and com-
plexes illustrated by brown and blue dotted circles, respectively.

proteasome has crucial role in cell cycle progression and immune response (Basler et al.,
2015). The immunoproteasome is a cytokine-induced variant of the 20S proteasome, which
involved in the pathogenesis of autoimmune diseases and in the modulation of T helper
cell differentiation (Basler, Kirk ¢ Groettrup, 2013). Inhibition of the immunoproteasome
subunit LMP7 (85i) in animal models for autoimmune diseases including MS protected
against these diseases (Basler et al., 2014). Spliceosome as basic machinery splicing, only
enriched in relapse phase of MS in PBMCs. There is evidence to delineate the important
role of alternative splicing in autoimmunity (Evsyukova et al., 2010).

In this work, we also identified the candidate genes for MS employing of topological
analysis on the constructed networks in CSF and PBMCs tissues. These markers were
further analyzed through a literature survey to confirm their potential contributions in
MS pathogenesis. The compendium annotations for some of the most relevant candidate
markers in terms of their expression are followed. In case of CSF, the first candidate
was serine/threonine kinase 4 (STK4), also known MST1, enriched in MAPK signaling
pathway (M14), and it was upregulated. The study of Konstantin et al. showed that genetic
deletion of Mst1 altered T cell function and protected against autoimmunity as deletion
of Mst1 reduced the severity of experimental autoimmune encephalomyelitis (EAE). Their
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results indicated that Mst1 regarded as a critical regulator of adaptive immune responses,
Th1/Th2-dependent cytokine production and as a potential therapeutic target for immune
disorders (Salojin et al., 2014). The second marker, RB transcriptional corepressor 1 (RB1)
participated in cell cycle pathway (M7) and was downregulated. This gene is a negative
regulator of the cell cycle, and acts as a transcriptional regulator (Indovina et al., 2013).
It has been reported that Rb-mediated gene expression repression of E2F2 (transcription
factor 2), by acting to tether Rb to specific E2F promoter sites, was crucial in T cells, and
mutation of E2F2 in mice resulted in enhanced T lymphocyte proliferation leading to the
development of autoimmunity (Murga et al., 2001). The third marker, cyclin-dependent
kinase inhibitor 1A (CDKN1A) also named p21, was enriched in p53 signaling pathway,
cell cycle (M20), and it was downregulated. The evidence exists for the p21 as a cell-cycle
inhibitor that suppressed autoimmunity (7rakala et al., 2009). Indeed, recent studies
disclosed that p21 as a specific regulator of the homeostasis of memory/activated T
lymphocytes (Arias et al., 2007). The fourth marker, cyclin-dependent kinase 1 (CDK1)
was enriched in p53 signaling pathway, cell cycle and progesterone-mediated oocyte
maturation pathway (M20), and it was upregulated. The study of Yoshida et al. (2013)
implicated that cyclin-dependent kinases were important regulators and potential targets
for modulation of T cell immunity and tolerance. In this line, their results showed that CDK
(including CDK1) inhibitors prohibited Th17 differentiation and expedited iTreg (induced
regulatory T cells) development, which induced improving of experimental autoimmune
encephalomyelitis in mice. The fifth marker, rho family, small GTP binding protein
Racl (RAC1) was enriched in regulation of actin cytoskeleton, Fc gamma R-mediated
phagocytosis (M22), and it was downregulated. Racl as a major player of the Rho family
of small GTPases, have a key regulatory role in both actin and microtubule cytoskeletal
dynamics, which it is central to axonal growth and stability, as well as dendrite and spine
structural plasticity in the nervous system. Besides, it is also a substantive regulator of
NADPH-dependent membrane oxidase (NOX) which is a main source of reactive oxygen
species (ROS). Thereby, Racl plays a principle role in the inflammatory response and
neurotoxicity mediated by microglia cells in the nervous system (D’Ambrosi et al., 2014).
The study results displayed the relevance of Racl dysregulation in the pathogenesis of
Amyotrophic Lateral Sclerosis (ALS) (D’Ambrosi et al., 2014). The sixth marker, enhancer
of zeste homologue 2 (EZH2) involved in polycomb repressive complexes 2, 3 and EED-
EZH2 complex, and it was upregulated. EZH2 catalyzes the addition of three methyl groups
to lysine 27 of histone H3 (H3K27) in target gene promoters, which caused gene silencing.
The Li & Jiang (2015) study showed that the activity of EZH2 must be consistently inhibited
in neurons to evade re-entrance into a cell cycle process, and thus its overexpression could
begin a pathway that ended in CNS neurodegeneration. The seventh marker, the syndecan
binding protein (SDCBP) involved in SDCBP-CTNNB1-CTNNA1-CDHI1 complex and
the enriched biological process, was the cell junction; it was downregulated. SDCBP was
shown to interact with syndecans, which aided cell adhesion and enhanced attraction
and concentration of growth factors at the cell surface (Beekman ¢ Coffer, 2008). Lopez-
Ramirez et al. study represented that human brain endothelial permeability has been
controlled by miR-155, which targeted molecules involved in cell-to-cell interactions
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such as SDCBP. They results indicated that miR-1 55 ' mice showed lower levels of
blood-brain barrier leakage in experimental autoimmune encephalomyelitis and an acute
model of systemic inflammation (Lopez-Ramirez et al., 2014).

In case of PBMCs, the candidate markers corresponded to the comparison of relapse
versus remission. The first candidate marker was cell division cycle 37 (CDC37). It was
incorporated in complex TNF-alpha/NF-kappa B signaling complex 8 and downregulated.
CDC37 and HSP90 is a member of IKK complex that disruption of the interaction
between CDC37/HSP90 and IKK complexes impaired the activation of IKK and NF-«B
in a TNF-dependent manner (Chen, Cao ¢ Goeddel, 2002; Chen ¢ Goeddel, 2002). NF-«x B
acts as a central mediator of immune and inflammatory responses, and it is involved in
regulation of cell proliferation and apoptosis (Oeckinghaus ¢» Ghosh, 2009). In this line,
some studies disclosed that apoptosis was suppressed during acute relapse and this issue
may lead to prolonged survival of autoreactive T cells (Achiron et al., 2007; Achiron et al.,
2004). Downregulation of CDC37 could be remarkable issue during relapse stage with
apoptosis suppression for further studies. The second marker, mitogen-activated protein
kinase 3 (MAP3K3) involved in Kinase maturation complex 1, and it was upregulate. It
is a member of MAPKs which implicated in all aspects of immune responses, from the
initiation phase of innate immunity to activation of adaptive immunity (Dong, Davis ¢
Flavell, 2002). The last marker, v-myc avian myelocytomatosis viral oncogene homolog
(MYC) incorporated in TGF-beta signaling pathway (M11), and it was downregulated.
Achiron et al. (2004) study showed that all components of the TGF-beta signaling pathway
were underexpressed during MS pathogenesis. Since this pathway is known to prohibit
cell proliferation and increase susceptibility to apoptosis induced by TGF-beta, their
underexpression may be relevant to autoreactive T-cell expansion in MS patients.

CONCLUSIONS

This study showed the necessity of network-based analysis to get more insights in MS
pathogenesis at post-genomic era. In summary, QQPPI networks of abnormally expressed
genes in paired CSF (MS vs. control) and PBMCs (relapse vs. remission) samples were
constructed for MS, and centrality, modularity and clique analyses have been implemented.
Our results indicated that genes with high centrality in the networks incorporated into
the main biological processes in MS progression at CSF and PBMCs. Furthermore, we
identified several candidate genes via the systems biology viewpoint which might facilitate
the identification of potential targets for the treatment of MS.
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