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Abstract
Pulmonary hypertension (PH), a serious disorder with 
a high morbidity and mortality rate, is known to occur 
in a number of unrelated systemic diseases. Several 
hematological disorders such as sickle cell disease, 
thalassemia and myeloproliferative diseases develop 
PH which worsens the prognosis. Associated oxidant 
injury and vascular inflammation cause endothelial 
damage and dysfunction. Pulmonary vascular endo
thelial damage/dysfunction is an early event in PH 
resulting in the loss of vascular reactivity, activation 
of proliferative and antiapoptotic pathways leading 
to vascular remodeling, elevated pulmonary artery 
pressure, right ventricular hypertrophy and premature 
death. Hemolysis observed in hematological disorders 
leads to free hemoglobin which rapidly scavenges 
nitric oxide (NO), limiting its bioavailability, and leading 
to endothelial dysfunction. In addition, hemolysis 
releases arginase into the circulation which converts 
L-arginine to ornithine, thus bypassing NO production. 
Furthermore, treatments for hematological disorders 
such as immunosuppressive therapy, splenectomy, bone 
marrow transplantation, and radiation have been shown 
to contribute to the development of PH. Recent studies 
have shown deregulated iron homeostasis in patients 
with cardiopulmonary diseases including pulmonary 
arterial hypertension (PAH). Several studies have 
reported low iron levels in patients with idiopathic PAH, 
and iron deficiency is an important risk factor. This article 
reviews PH associated with hematological disorders and 
its mechanism; and iron homeostasis and its relevance 
to PH. 
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occur in hematological diseases lead to endothelial 
dysfunction and thrombo-embolism with subsequent 
development of pulmonary hypertension (PH). In 
addition, treatment used for these disorders such as 
immunosuppressive drugs, splenectomy, bone marrow 
transplantation and radiation therapy are also known 
to cause endothelial damage and thrombo-embolism 
leading to PH. Furthermore, there is a causal relationship 
between vascular and hematopoietic systems. Patients 
with chronic myeloproliferative diseases are at a risk 
of developing PH; and the occurrence of myelofibrosis 
contributing to impaired hematopoiesis is not uncommon 
in PH. 
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INTRODUCTION
Pulmonary hypertension (PH) is a devastating sequela 
of a number of diverse systemic diseases including 
cardiopulmonary, autoimmune, inflammatory and 
myeloproliferative diseases, drug toxicity, acquired 
immunodeficiency syndrome, portal hypertension, 
and hemolytic anemia. Based on the clinical diagnosis, 
PH is classified into 5 major groups, which was up­
dated in 2013[1]. Group 1 is labeled pulmonary arterial 
hypertension (PAH). Included in this group are idiopa­
thic and heritable PAH, PAH associated with human 
immunodeficiency viral infection, schistosomiasis, 
congenital heart defect, connective tissue diseases, 
portal hypertension and drug-induced PAH. In the 
current updated classification, PH associated with 
hematological disorders, myeloproliferative diseases and 
splenectomy has been moved to Group 5. Pulmonary 
veno-occlusive disease (PVOD)/pulmonary capillary 
hemangioma and persistent PH of the newborn are 
in Group 1 as subcategories (1′ and 1″ respectively). 
Group 2 comprises PH associated with congenital and 
acquired left heart diseases, Group 3 includes PH due 
to lung diseases and/or hypoxia, Group 4 includes 
chronic thromboembolic pulmonary hypertension 
(CTEPH). PH associated with hematological disorders, 
myeloproliferative diseases, splenectomy and a number 
of miscellaneous systemic and metabolic disorders 
are included in group 5. PH is defined as a mean 
pulmonary artery (PA) pressure of ≥ 25 mmHg at 
rest as measured by cardiac catheterization. Right 
heart catheterization is considered the gold standard 
for the diagnosis of PH. Echocardiography is a useful 
noninvasive tool to estimate right ventricular systolic 
pressure (in the absence of right heart obstruction) for 
screening and monitoring the patients with PH[2]. 

Pulmonary vascular endothelial injury/disruption is 

considered to be an important initiating factor in the 
development of PH. The severity, the extent and the 
site of endothelial damage may determine the type of 
PH and the irreversibility of the disease. Endothelial cells 
(EC), a non-thrombogenic monocellular layer function 
as an interface between the circulating blood and the 
underlying tissue. EC produce vasorelaxants such 
as nitric oxide (NO), prostacyclin, and endothelium-
derived hyperpolarizing factor. In addition, EC inhibit 
cell proliferation, and participate in inflammation, 
thrombosis, barrier function, cell cycle and apoptosis; 
EC control vascular tone and structure, maintain 
homeostasis, thus, participate in vascular pathobiology. 
NO, generated from L-arginine by catalytic activity of 
endothelial NO synthase (eNOS) in vascular EC is a 
short-lived free radical; it stimulates soluble guanylate 
cyclase that catalyzes guanosine triphosphate to cyclic 
guanosine monophopshate (cGMP). Increase in cGMP 
results in a decrease in Ca2+ levels that mediates NO 
functions including vascular relaxation[3]. eNOS is 
localized in special cellular domains in EC including 
Golgi bodies and plasmalemmal caveolae, and is 
tightly regulated by a variety of transcriptional, post-
transcriptional and post-translational mechanisms. 
The proteins that modulate the eNOS activity include 
caveolin-1, heat shock protein 90, cationic amino acid 
transporter 1 (arginine transporter), Ca2+-calmodulin, 
and others. Caveolin-1 is a scaffolding protein of 
caveolae found on the plasma membrane of a variety 
of cells including EC, smooth muscle cells (SMC) and 
fibroblasts. Caveolin-1 interacts with transducing 
molecules in caveolae and maintains these molecules 
in an inhibitory state. It has a dynamic relationship 
with eNOS. In EC, caveolin-1 inhibits NO signaling by 
binding to eNOS. In response to various stimuli, eNOS 
is dissociated from caveolin-1, and generates NO. 
However, caveolin-1 is essential for agonist-induced 
eNOS activation[3,4]. In addition, the eNOS activity 
is controlled by endogenous circulating inhibitors; 
the most important being the L-arginine analog, 
asymmetric dimethylarginine (ADMA). ADMA inhibits 
eNOS-mediated production of NO from L-arginine. A 
large portion of circulating ADMA is metabolized by 
dimethylarginine dimethylaminohydrolase (DDAH) to 
L-citrulline and dimethylamine. DDAH is inhibited by 
oxidative stress, thereby leading to ADMA accumu­
lation and resulting EC dysfunction[5]. Recent studies 
have shown that erythrocytes take up and store 
ADMA. Following lysis of erythrocytes, proteolysis of 
methylated proteins generate free ADMA which then 
can inhibit NO production leading to EC dysfunction, 
and contribute to vascular disease[6]. In a group of 34 
healthy individuals (age 2 d-24 years), plasma levels 
of ADMA has been shown to decrease with age[7]. 

Hemolysis is a common occurrence in a number 
of hematological disorders. Released free hemoglobin 
(Hb) as a result of hemolysis reacts with NO and forms 
inactive nitrate and methemoglobin, thus leading to 
endothelial dysfunction. In addition, arginase 1 released 
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during hemolysis alters arginine metabolism, further 
reducing NO bioavailability[8,9]. Arginase 1 converts 
L-arginine to ornithine, a precursor of proline. Proline 
is an amino acid involved in collagen formation, lung 
fibrosis and SMC proliferation. Low arginine/ornithine 
ratio has been reported to be associated with high 
mortality. Under conditions of low arginine and 
tetrahydrobiopterin, eNOS is uncoupled generating 
reactive oxygen species[10]. These changes lead to 
pulmonary vascular remodeling and increased pressure. 
Furthermore, therapeutic measures used in patients 
with hemolytic disorders have been shown to be 
associated with PH[11]. Figure 1 depicts the alterations 
observed in hematological disorders that can lead to PH. 

Iron is an essential trace element required for 
a number of biological processes including cellular 
response to hypoxia, cell proliferation, immune 
responses and mitochondrial function. It also has the 
ability to generate free radicals, which cause deleterious 
effects. Mitochondria use iron for heme synthesis and in 
iron-sulfur cluster biogenesis. Hepcidin expressed in the 
liver is thought to be a key regulator of iron homeostasis. 
Dietary iron is absorbed through the duodenal entero­
cytes and exported to circulation via ferroportin, an 
iron transporter. Increased levels of hepcidin degrade 
ferroportin, thus inhibit iron uptake; whereas low levels 
allow increased iron absorption. Hepcidin is upregulated 
by BMP6, and inflammatory cytokines including IL-6, IL-
1β through JAK2/STAT3 pathway. It is downregulated by 
iron deficiency, erythropoiesis and hypoxia in order to 
increase iron levels. Major portion of iron is in erythroid 
marrow, and erythropoiesis is the major regulator of 
hepcidin. Erythropoiesis releases erythroferrone that 
in turn inhibits hepcidin transcription to increase iron 
absorption. Excess intracellular iron is stored by ferritin 
that prevents iron-mediated free radical formation[12-15]. 
Iron circulates bound to a glycoprotein, transferrin, 
which keeps it soluble; iron is delivered into cells 
through transferrin receptor (TfR1)[16]. Physiological 
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iron saturation range for transferrin is 20%-45%. Less 
saturation is indicative of iron deficiency and saturation 
above 80% is associated with non-transferrin-bound 
iron which has toxic effect on the tissue[17]. Intracellular 
iron regulates TfR1 via iron responsive elements that 
are recognized by iron regulatory proteins (IRPs) which 
bind to iron responsive elements of TfR1, and prevent 
degradation when the intracellular iron levels are low. 
Increased cellular iron levels inactivate IRP1 resulting 
in degradation of TfR. Furthermore, IRP1 and IRP2 are 
required for mitochondrial iron supply and function[18,19]. 
Deregulation of iron homeostasis plays an important 
role in the pathophysiology of hematological disorders 
and several cardiovascular diseases including PAH. 
Deregulated iron metabolism can result in iron overload 
as seen in some of the hematological disorders leading 
to toxic effects, or to deficiency as seen in anemia. 
Several recent studies have reported low iron levels in 
patients with idiopathic PAH, that is considered to be an 
important risk factor[20].

HEMATOLOGICAL DISORDERS AND PH
Persistent pulmonary hypertension of the newborn 
associated with anemia
Persistent pulmonary hypertension of the newborn 
(PPHN) is the result of failure of cardiopulmonary 
transition at birth. It is associated with cardiovascular 
anomalies, meconium aspiration syndrome, lung 
hypoplasia, sepsis, respiratory distress syndrome, or 
it could be idiopathic. In addition, maternal factors 
such as diabetes, obesity, elective cesarean section; 
and maternal drug use such as aspirin, nonsteroidal 
inflammatory agents and serotonin reuptake inhibitors 
are known to be associated with PPHN. The incidence of 
PPHN is about 1.9 per 1000 live births, and the mortality 
is reported to be 10%. The major findings of PPHN 
are elevated pulmonary artery pressure, right to left 
shunt at the foramen ovale or at the ductus level, and 

Hematological disorders

Anemia Hemolysis Platelet dysfunction
(coagulopathy)

Free Hb ADMA Arginase Thrombo-embolism

Hypoxia-induced
vasoconstriction

Impaired NO
bioavailability

Pulm. Vasc.
 obstruction

Endothelial dysfunction

Pulmonary hypertension

Figure 1  Various pathways of hematological dis­
turbances leading to pulmonary hypertension. 
ADMA: Asymmetric dimethylarginine; Hb: Hemoglobin; 
NO: Nitric oxide; Pulm. Vasc.: Pulmonary vascular.
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superoxide and hydrogen peroxide, thus increasing 
reactive oxygen species formation, lipid peroxidation, 
and increase inflammatory response. Interestingly, in 
an experimental model, treatment with haptoglobin, 
a Hb scavenger was shown to decrease oxidative and 
inflammatory response and attenuate PH[37]. Free 
Hb plays a significant role in the pathogenesis of PH 
in hemolytic disorders; therefore, treatment with Hb 
scavengers appears to be an attractive therapeutic 
option. 

Sickle cell disease: Hb in patients with sickle cell 
disease (SCD) is structurally different; valine is 
substituted for glutamic acid in the 6th position of 
β-globulin subunit of Hb[38]. This mutation produces 
abnormal and insoluble HbS. The major genotypes of 
SCD are homozygous SS, heterozygous SC and S/β 
thalassemia. In the United States, 0.15% of African-
Americans are homozygous for SCD, and 8% have 
sickle trait. SCD is characterized by anemia, severe 
pain, potentially life-threatening complications such 
as bacterial sepsis, splenic sequestration, acute chest 
syndrome, stroke, chronic organ damage resulting from 
chronic hemolysis and intermittent ischemia. Vasculo­
pathy in SCD results in irreversible organ damage, 
a frequent cause of death beyond childhood. Recent 
studies have shown that chemically-induced RBC stiff­
ness leads to increased pulmonary artery pressure 
and pulmonary vascular resistance[39]. Importantly, 
sickled RBCs are stiffer than controls[40], which may 
partly contribute to PH in SCD. Furthermore, RBCs from 
SCD patients have an abnormal tendency to adhere to 
vascular endothelium. This abnormal adhesion plays an 
important role in facilitating the trapping of sickle cells in 
post-capillary venules and causing vascular obstruction 
which is the underlying factor for the characteristic 
features of SCD such as painful vascular occlusive crises 
and acute chest syndrome. In addition, the sickle cell 
adherence to EC results in the activation of EC and a 
chronic state of inflammation. Endothelial activation is 
a critical component of the microvascular responses 
accompanying SCD resulting in inflammatory response, 
increased expression of cell adhesion molecules and 
reactive oxygen species, and altered vasomotor tone 
leading to vasculopathy including PH. Interestingly, 
hypoxia/reperfusion injury causes inflammatory res­
ponse in sickle cell transgenic mice[41-43].

Morbidity and mortality in SCD are high, and PH 
is a serious complication in SCD. Sudden death in 
patients with SCD and PH is not uncommon[44,45]. In 
a small series of autopsy cases (12 patients), 75% of 
patients had right ventricular hypertrophy and 50% 
revealed large thrombus in pulmonary artery, and 40% 
exhibited pulmonary vascular remodeling. The mortality 
in patients with catheterization-confirmed PH is 50% 
within 2 years compared to 7% at 10 years in SCD 
patients without PH[46-49]. In adult population with SCD, 
echocardiography revealed high incidence of PH (27%) 
as assessed by a tricuspid regurgitation jet velocity 

hypoxemia[21,22]. Recent studies have shown that PPHN 
can also be associated with severe neonatal anemia. 
However, anemia as a potential cause of PPHN is not well 
recognized. In a series of 12 infants, 7 were reported 
to have congenital dysrythropoietic anemia; and three 
with ε-γ-δ β-thalassemia, one with HbH disease and 
another one with Diamond-Blackfan anemia[23]. Another 
report described 3 siblings with dysrythropoietic anemia 
and PPHN. Two infants survived after blood transfusion, 
oxygen; and one infant in addition, had received inhaled 
NO[24]. Others have reported PPHN associated with 
anemia; one infant with fetal anemia associated with 
maternal trophoblastic tumor, two infants with fetal 
anemia due to massive feto-maternal hemorrhage 
and in the fourth case the reason for anemia was not 
known. All these infants had received blood transfusion 
for anemia[25,26]. In addition, neonates with twin-to-
twin transfusion syndrome are at a risk of developing 
PPHN[27]. The reason for PPHN associated with anemia 
is not clear. Hypoxia secondary to low Hb level could 
be a contributing factor to PPHN. Interestingly, booster 
packed red blood cells (RBCs) transfusion has been 
shown to improve tissue oxygenation in premature 
infants[25,28]. The increase in plasma Hb levels following 
transfusion could be an additional factor contributing to 
high pulmonary artery pressure. Cell-free Hb scavenges 
NO, thus, leading to vasoconstriction and increased 
pulmonary artery pressure. Experimental studies 
have shown transient increase in pulmonary artery 
pressure following blood transfusion[29]. Furthermore, 
transfusion with aged stored blood results in increased 
cell free plasma Hb levels, higher levels of arginase, 
endothelial dysfunction and increased pulmonary artery 
pressure[30,31]. Recently, significant reduction in flow-
mediated dilatation was reported in adult patients who 
received old blood (> 21 d) compared with the ones 
who received fresh blood (< 14 d old)[32]. Inhaled NO 
prevents the elevation of pulmonary artery pressure 
induced by aged blood transfusion[31,32]. The possibility of 
PPHN needs to be considered in the presence of severe 
anemia in newborns. In addition to blood transfusion, 
inhaled NO may be necessary to ameliorate PH. 

Hemolytic disorders and PH
Hb disorders include sickle cells disease and thalasse­
mia; and RBC membrane diseases include spherocy­
tosis, stomatocytosis and paroxysmal nocturnal 
hemoglobinurea. PH is one of the leading causes of 
morbidity and mortality in patients with hemolytic 
disorders. Major causes of PH in hemolytic disorders are 
hemolysis, hypercoagulabilty and iron overload resulting 
from transfusions and splenectomy[9,33-35]. Recently, 
in a murine model of hemolysis, significant reduction 
in NO bioavailability due to free Hb was shown to be 
accompanied by platelet activation and the activation 
of coagulation pathway resulting in thrombosis, PH, 
right ventricular failure and death. Interestingly, treat­
ment with sildenafil reduced the mortality rate[36]. 
Furthermore, Hb has been shown to interact with 
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Compared to β thalassemia, SCD patients do not 
have iron overload. This difference is thought to be 
due to the presence of chronic inflammation in SCD 
which could block iron release from reticulo-endothelial 
system. In addition, unlike SCD, hepcidin levels are 
low in β thalassemia, which can further enhance iron 
absorption[64]. In β thalassemia, transfusion not only 
improves anemia but also suppresses erythropoiesis 
and increases hepcidin levels[65]. Globin chain imbalance 
leads to ineffective erythropoiesis, and erythroferrone 
suppresses hepcidin production during increased erythro­
poiesis, resulting in low hepcidin levels and increased 
iron absorption. In a mouse model of β-thalassemia, 
ablation of erythroferrone restored hepcidin expression 
and reduced iron accumulation without affecting 
anemia[66]. Furthermore, thalassemia carriers have been 
reported to have abnormal iron metabolism[67]. 

RBC membrane disorders: RBC membrane-
associated abnormalities are found in inherited disorders 
such as spherocytosis and stomatocytosis. A defect 
in one or several proteins such as ankyrin, spectrin 
(a and β), band 3 has been reported. Paroxysmal 
nocturnal hemoglobinuria (PNH) is an acquired RBC 
membrane defect. RBCs play a role in regulating 
membrane properties to undergo reversible deformation 
while maintaining integrity. In addition, RBCs have 
a pivotal role in regulating cell volume homeostasis. 
Inability to regulate cell volume is a feature of hemoglo­
binopathies[68-70]. 

Hereditary spherocytosis (HS) is considered not to 
be associated with thrombo-embolic risk. In a recent 
study, 26 children who underwent splenectomy, no 
evidence of PH or coagulation defect was observed 
during a follow-up period of median 4.5 years[71]. In 
another study that included 36 patients with HS (28 
with splenectomy and 8 without), no evidence of PH 
was found[72]. However, arterial and venous thrombo-
embolic events in patients with HS have been observed 
after splenectomy[73]; and several cases of CTEPH 
have been reported in patients with HS several years 
after splenectomy[74-76]. In a review of 22 patients with 
CTEPH following splenectomy, 3 patients with HS had 
had splenectomy 17-35 years before the diagnosis of 
CTEPH was made[77]. 

In hereditary stomatocytosis, the RBC membrane 
shows a leak of univalent cations (Na+ and K+). Two 
clinical variants have been recognized; hydrocytosis 
(overhydrated) and xerocytosis (dehydrated). Stewart 
et al[78] described 11 patients with stomatocytosis 
after splenectomy. Most of them had thrombo-
embolic episodes, and 3 of them developed PH. 
Other case reports have described PH in patients with 
stomatocytosis several years (approx 6-30 years) 
after splenectomy. One patient underwent success­
ful pulmonary endarterectomy for CTEPH. He had 
undergone splenectomy as a child because of the 
family history of spherocytosis[79]. Another patient 
with dehydrated hereditary stomatocytosis underwent 

(TRJV) of > 2.5 m/s, however, the incidence was 
confirmed to be 6%-10% by cardiac catheterization, 
and > 50% of these patients had post-capillary PH[50-52]. 
A recent study showed increased TRJV in children to 
be associated with an increased PA pressure, increased 
cardiac output due to anemia and normal pulmonary 
vascular resistance[53]. The incidence of PH in patients 
with SCD, however, is relatively high (6%-10%), com­
pared with the normal population (2.4-7.6 people/
million per year). It is noteworthy that SCD patients 
with lower pulmonary artery pressure are at a higher 
risk compared with idiopathic PAH with equivalent 
pressure. Recent experimental studies in rodents reveal 
that it is the Hb-induced inflammation and to a lesser 
extent the Hb-induced oxidant injury leads to vascular 
injury[54]. Thus, RBC sickling, rheological abnormalities, 
hypoxemia, heme-induced oxidant injury and resul­
ting inflammatory response leading to endothelial 
dysfunction play a major role in vasculopathy leading to 
vaso-occlusive disease including PH.

Thalassemia: Thalassemia diseases are an inherited 
Hb disorders associated with chronic anemia, impaired 
erythropoiesis and dysregulated iron metabolism; 
resulting from defective synthesis of α and β subunits of 
HbA. Absence or impaired production of α globulin results 
in β thalassemia and vice versa. PH is quite rare in α 
thalassemia. β thalassemia is characterized by impaired 
erythropoiesis and dysregulated iron metabolism. 
Two types of β thalassemia have been described; 
thalassemia major (TM) and thalassemia intermedia 
(TI). Patients at birth are asymptomatic because of 
the presence of HbF. Diagnosis of TM is usually made 
during infancy because of anemia. They require frequent 
transfusion and chelation therapy which have improved 
their survival. Furthermore, well transfused patients with 
TM are at a lower risk of developing PH. In contrast, 
the TI patients remain transfusion-independent for 
a longer period; the incidence of PH is higher in this 
group[34,55-57]. Pathophysiology of PH in thalassemia is 
similar to other hemoglobinopathies. Chronic hemolysis, 
iron overload, splenectomy, hypercoagulability, vascular 
inflammation and left ventricular dysfunction contribute 
to the pathogenesis of PH. Dysregulated arginine meta­
bolism[58] and elevated levels of ADMA[59] have been 
reported in patients with β-thalassemia associated 
with PH. Higher incidence of PH was noted in patients 
with E/β-thalassemia who had more severe hemolysis 
and had had splenectomy; in addition, inflammatory 
markers were increased[60]. Increased non-transferrin 
bound iron and increased transferrin saturation indicative 
of iron overload increase the risk of cardiopulmonary 
damage[61]. Interestingly, in a mouse model of β thalas­
semia, transferrin treatment normalized labile plasma 
iron levels and RBC survival, and increased hepcidin 
expression[62]. In addition, increased hepcidin levels were 
accompanied by increased BMP2 expression in the liver 
and concomitant decrease in extracellular-signal related 
kinase (ERK) activation[63]. 
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another study, 46 patients with essential thrombocytosis 
were compared with 40 patients with reactive throm­
bocytosis secondary to anemia. In the essential 
thrombocytosis group, elevated platelet levels and 
43% thrombo-embolic events were recorded; and 
47.8% (22/46) had echocardiographic evidence of PH. 
In contrast, the reactive thrombocytosis secondary 
to anemia group did not have increased platelet 
levels, thrombo-embolic events or PH[91]. Garypidou 
et al[92] reported incidence of PH by echocardiography 
to be 41.7% in 24 patients with CMPD. In another 
report, among 103 patients with various CMPD, 
echocardiographic diagnosis of PH was made about 15 
mo after the initial diagnosis of CMPD. The incidence of 
PH was found in less than 5%[93]. A 50 years old individual 
was diagnosed to have PH (confirmed by cardiac 
catheterization) 15 years after the diagnosis of latent 
myeloproliferative disorder and portal hypertension. 
Portal hypertension is a known complication of CMPD[94]. 
PVOD also has been reported in CMPD. A patient with 
myeloproliferative and myelodysplastic syndrome 
was treated with hydroxyurea for 4 years. Because of 
refractory thrombocythemia and hydroxyurea-induced 
neutropenia, anagrelide was started. Six weeks later, 
the patient was admitted with severe dyspnea at rest 
and was diagnosed to have PVOD[95]. Guilpain et al[96], 
reviewed 10 cases of CMPD (8 polycythemia vera 
and 2 essential thrombocythemia) and PH; 6 patients 
developed CTEPH and 4 patients had PAH. Importantly, 
CTEPH occurred early in the course of the disease and 
PAH occurred several years after the diagnosis of CMPD. 
All patients with PAH revealed myeloid metaplasia but 
none in the CTEPH group. 

The patients with CMPD are at a risk of developing 
PH; and the occurrence of myelofibrosis in patients 
with PAH is not uncommon and is thought to contribute 
to impaired hematopoiesis. Popat et al[97] reported 
moderate to severe myelofibrosis in 14/17 patients 
with PAH. However, platelets and granulocytes in PAH 
patients were polyclonal unlike monoclonal cells that 
were found in patients with polycythemia vera and 
essential thrombocythemia. Erythropoietin facilitates 
erythroid lineage and proliferation. Erythropoietin has 
also been shown to induce tyrosine phosphorylation 
of JAK2 and to associate with it for biological activities 
including mitogenesis[98]. In a number of patients with 
CMPD, an acquired somatic JAK2V617F mutation 
has been observed, which confers a selective growth 
advantage. Interestingly, a small molecule inhibitor of 
JAK2 has been shown to attenuate myeloproliferative 
disease in a mouse model[99,100]. However, the patients 
with PAH (13 Familial PAH, 24 Idiopathic PAH, and 
15 Associated PAH) and the controls did not reveal 
JAK2 mutation[101], nor was the JAK2 mutation noted 
in 19 patients with myelofibrosis secondary to PH[102]. 
Circulating CD34+CD133+ cells were higher in familial 
PAH compared with idiopathic PAH and the control 
subjects; interestingly, in non-affected family members, 
the CD34+CD133+ cell counts were comparable to 

splenectomy because of splenic infarct following air 
travel. Approximately 12 years later she developed 
CTEPH. Because of the worsening condition she under­
went successful heart-lung transplantation[80]. The 
third case of stomatocytosis had splenectomy done for 
traumatic rupture of the spleen. About 6 years later he 
developed PH[81]. Splenectomy is not recommended for 
stomatocytosis, however, stomatocytosis is often mis­
taken for spherocytosis, and splenectomy is performed. 
At times it is difficult to distinguish RBC morphology; 
therefore, intracellular electrolyte measurements or 
flux studies may be required to make the correct 
diagnosis[78]. 

PNH is a progressive hemolytic disorder. It is an 
acquired clonal genetic deficiency of glycosylphos­
phatidylinositol-linked protein on the RBC surface 
that leads to complement-mediated hemolysis[35,82]. 
One case of PNH was diagnosed to have PH 5 years 
after splenectomy and associated chronic thrombo-
embolism[83]. In one study, 41% patients with PNH 
and associated hemolysis (total 29 patients) had 
echocardiographic evidence of PH. Treatment with 
eculizumab reduced hemolysis[82,84]. In another study, 
23 patients with PNH and hemolysis were examined 
before and after eculizumab therapy. Importantly, 
markers of endothelial dysfunction (sVCAM1, vWF) and 
coagulation activation were significantly reduced after 
eculizumab therapy[85]. 

Chronic myeloproliferative diseases and PH
Evidence is accumulating to suggest a link between PH 
and chronic myeloproliferative diseases (CMPD). CMPD 
originate in multipotent hematopoietic progenitor cells 
that are characterized by increases in one or more types 
of blood cells. CMPD include polycythemia vera, essential 
thrombocythemia, idiopathic myelofibrosis and chronic 
myeloid leukemia (CML)[86]. Dingli et al[87] examined 
26 patients with CMPD and echocardiography based 
diagnosis of PH (estimated systolic pulmonary artery 
pressure 35-100 mmHg); 24 patients had symptoms 
related to PH and 4 had had splenectomy. The mortality 
rate among these patients was high. Another report[88] 
described 6 patients with myeloproliferative disease 
who developed PH (echocardiographic diagnosis, and 
in 4 confirmed with cardiac catheterization), and all 
had had splenectomy; 5 patients died within 1-6 mo 
of PH diagnosis. Lung histology in 3 patients revealed 
pulmonary myeloid metaplasia and fibrosis. A 72-year-
old patient developed PH, right ventricular failure and 
thrombocytosis after splenectomy. The peripheral 
blood smear revealed megakaryoblasts. Interestingly, 
treatment with hydroxyurea not only decreased the 
platelet counts but also improved right heart failure. It 
was considered possible that megakaryocytes created 
obstruction in the pulmonary capillaries leading to 
PH[89]. In a group of 30 patients with a past history of 
thromboembolism, high incidence of valve disease (aortic 
and mitral valve with vegetation) was noted; 13% of 
patients had PH secondary to venous obstruction[90]. In 
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thyrodectomy inhibits angioproliferation and reduces the 
expression of p-ERK1/2, integrin receptor αvβ3, fibroblast 
growth factor (FGF) 2 and FGF receptor[117]. These 
results suggest that the status of thyroid function in PH 
is important and it may affect the progression of the 
disease adversely. 

Evan’s syndrome includes immune thrombocyto­
penia and associated autoimmune hemolytic anemia. 
Connor et al[118] reported 2 children with Evan’s synd­
rome and associated PH; both with the evidence of 
perivascular lymphoid infiltration indicative of vasculitis. 
Both improved with steroid and rituximab treatment. 
The incidence of PH in Evans’s syndrome, however, 
is not known. PH has also been reported in an adult 
patient with autoimmune hemolytic anemia who 
improved significantly on regular steroid therapy[119]. 

Therapy-associated PH 
A number of alkylating agents including cyclophos­
phamide, bleomycin, mitomycin used for hematological 
diseases have been shown to lead to PVOD and 
PH[11,120]. Other therapeutic measures used for hemato­
logical disorders such as tyrosine kinase inhibitor 
dasatinib, interferon, splenectomy, bone marrow 
transplantation (BMT) and radiation also contribute to 
PH as discussed below. 

Dasatinib: CML is caused by active BCR/ABL tyrosine 
kinase. Tyrosine kinase inhibitor, imatinib inhibits BCR/
ABL and platelet-derived growth factor (PDGF), and 
has been used as a first line treatment for CML with 
good results. However about 29% of patients do not 
recover completely with imatinib, therefore, newer 
tyrosine kinase inhibitor, dasatinib is used as a second 
line treatment. Dasatinib inhibits Src kinase in addition 
to BCR/ABL and PDGF. Several case reports have 
appeared showing the development of precapillary 
PH after about 8-48 mo of dasatinib therapy[121-127]. 
In the French experience, the incidence of dasatinib-
associated PH is 0.45%. The patients, however, did 
not recover fully after having been taken off dasatinib 
treatment. Interestingly, in the monocrotaline (MCT) 
and hypoxia-induced PH models, the pretreatment with 
dasatinib, unlike imatinib induced increased pulmonary 
artery pressure and increased inflammatory cells in the 
perivascular area. Furthermore, in vitro studies with 
human pulmonary EC, dasatinib induced apoptosis in a 
dose dependent manner through mitochondrial reactive 
oxygen species generation[128,129]. Interestingly a number 
of patients with dasatinib-induced PH is accompanied by 
pleural effusion (as high as 68%), which is not observed 
in classical PH. In most cases, discontinuing the 
medication appeared to have reversed PH; however, in 
a few cases prolonged PH therapy might be required[130]. 
Recent studies have shown that the inhibition of Src 
tyrosine kinase or dasatinib increases pulmonary artery 
pressure, and depolarizes PA SMC by altering potassium 
channels[131]. Thus, dasatinib-associated Src inhibition 
and the alterations in potassium channels may be 

that observed in Familial PAH group[101]. Furthermore, 
patients with PAH and myelofibrosis have blood 
vessels morphologically similar to what is observed in 
myeloproliferative myelofibrosis such as, microvascular 
density, distended lumina and irregular branching. In 
addition, VEGF levels are much higher in patients with 
primary myelofibrosis compared with the controls; 
and even higher in patients with primary myelofibrosis 
associated with PH. However, in PH associated with 
myeloproliferative diseases, the levels of circulating 
endothelial progenitor cells and the bone marrow 
pericytes were lower[103,104]. Almost a century ago it 
was thought that EC and hematopoietic cells have a 
common progenitor, hemangioblasts. Furthermore, EC 
and hematopoietic cells affect each other[105], which 
may explain the increased incidence of PH in CMPD 
and myelofibrosis accompanying PH. Transplantation of 
bone marrow-derived CD133+ cells from PAH patients 
into mice has been shown to result in endothelial injury, 
angioproliferative remodeling of pulmonary vasculature 
and right ventricular failure; CD133+ cells from control 
subjects, however, had no effect[106]. Recent studies 
have shown that bone marrow cells from BMPR2 
mutant mice when transplanted into control mice induce 
PH, whereas bone marrow cells from the control mice 
protect mutant mice from developing PH[107]. These 
results further support a causal relationship between 
vascular and hematopoietic systems. 

Autoimmunity, PH and hematological disorders
Autoimmunity is a well-known underlying feature of 
hematological disorders as well as of PH. Autoimmune 
diseases such as systemic sclerosis, systemic lupus 
erythematosus (SLE), Sjogren’s disease, and mixed 
connective tissue diseases are known to be associated 
with PH[108-110]. Loss of CD4+CD25+ cells, the T regulatory 
(Treg) cell population has been reported in several 
forms of PAH[110]. Furthermore, normal Treg function 
has been shown to limit the vascular injury and provide 
protection from developing PH[111]. In 132 patients 
with SLE, the incidence of PH was 12.9%. PH patients 
had longer duration of anemia; oxygen delivery was 
inversely related to PA pressure, indicating that tissue 
hypoxia may play a greater role in the lupus-associated 
PH[112]. Another patient with SLE and associated lupus 
anticoagulant and clotting disorder was described to 
have PH[113]. 

Autoimmunity is also important in thyroid diseases 
and thyroid disease-associated PH. Scicchitano et al[114] 
in a recent review article have discussed the prevalence 
of PH in hypothyroid state as well in hyperthyroid 
state. Interestingly, approximately half of the patients 
with PAH have been shown to have autoimmune 
thyroid disease[115]. Coagulation abnormalities asso­
ciated with thyroiditis[116] may lead to chronic embo­
lism and eventually CTEPH. Furthermore, thyroid 
hormone participates in EC proliferation and facilitates 
angiogenesis. Recent studies with an angio-proliferative 
model (Sugen + hypoxia) of PH have shown that 
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enhances thrombin generation as well as cytokine 
activation. Human thrombi obtained after pulmonary 
endarterectomy revealed increased platelet-derived 
micro-particles and increased anionic phospholipids 
(phosphotidylserine, phosphotidylethanol and phospho­
tidylglycerine), reduced angiogenesis related gene 
expression, and reduced vascular canalization. These 
micro-particles are pro-coagulant. In addition, in a 
murine model of CTEPH, inhibition of angiogenesis was 
associated with delay in thrombus resolution[143,144]. In 
a rabbit model with splenic artery ligation, transfusion 
of sonicated blood resulted in platelet rich thrombi in 
pulmonary circulation; in contrast, transfusion of normal 
blood did not have any effect[145]. 

BMT: BMT is used for a number of blood disorders 
and cancer. Hepatic veno-occlusive disease is a well-
established complication of BMT and cytotoxic drugs. In 
1984, Troussard et al[146] were the first ones to report 
a child who developed PVOD a few years after having 
received BMT for a relapse of acute lymphoblastic 
leukemia. Since then, PVOD following BMT have been 
reported in several adults and children[147-152]. Hepatic 
veno-occlusive disease is a recognized complication of 
cytotoxic therapy used concomitantly with BMT. BMT in 
combination with cytotoxic drugs and radiation increases 
the chances of EC damage and PH. Another possibility 
that has been considered is that malignancy itself may 
cause PH[151]. Transplantation-associated thrombotic 
microangiopathy (TM-TMA), a known complication of 
BMT is caused by EC injury resulting in thrombin and 
fibrin deposition in microcirculation with ensuing organ 
damage. Jodele et al[153] have described 5 children who 
developed severe PH 71-205 d after having undergone 
hemopoietic stem cell transplantation. These children 
did have TM-TMA 56-101 d before the diagnosis of 
PH was made. PH can occur from a few months to 
several years after transplantation. In addition, PH 
without any evidence of PVOD was reported to occur 
in an adult almost a year after BMT[154]. A 5.25-year-
old child underwent BMT after conditioning with 
cyclophosphamide and antithymocyte globulin; and he 
was treated with cyclosporine A and a short course of 
methotrexate to prevent graft-vs-host disease. Within a 
month of BMT, he developed respiratory distress, anemia 
and thrombocytopenia. Approximately 1.5 mo later, he 
was diagnosed to have microangiopathic changes. His 
condition, however, stabilized after cyclosporine A was 
discontinued and treatment with mycophenolate mofetil 
was started. About a year or so later he started to have 
vague respiratory symptoms which was subsequently 
diagnosed as severe PH[155]. These cases illustrate that 
PH can occur early or late after BMT. Cytotoxic drugs 
and radiation used to prepare the patient for BMT and 
to prevent graft-vs-host disease can contribute to EC 
damage leading to pulmonary vasculopathy. These 
patients need to be carefully monitored and PH should 
be considered a possibility when they present with 

responsible for the increased vasoconstriction and PH. It 
is noteworthy that decreased expression of Src tyrosine 
kinase has been reported in the lungs of patients with 
PAH[132]. It is suggested that Src function may depend 
on the state of vascular SMC[133]. 

Interferon: Interferon (IFN) a and β are used for 
various hematological disorders, cancer and infection 
especially hepatitis C. Evidence is accumulating to 
suggest that IFN pathway may have a role in the 
pathobiology of PH. INF therapy has been shown to 
be complicated by vasculopathy. IFN therapy has 
been shown to lead to reversible PH and in some 
cases irreversible PH[134-136]. Infusion of IFN-α into 
sheep has been shown to elevate pulmonary artery 
pressure associated with increased expression of 
thromboxane B2, a stable byproduct of thromboxane 
A2, a vasoconstrictor; that is attenuated by a selective 
thromboxane A2 synthetase inhibitor, OKY-046[137]. 
Interestingly, a subgroup of patients treated with INF 
exhibit increased levels of endothelin-1 (ET-1), which is 
known to play an important role in PH. Recent studies 
have shown that IFN induces ET1 gene and IFN-
inducible protein IP10, a mediator of inflammation in 
vascular SMC; and the combination of IFN and TNF-α 
produce the highest amount of ET1. These cytokines 
have direct effect on ET1 transcription and also on 
increased translocation of NF-kB and STAT1[138]. 
Importantly, recent studies have shown increased levels 
of IP10 and ET1 in patients with PAH which correlated 
positively with serum brain natriuretic peptide and 
the status of the disease. These Authors have further 
shown increased type 1 IFN receptor (IFNR1) protein 
levels in the lungs of patients with PAH compared with 
the controls. Furthermore, IFNR1 knockout mice exhibit 
attenuated response to hypoxia[139]. These studies 
strongly indicate a role for IFN in the pathobiology of 
PAH. 

Splenectomy: A number of patients who undergo 
splenectomy following trauma or for various hema­
tological disorders develop PH, associated with histolo­
gical changes in pulmonary arteries such as intimal 
fibrosis, plexiform lesions and thrombo-embolic lesions. 
The prevalence of PH in patients in the presence of 
asplenia is reported to be 11.5%[140]. In another study, 
22 out of 257 patients with CTEPH (8.6%) had a prior 
history of splenectomy, compared with the positive 
history of splenectomy in 2.5% of idiopathic PAH 
patients and 0.4% in general population[77]. PH has 
been shown to occur several years after splenectomy 
for hereditary spherocytosis[74,75], stomatocytosis[78], 
thalassemia[141] and Hb Mainz hemolytic anemia[142]. 
Splenectomy is associated with deep vein thrombosis 
and un-resolving recurrent thrombosis eventually leading 
to CTEPH. Loss of spleen results in a loss of filtering 
function leading to abnormal circulating erythrocytes and 
the activation of coagulation. The activation of platelets 
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associated with worse function and poor survival[164]. 
Iron deficiency is being recognized as an important 
factor in the prognosis of PAH. Low transferrin 
saturation, an indicator of iron deficiency has been 
reported in PAH patients, particularly the ones with 
BMPR2 mutation, but not in the CTEPH group. In this 
group of PAH patients, 72% of iron deficient patients 
had anemia, whereas only 4% in non-iron deficient 
patients[20]. In another study, iron deficiency was found 
in 43% of 70 patients with idiopathic PAH accompanied 
by low exercise capacity. However, anemia did not 
affect the exercise intolerance. Interestingly, 8 out of 
18 patients did not respond to oral iron therapy[165]. Red 
cell distribution width (RDW), a biomarker of anemia 
has a better survival predictive value independent of NT-
proBNP levels and 6 min walk distance. Increased RDW 
was accompanied by other indicators of iron deficiency 
such as decreased ferritin levels and low transferrin 
saturation. Patients with increased soluble TfR (sTfR) had 
higher mortality independent of WHO class or exercise 
capacity. sTfR levels are a sensitive marker of tissue iron 
availability, unaffected by inflammation. Interestingly, 
hepcidin levels were increased in PAH despite iron 
deficiency. Hepcidin which restricts iron absorption is 
stimulated by cytokines and BMP6; however, hepcidin 
levels did not correlate with IL-6 levels. Since a number 
of patients have BMPR2 mutation and loss of function, 
it is likely that increased BMP6 levels secondary to 
BMPR2 loss may increase hepcidin levels. Furthermore, 
erythropoietin levels are increased in idiopathic PAH 
despite the fact that these patients were not anemic. 
The hematocrit and Hb levels were not different 
compared with the controls. Erythropoietin is known to 
reduce hepcidin levels in order to increase iron uptake. 
Increased levels of hepcidin in the presence of increased 
erythropoietin indicates deregulated erythropoiesis 
in idiopathic PAH[166,167]. In 29 patients with idiopathic 
PAH, 46.2% of iron deficient patients belonged to NYHA 
functional class 3 or higher compared with 12.5% 
in non-iron deficient. There were no differences in 
the hematocrit or Hb levels between the two groups. 
The iron deficiency was related to the severity[168]. In 
addition, zinc protoporphyrin (ZnPP) levels, indicative 
of iron deficiency was significantly higher in patients 
with idiopathic PAH associated with increased RDW; 
however, ZnPP levels were not altered in “Associated” 
PAH. Iron containing protein is also required for mito­
chondrial electron transport and catalyzes reactions 
that form NO[169]. Intravenous iron therapy in patients 
with idiopathic PAH was well tolerated and it improved 
endurance capacity; however, it did not alter cardiac 
function[170]. Thus, iron deficiency seems to be a more 
important prognosticator compared with anemia. 

Iron deficiency is common in patients with systemic 
sclerosis (SSc) associated with PH than in the non-
PH group. PH was present in 27.8% of patients with 
SSc. Iron deficiency was associated with poor exercise 
tolerance and survival. Hepcidin levels were high in 
the SSc population, but did not correlate with IL-6 

pulmonary symptoms. 

Radiation injury: Lung radiation leads to pneumonitis, 
fibrosis and vascular injury. Thoracic or whole body 
radiation is used for several types of lung cancer; and at 
times radiation in combination with immunosuppressive 
drugs is used before BMT. PVOD and pulmonary 
insufficiency have been reported to occur several months 
to years following therapy for cancer that included 
chemotherapy and radiation therapy. Histopathological 
changes in the lungs comprised interstitial fibrosis, 
thromboemboli, veno-occlusive lesions, and medial 
hypertrophy of pulmonary arteries, consistent with 
PVOD[156,157]. In addition, a 14-year-old was reported 
to have developed PH after receiving radiation therapy 
during infancy following the surgical removal of neuro­
blastoma arising from the left of the thoracic spine. At 
cardiac catheterization significant PH was noted. In 
addition, the branches of left pulmonary artery were 
described as hypoplastic, and the pulmonary veins from 
the left lung were underdeveloped[158]. 

EC play a pivotal role in radiation-induced vascular 
injury. Irradiated EC from rectal adenocarcinoma have 
been shown to induce fibrogenic phenotype in vascular 
SMC, and increase proliferation and migration[159]. 
Furthermore, several experimental studies have shown 
radiation injury resulting in elevated pulmonary artery 
pressure, and structural remodeling of the small 
pulmonary arteries. In a sheep model, several weeks 
after the whole lung exposure to radiation resulted 
in abnormal vascular reactivity, PH and pulmonary 
vascular remodeling[160]. In a mouse model, low 
dose radiation resulted in EC injury, followed by rapid 
recovery. However, a higher dose resulted not only 
in EC injury, but also a delay in recovery followed by 
prolonged EC proliferation, fibroblast proliferation and 
collagen secretion indicative of significant vascular 
damage[161]. In a rat model, radiation injury induced 
pulmonary vascular EC damage followed by medial wall 
and adventitial thickening, neointima formation and 
obliteration of vessels similar to what is observed in 
PAH[162]. 

These studies underscore the fact that vascular EC 
are susceptible to radiation injury. The patients who 
receive radiation therapy with or without alkylating 
drugs are at a risk of developing PH. PH has been 
shown to occur several years after the cessation of 
therapy; therefore these patients need a long careful 
follow-up. 

IRON HOMEOSTASIS AND PAH
Deregulation of iron homeostasis and resulting altera­
tions in iron availability plays an important role in the 
pathogenesis of cardiovascular diseases including PH. 
Both iron deficiency and iron overload have deleterious 
effect on cardiovascular system. Iron deficiency has 
been shown to have an adverse effect on survival in 
patients with chronic heart failure[163]. Anemia in PH is 
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levels. Hb levels, however, were not altered. Soluble 
transferrin receptor (sTfR) levels in both groups were 
significantly increased associated with iron deficiency[171]. 
Interestingly, iron-depletion by desferrioxamine 
infusion in normal individuals resulted in higher systolic 
pulmonary artery pressure during 8 h hypoxia compared 
with the iron-repleted individuals. Thus, the alterations in 
iron availability affect the pulmonary vascular response 
to hypoxia. HIF is implicated in hypoxia; it is likely that 
increased iron potentiates HIF hydroxylation and its 
degradation[172]. Sufficient iron availability is required for 
adjustment to high-altitude hypoxia. There is a close 
connection between oxygen and iron homeostasis[173]. 

Recently it was reported that iron-deficient diet in 
rats resulted in elevated PA pressure, right ventricular 
hypertrophy, vascular remodeling, and increased 
expression of HIF1α, HIF2α, STAT3 activation and 
aerobic glycolysis, which could be reversed by iron 
therapy[174]. Furthermore, deletion of iron regulatory 
protein 1 (IRP1) in mice leads to PH and polycythemia 
that is exacerbated by low iron diet, resulting in 
increased HIF2α levels and ET1 in EC. Iron deficiency 
can stabilize HIF2α by diminishing activity of iron-
dependent prolyl hydroxylases involved in HIF2α degra­
dation[175]. In contrast, dietary iron restriction attenuated 
monocrotaline-induced PH, although, the serum iron 
concentration in MCT group was not different from 
the control group. However, the expression of TfR1 in 
pulmonary arteries was increased. Interestingly, TfR1 
hetero-knockout mice showed attenuated hypoxia-
induced PH, right ventricular hypertrophy and vascular 
remodeling[176,177]. Iron chelation has been shown to 
attenuate hypoxia-induced PH, pulmonary vascular 
remodeling and right ventricular hypertrophy in rats. 
In addition, carbonylation of proteins was increased 
in hypoxia-induced rats as well in the plasma of the 
patients with PAH indicative of oxidative stress[178]. 
Furthermore, PH in patients with idiopathic pulmonary 
fibrosis was shown to correlate with iron deposition 
in alveolar spaces[179]. These foregoing results show 
opposite effects of iron levels on pulmonary vasculature. 
Iron homeostasis is intricately balanced and maintained; 
any injury and/or stress can alter this balance resulting 
in iron overload or iron deficiency. Mitochondria play 
a pivotal role in energy and iron metabolism[180]. The 
opposing effects of iron levels observed in different 
forms of PH may depend on the level of non-transferrin-
bound iron and on the status/health of mitochondria. 

In summary, hemopoietin system, pulmonary 
vasculature and iron metabolism are intricately related. 
Hematological disorders affect pulmonary vasculature 
and PH can cause myelofibrosis. Deregulated iron 
homeostasis and resulting status and function of 
mitochondria in PH may have an important effect on 
prognosis. 
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