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Abstract

Central African countries may bear high climate change–related infectious disease burdens 

because of preexisting high rates of disease, poor healthcare infrastructure, land use changes, and 

high environmental change vulnerabilities. However, making connections between climate and 

infectious diseases in this region is hampered by the paucity of high-quality meteorological data. 

This review analyzes the sources and quality of meteorological data used to study the interactions 

between weather and infectious diseases in Central African countries. Results show that 23% of 

studies used meteorological data that mismatched with the disease spatial scale of interest. Use of 

inappropriate weather data was most frequently identified in analyses using meteorological station 

data or gridded data products. These findings have implications for the interpretation of existing 

analyses and provide guidance for the use of climate data in future analyses of the connections 

between meteorology and infectious diseases in Central Africa.
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Introduction

African countries currently contribute little to the total global emissions of greenhouse 

gasses; however, they bear high climate change–related health burdens,1 including the direct 

physiological effects of increasing temperatures, reduced agricultural productivity, water 

insecurity, and changing patterns of vector-borne diseases. In Africa, infectious diseases 

remain a leading cause of mortality. Half of all years of life lost are due to infectious 

diseases,2 such as HIV, tuberculosis, malaria, and waterborne diarrheal diseases.2–5
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Within the African continent, Central Africa—defined as Angola, Burundi, Cameroon, 

Central African Republic, Chad, Equatorial Guinea, Gabon, South Sudan, Republic of 

Congo, Rwanda, and Uganda—has a high burden of infectious disease and has been subject 

to recurrent outbreaks of emergent infectious diseases, such as Ebola.6 This region remains 

predominantly forested with high biodiversity because of a historical reliance on oil and 

mining, rather than forestry and agriculture; however, recent population growth has 

motivated an increase in logging and the number of road networks penetrating uninhabited 

areas.7 With this increasing infiltration into previously undisturbed forest ecosystems, 

humans, livestock, and wildlife are mixing in new ways, and the risk of emerging infectious 

diseases is considered to be high.8–10

Environmental change vulnerability, which is a combined measure of a community’s 

exposure to climatic change, its sensitivity to these changes, and its ability to adapt,11,12 is 

particularly high in Central African countries. Underlying vulnerabilities include existing 

heat, food, and water stress, disease transmission, and poor healthcare infrastructure. Given 

these susceptibilities, Central African countries may experience a greater impact of climate 

change on human infectious diseases. Despite awareness of Central Africa’s vulnerability to 

climate change,13 there remains limited empirical evidence on the influence of climate 

change on infectious diseases for this region, as well as Africa overall.14,15

In light of climate change, it is important to understand the influence of meteorological 

conditions on infectious diseases. Such research is particularly important in areas where 

climate change is expected to have a greater impact. However, in areas such as Central 

Africa, the data to make these connections are often lacking. In this paper, we aim to review 

the literature on meteorology and infectious diseases in Central Africa, to assess the types 

and quality of the meteorological data being used to study weather and infectious diseases in 

Central Africa, and to use these findings to provide suggestions related to meteorological 

data use in future analyses of weather and infectious diseases in this region. We begin with a 

review of the types of meteorological data available and description of our review methods.

Meteorological data

Studies of climate and infectious disease, disease monitoring, surveillance, and early 

warning systems depend on the availability of reliable meteorological information. Existing 

meteorological data, including variables such as temperature and precipitation, are derived 

from ground-based measurements, satellite measurements, or interpolated gridded datasets. 

This section summarizes the quality and availability of such datasets in Central Africa; see 

Table 1 for specific data sources.

Ground-based measurements

Ground-based measurements are the most direct measure of temperature and precipitation at 

the surface. However, ground-based observation networks report inadequate coverage in 

Africa both spatially (i.e., the density of gauges) and temporally (i.e., intermittent, erratic 

recordings).16–18 Additionally, there has been an observed decline in gauge observations 

across Africa in the past decade(s),19 and existing stations tend to be biased toward higher 

elevations.20 Ground-based measurements are particularly sparse and intermittent in Central 
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Africa (Fig. 1, Table 2). Very few meteorological stations provide data within each Central 

African country, and the existing observations have poor temporal coverage.

Satellite measurements

Precipitation and, to a lesser degree, temperature are variable in space and time and require 

high-gauge density for accurate measurement. Given the low density of ground-based 

observations in Central Africa, satellite-based estimates are an attractive alternate source for 

meteorological data. While there is controversy surrounding the relative accuracy of 

satellite-derived precipitation and temperature observations, many researchers have 

concluded that the observations are of acceptable quality in Africa.21–24 These satellite-

derived measurements benefit from more regular, even continuous, observation in time and 

space; however, the spatial resolution of most remotely sensed data is low compared with the 

localized measurements provided by ground-based observations.

Satellite-based precipitation is measured by thermal infrared (TIR) sensors, microwave 

sensors, or a combination of both. TIR sensor estimates are best used for estimating 

precipitation in convective clouds25 and have been shown to do well in Africa because of the 

predominance of rainfall from deep convective systems.24 Microwave sensors are more 

accurate than TIR estimates but are more limited because of low temporal resolution.

TIR wavelengths are also used for measuring land surface temperature. However, processing 

is necessary to convert the TIR readings to accurate land surface temperatures. A variety of 

satellite platforms (e.g., ASTER, Landsat, AVHRR, and MODIS) can provide these 

estimates of land surface temperature with high temporal and spatial resolution.26

Gridded products

Gridded products employ spatial interpolation to provide continuous estimates of 

meteorological conditions in both space and time. These datasets are typically constructed 

from gauge data, satellite data, or both. Gridded datasets do not sufficiently resolve local 

conditions to allow local analyses and are intended only for global or regional scale 

analyses.27 Further, gridded gauge–satellite precipitation products have been found to poorly 

characterize rainfall in Central Africa.28 For both satellite-based measurements and gridded 

climate products, more validation is needed; however, the scarcity of ground-based 

measurements remains an impediment to such assessments.29

Methods

Search strategy and inclusion criteria

We searched Web of Science for articles on meteorology and infectious diseases in Central 

Africa, published in English between January 1, 1970 and June 30, 2015. Search key terms 

were split into three categories: infectious disease, meteorology, and country. We defined 

Central Africa as the following 12 countries: Angola, Burundi, Cameroon, Central African 

Republic, Chad, Equatorial Guinea, Gabon, South Sudan, Republic of Congo, Rwanda, and 

Uganda. These countries make up an area of 7.5 million km2, with a total population of 

about 206 million.30 Each search session contained one key term from each category, and 
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searches were carried out using all possible combinations of key terms (Table 3). Studies 

were included if they pertained to human infectious diseases; included temperature, 

humidity, and/or precipitation variables in the analyses; and carried out analyses in a Central 

African country. In order to focus on local and regional scale analyses, all continental and 

global scale studies were excluded.

Data source extraction

A data extraction table was created to summarize the meteorological and disease data used 

in the included papers. The table contains sources, variables included, and spatial scales/

resolutions for every dataset used in each paper. Ultimately, sources for meteorological and 

disease data were aggregated into larger categories.

The meteorological data sources were coded as local meteorological station data, directly 

measured data (i.e., primary data collection), satellite data, large gridded datasets, 

hydrological data, seasonal, and unknown. Papers with seasonal meteorological data did not 

use quantitative data, but instead categorized time periods as hotter/colder or wetter/drier. 

When the source of meteorological data was not stated in a manuscript, the data source was 

categorized as unknown.

Disease data sources were classified into five categories: existing human disease datasets, 

primary collection of human disease data, animal host or vector sampling data, water 

samples, and species occurrence datasets. Human disease datasets are obtained from any 

source that aggregates human data, such as the World Health Organization (WHO) or local 

hospitals. Primary collection of human disease data, as well as animal host or vector 

sampling, implies active collection of disease information from participants or animals.

Spatial mismatch analysis

The spatial mismatch analysis aimed to determine whether the meteorological data used in 

each paper were measured at an appropriate spatial scale, given the disease data. First, using 

maps, information provided in the papers, and online sources, we estimated the geographical 

region represented by the disease data. Areas were estimated in km2 and then categorized as 

local (subnational or national) or regional (multinational) spatial scales. Methods for 

determining spatial mismatch differed on the basis of whether the meteorological data were 

point estimates or gridded products. Two investigators conducted all analyses separately and 

compared their results in order to strengthen validity. If disagreements occurred, the 

investigators reviewed the relevant information together and reached a consensus.

Point estimates—Meteorological point estimates came from meteorological station data 

and direct measurements by researchers. Papers that used this type of meteorological data 

either had disease point estimates or disease data covering a prescribed locality. For papers 

that used disease point estimates, we determined the distance between the disease and the 

meteorological point estimates (if possible). If this distance was greater than 100 km, we 

classified a spatial mismatch, as the meteorological data are likely too far away to accurately 

represent conditions at the site of disease data.
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Alternatively, for studies that contained a larger proscribed area of disease data (i.e., data 

points spanning a geographical region), we estimated the density and placement of 

meteorological stations within that area (if possible). Spatial mismatch was assigned when 

the density was less than one station per 100 km2 or the station(s) was further than 100 km 

from the disease region.

Gridded data—Many gridded meteorological data products exist. We first determined the 

types of observations used to create each gridded dataset: satellite, gauge (i.e., 

meteorological stations), or both. Owing to the sparse and discontinuous nature of gauge 

data in Central Africa, gauge-only interpolated datasets provide insufficient information for 

local scale analyses. Hence, we assigned spatial mismatch to any local analysis using gauge-

only gridded data. To determine spatial mismatch of gridded data derived entirely or 

partially from satellite data, we calculated the number of grid cells within the geographical 

area of the disease data using the gridded-product spatial resolution. If the ratio of grid cells 

to the disease data area was less than one grid cell per 100 km2, we assigned spatial 

mismatch.

Spatial threshold—Our justification for choosing a spatial threshold of 100 km was based 

on prior estimates of the decorrelation length scale for precipitation. Moron et al.31 

estimated the spatial scale, defined as the distance at which spatial correlation falls below r = 

0.37, for daily rainfall intensity in tropical regions with diverse topography. They found that 

spatial correlation decayed exponentially with increasing distance and became much lower 

than r = 0.37 for distances greater than 100 km.31 Other papers using satellite data have 

found similar spatial scales (95–150 km) for tropical rainfall.32,33 Although temperature has 

a larger spatial scale than rainfall in the tropics, almost every paper included in this review 

that used temperature estimates also used rainfall estimates in their analyses (96%). Since all 

variables need to be spatially matched, we defined 100kmas the distance demarcation of 

mismatch. Of the two papers that used temperature estimates only, the spatial resolution of 

the meteorological data was very high and spatial mismatch was not a problem. 

Additionally, because Moron et al.31 conducted their analyses in topographically diverse 

regions, the estimated length scale of 100 km can be used for all topographic contexts.

Results

We screened 167 papers obtained from online searches and ultimately included 66 papers 

written between 1970 and 2015 in this review. The papers investigated a number of 

infectious diseases, but the majority studied vector-borne disease (61%), specifically malaria 

(44%) (Table 4). Studies were most frequently carried out in Uganda (44%), Cameroon 

(22%), Rwanda (9%), and Burundi (9%) (Table S1 in Supporting Information), and only a 

few pertained to other Central African countries. The number of published papers on 

meteorology and infectious diseases has increased since 1970. Two-thirds of the papers 

included in this review were published after 2005 (Fig. S1 in Supporting Information).
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Climate data

The papers used climate data from many different sources (Table 5). For example, one-third 

(33%) of the studies used climate data directly from meteorological stations, and 16 papers 

(24%) used data from gridded datasets. Fewer studies used satellite data (n = 10, 15%) and 

directly measured data (n = 8, 12%). None of the papers used hydrological data or modeling. 

Notably, four papers (6%) did not provide a source for the climate data used, and 12 papers 

(18%) compared disease metrics across defined seasons instead of using climate data.

Disease data

Many types of infectious disease data were used (Table 6). Of the papers using human 

disease data, 36 papers (55%) retrieved the data from local healthcare centers or large 

existing datasets (e.g., WHO, U.S. Centers for Disease Control and Prevention, local 

Ministry of Health), whereas 15 papers (23%) collected primary data, such as blood samples 

or questionnaires. Many papers used data pertaining to animal hosts or vectors, obtained 

from either primary data collection using trapping or sampling (n = 19, 29%) or from 

existing species occurrence data (n = 2, 3%). Last, five papers (8%) collected water samples 

to measure the presence of infective fecal matter or bacteria.

Spatial mismatch analysis

Results from the spatial mismatch analysis revealed patterns of mismatch on the basis of the 

type of climate data used. Findings for each climate data category are discussed below. Table 

7 summarizes the distribution of papers with spatial mismatch and papers that did not 

provide adequate information about their data (referred to as unknown). Overall, the results 

showed 23% of papers having spatial mismatch, and mismatch could not be determined in 

25% of papers.

Directly measured—No spatial mismatch was observed between directly measured 

meteorological variables and health data. Researchers placed the monitoring devices in the 

locations where health data were collected or available. Although this method often limits 

the temporal length of data collection, it provides the placement precision needed to avoid 

spatial mismatch. All papers using directly measured climate data provided sufficient 

information about their data collection to assess spatial mismatch.

Local meteorological stations—All papers reviewed using meteorological station data 

directly accessed these data from local government meteorology departments. Of the 22 

papers using meteorological station data, 10 (45%) did not provide enough information to 

assess spatial mismatch of the data. These papers provided locations for the health data 

collected, but did not provide locations for the meteorological stations, making it impossible 

to determine whether the locations of the meteorological stations accurately represent 

temperature and rainfall in the health area of interest.

We identified spatial mismatch in six (27%) of the papers that provided adequate spatial 

information. In these papers, a limited number of meteorological stations was used to 

represent climatic conditions of a large disease catchment area. Many of these papers used 
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rainfall data, which vary on much shorter spatial scales, as well as temperature data from 

meteorological stations.

Satellite data—No spatial mismatch was identified in the studies using satellite data. 

Although there was no spatial mismatch, few papers addressed the issue of data 

autocorrelation or provided an explanation of how gridded data with different resolutions 

were aggregated.

Large gridded datasets—Spatial mismatch occurred in almost half (44%) of the papers 

using large gridded datasets. The papers with this spatial mismatch used interpolated 

datasets based on very sparse meteorological station records. Despite the paucity of 

observations in these datasets, seven papers used them for fine spatial scale analyses. Four 

papers (25%) did not provide enough information about the climate data for evaluation of 

spatial mismatch. In these papers, datasets that are not publically available were referenced, 

preventing determination of spatial mismatch. As a sensitivity analysis, the threshold was 

increased to one grid cell per 200 km2. All results remained the same, except for one paper 

that was no longer classified as a spatial mismatch.

Discussion

This review included 66 papers looking at meteorology and infectious diseases across 

Central Africa. Eleven of these papers compared disease outcomes across different seasons, 

and four papers did not source their meteorological data. Of the papers that did use 

meteorological datasets, nearly one-fourth (23%) used data mismatched with the disease 

spatial scale of interest. One-fourth of the studies (25%) did not provide enough information 

about their meteorological datasets to assess spatial mismatch. Spatial mismatch was most 

commonly identified in analyses using gridded datasets and/or local meteorological station 

data.

Development of improved gauge-based datasets

The primary reason for spatial mismatch is the use of datasets based on sparse and 

intermittent ground-based observations. Gauge-only interpolated datasets in Central Africa 

do not contain adequate information for local-scale analyses, yet researchers are continuing 

to use them. Conclusions from these studies must be interpreted cautiously due to the poor 

quality of the underlying meteorological data. Spatial mismatch occurs when estimates of 

temperature, rainfall, or humidity are obtained from locations farther than the defined 

decorrelation length from the area of disease data collection. If the meteorological estimates 

used in the analyses do not truly represent the meteorological conditions at this area of 

interest, the results will not be reliable or accurate. This could produce spurious relationships 

or hide true relationships between meteorological variables and diseases.

The recognition of sparse ground-based observational data in Africa may lead to improved 

coverage in the future (e.g., initiatives of the World Meteorological Organization and Trans-

African HydroMeteorological Observatory). Many countries in Africa have station networks 

that are not publicly available,34 but gaining access to these station networks would greatly 

improve the breadth and precision of ground-based observations. The International Research 
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Institute for Climate and Society has gained access to national station networks in several 

East African countries and, using these data streams, has created gridded data products with 

much greater resolution at local scales. Similar initiatives in Central Africa could improve 

the coverage of gauge-based datasets.

Is using satellite data a good alternative?

In the absence of adequate ground-based observations, satellite data could be a good 

alternative data source. Remotely sensed data have the benefit of continuity in time and 

space, and have spatial resolutions appropriate for local analyses. However, the accuracy of 

satellite-derived estimates of precipitation and temperature remains unclear. Indeed, the 

accuracy of satellite rainfall estimates is noted to vary by location, topography, and rainfall 

type.35 Despite this, some scientists have concluded that satellite-based precipitation 

retrieval algorithms have acceptable accuracy across Africa.21–24 For temperature, some 

researchers conclude that the relationship between satellite-and ground-measured air 

temperature has not been adequately quantified in Africa,36 whereas others maintain that 

satellite-based estimates of temperature in Africa are an accurate representation of ground-

based measurements.37 For now, researchers might rely on the recommendations by Hay and 

Lennon,38 who suggest that interpolated temperature data more accurately depict 

temperatures, while satellite-based estimates better represent precipitation. However, 

researchers must continue to evaluate the reliability and accuracy of satellite data for 

estimating ground meteorological conditions in Central Africa.

Lack of information about climate data

Many papers in this review did not provide adequate information about the meteorological 

data used in the analysis (27%). Notably, four of these papers did not even provide a source 

for their data. Without information on the underlying data source and quality, it is impossible 

to assess the quality of the findings. In order to move forward in understanding the links 

between weather and infectious diseases, it will be important for researchers to describe and 

address their meteorological data sources and quality.

Temporal mismatch

The meta-analysis presented in this paper focuses on spatial mismatch of data, but there may 

also be temporal mismatch, which occurs when the meteorological and disease data are 

recorded during different time periods. The time scales over which data were collected and 

analyzed differ greatly in the papers included in this review. Many analyses looked at 

variability during 1–2 years, while others have data that span over 20 years. Temporal 

mismatch was observed: for example, one paper used satellite-derived meteorological data 

from 2002 and disease incidence rates from 2006; another paper used meteorological data 

spanning 1950–1960 and daily disease data from one month in 1991. Such temporal 

mismatch between meteorological and disease data can also cause bias and inaccuracy of 

results. Further research should investigate the true prevalence and impact of temporal 

mismatch in papers studying meteorology and infectious diseases.
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Conclusion

Results linking weather and infectious diseases must be supported by high-quality, spatially 

matched underlying data. In Central Africa, meteorological data are limited by sparse 

ground-based data and satellite data that have not been sufficiently validated. The scientific 

community must remain apprised of the limitations of the datasets available in this region 

and work to improve the collection, abundance, and availability of both meteorological and 

infectious disease data for credible analyses of interactions at the intersection of climate and 

infectious disease.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Spatial distribution of gauge (GHCN) meteorological stations in Africa. Central African 

countries are indicated in gray.
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Table 3

The key terms used forWeb of Science searches

Infectious disease Meteorology Country

Tuberculosis Climate Chad

Malaria Meteorology Central African
  Republic

Respiratory
  infection

Hydrology South Sudan

Pneumonia Humidity Democratic Republic
  of Congo

Mosquitoa Water Rwanda

Meningitis Precipitation Congo

Diarrheaa Rainfall Gabon

Diarrhoeaa Temperature Equatorial Guinea

Cholera Dew point Cameroon

Influenza Uganda

Infectiona Burundi

Zoonoa Angola

Vector-borne

Water-borne

Virus

Bacteria

Helminth

Protozoa

Fever

Worm

Parasitea

Note: The key terms used for Web of Science searches were separated into three categories: infectious disease, meteorology, and country. Every 
search contained one key term from each category.

a
The search was conducted with all completions of the indicated word.
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Table 4

Papers categorized by disease topic

Mode of
transmission Disease

Number of
papers (%)

Vector-borne 40 (60.6)

Malaria 29 (43.9)

African trypanosomiasis 4 (6.0)

Plague 1 (1.5)

Dengue fever 1 (1.5)

Avian malaria 1 (1.5)

Onchocerciasis 1 (1.5)

Yellow fever 1 (1.5)

Water-borne 15 (22.7)

Schistosomiasis 6 (9.0)

Cholera 6 (9.0)

Guinea worm 1 (1.5)

Coliform bacterial infection 1 (1.5)

Hepatitis E 1 (1.5)

Respiratory 7 (10.6)

Meningitis 1 (1.5)

Tuberculosis 1 (1.5)

Acute respiratory infections 1 (1.5)

Influenza 1 (1.5)

Direct contact 6 (9.0)

Monkeypox 3 (4.5)

Ebola 1 (1.5)

Mycetoma 1 (1.5)

Hookworm 1 (1.5)

Fecal oral 2 (3.0)

Ascariasis 1 (1.5)

Trichuriasis 1 (1.5)

Note: Several papers studied multiple diseases and were placed in all relevant disease categories.
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Table 5

Summary of meteorological data used in papers

Meteorological data sources Number of papers (%)

Local meteorological stations 22 (33.3)

Large gridded datasets 16 (24.2)

Seasons 12 (18.2)

Satellite data 10 (15.2)

Directly measured 8 (12.1)

Unknown 4 (6.0)

Note: Several papers used multiple types of data and are included in all relevant data categories.
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Table 6

Summary of disease data types used in papers

Disease data type Papers (%)

Human disease records 36 (54.4)

Animal host or vector
  sampling/collection/trapping

19 (28.7)

Primary human data collection 15 (22.7)

Water samples 5 (7.5)

Species occurrence data 2 (3.0)

Note: Several papers used multiple types of data and are included in all relevant data categories.
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Table 7

Occurrence of spatial mismatch stratified by the type of climate data used

Data type Unknown Mismatched Not mismatched Total

Directly measured 0 0 8 8

Local meteorological station 10 6 6 22

Satellite 0 0 10 10

Large gridded dataset 4 7 5 16

Total 14 13 29 56

Note: “Unknown” indicates that insufficient information was provided to determine spatial mismatch. Each cell contains the total number of papers 
in that category.
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