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Abstract

Central African countries may bear high climate change-related infectious disease burdens
because of preexisting high rates of disease, poor healthcare infrastructure, land use changes, and
high environmental change vulnerabilities. However, making connections between climate and
infectious diseases in this region is hampered by the paucity of high-quality meteorological data.
This review analyzes the sources and quality of meteorological data used to study the interactions
between weather and infectious diseases in Central African countries. Results show that 23% of
studies used meteorological data that mismatched with the disease spatial scale of interest. Use of
inappropriate weather data was most frequently identified in analyses using meteorological station
data or gridded data products. These findings have implications for the interpretation of existing
analyses and provide guidance for the use of climate data in future analyses of the connections
between meteorology and infectious diseases in Central Africa.
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Introduction

African countries currently contribute little to the total global emissions of greenhouse
gasses; however, they bear high climate change—related health burdens,! including the direct
physiological effects of increasing temperatures, reduced agricultural productivity, water
insecurity, and changing patterns of vector-borne diseases. In Africa, infectious diseases
remain a leading cause of mortality. Half of all years of life lost are due to infectious
diseases,? such as HIV, tuberculosis, malaria, and waterborne diarrheal diseases.2™
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Within the African continent, Central Africa—defined as Angola, Burundi, Cameroon,
Central African Republic, Chad, Equatorial Guinea, Gabon, South Sudan, Republic of
Congo, Rwanda, and Uganda—has a high burden of infectious disease and has been subject
to recurrent outbreaks of emergent infectious diseases, such as Ebola.® This region remains
predominantly forested with high biodiversity because of a historical reliance on oil and
mining, rather than forestry and agriculture; however, recent population growth has
motivated an increase in logging and the number of road networks penetrating uninhabited
areas.’ With this increasing infiltration into previously undisturbed forest ecosystems,
humans, livestock, and wildlife are mixing in new ways, and the risk of emerging infectious
diseases is considered to be high.8-10

Environmental change vulnerability, which is a combined measure of a community’s
exposure to climatic change, its sensitivity to these changes, and its ability to adapt, 1112 is
particularly high in Central African countries. Underlying vulnerabilities include existing
heat, food, and water stress, disease transmission, and poor healthcare infrastructure. Given
these susceptibilities, Central African countries may experience a greater impact of climate
change on human infectious diseases. Despite awareness of Central Africa’s vulnerability to
climate change,!3 there remains limited empirical evidence on the influence of climate
change on infectious diseases for this region, as well as Africa overall.141°

In light of climate change, it is important to understand the influence of meteorological
conditions on infectious diseases. Such research is particularly important in areas where
climate change is expected to have a greater impact. However, in areas such as Central
Africa, the data to make these connections are often lacking. In this paper, we aim to review
the literature on meteorology and infectious diseases in Central Africa, to assess the types
and quality of the meteorological data being used to study weather and infectious diseases in
Central Africa, and to use these findings to provide suggestions related to meteorological
data use in future analyses of weather and infectious diseases in this region. We begin with a
review of the types of meteorological data available and description of our review methods.

Meteorological data

Studies of climate and infectious disease, disease monitoring, surveillance, and early
warning systems depend on the availability of reliable meteorological information. Existing
meteorological data, including variables such as temperature and precipitation, are derived
from ground-based measurements, satellite measurements, or interpolated gridded datasets.
This section summarizes the quality and availability of such datasets in Central Africa; see
Table 1 for specific data sources.

Ground-based measurements

Ground-based measurements are the most direct measure of temperature and precipitation at
the surface. However, ground-based observation networks report inadequate coverage in
Africa both spatially (i.e., the density of gauges) and temporally (i.e., intermittent, erratic
recordings).16-18 Additionally, there has been an observed decline in gauge observations
across Africa in the past decade(s),1? and existing stations tend to be biased toward higher
elevations.2? Ground-based measurements are particularly sparse and intermittent in Central
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Africa (Fig. 1, Table 2). Very few meteorological stations provide data within each Central
African country, and the existing observations have poor temporal coverage.

Satellite measurements

Precipitation and, to a lesser degree, temperature are variable in space and time and require
high-gauge density for accurate measurement. Given the low density of ground-based
observations in Central Africa, satellite-based estimates are an attractive alternate source for
meteorological data. While there is controversy surrounding the relative accuracy of
satellite-derived precipitation and temperature observations, many researchers have
concluded that the observations are of acceptable quality in Africa.21-24 These satellite-
derived measurements benefit from more regular, even continuous, observation in time and
space; however, the spatial resolution of most remotely sensed data is low compared with the
localized measurements provided by ground-based observations.

Satellite-based precipitation is measured by thermal infrared (TIR) sensors, microwave
sensors, or a combination of both. TIR sensor estimates are best used for estimating
precipitation in convective clouds2® and have been shown to do well in Africa because of the
predominance of rainfall from deep convective systems.24 Microwave sensors are more
accurate than TIR estimates but are more limited because of low temporal resolution.

TIR wavelengths are also used for measuring land surface temperature. However, processing
is necessary to convert the TIR readings to accurate land surface temperatures. A variety of
satellite platforms (e.g., ASTER, Landsat, AVHRR, and MODIS) can provide these
estimates of land surface temperature with high temporal and spatial resolution.26

Gridded products

Methods

Gridded products employ spatial interpolation to provide continuous estimates of
meteorological conditions in both space and time. These datasets are typically constructed
from gauge data, satellite data, or both. Gridded datasets do not sufficiently resolve local
conditions to allow local analyses and are intended only for global or regional scale
analyses.2’ Further, gridded gauge—-satellite precipitation products have been found to poorly
characterize rainfall in Central Africa.28 For both satellite-based measurements and gridded
climate products, more validation is needed; however, the scarcity of ground-based
measurements remains an impediment to such assessments.2°

Search strategy and inclusion criteria

We searched Web of Science for articles on meteorology and infectious diseases in Central
Africa, published in English between January 1, 1970 and June 30, 2015. Search key terms
were split into three categories: infectious disease, meteorology, and country. We defined
Central Africa as the following 12 countries: Angola, Burundi, Cameroon, Central African
Republic, Chad, Equatorial Guinea, Gabon, South Sudan, Republic of Congo, Rwanda, and
Uganda. These countries make up an area of 7.5 million km?, with a total population of
about 206 million.39 Each search session contained one key term from each category, and
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searches were carried out using all possible combinations of key terms (Table 3). Studies
were included if they pertained to human infectious diseases; included temperature,
humidity, and/or precipitation variables in the analyses; and carried out analyses in a Central
African country. In order to focus on local and regional scale analyses, all continental and
global scale studies were excluded.

Data source extraction

A data extraction table was created to summarize the meteorological and disease data used
in the included papers. The table contains sources, variables included, and spatial scales/
resolutions for every dataset used in each paper. Ultimately, sources for meteorological and
disease data were aggregated into larger categories.

The meteorological data sources were coded as local meteorological station data, directly
measured data (i.e., primary data collection), satellite data, large gridded datasets,
hydrological data, seasonal, and unknown. Papers with seasonal meteorological data did not
use quantitative data, but instead categorized time periods as hotter/colder or wetter/drier.
When the source of meteorological data was not stated in a manuscript, the data source was
categorized as unknown.

Disease data sources were classified into five categories: existing human disease datasets,
primary collection of human disease data, animal host or vector sampling data, water
samples, and species occurrence datasets. Human disease datasets are obtained from any
source that aggregates human data, such as the World Health Organization (WHO) or local
hospitals. Primary collection of human disease data, as well as animal host or vector
sampling, implies active collection of disease information from participants or animals.

Spatial mismatch analysis

The spatial mismatch analysis aimed to determine whether the meteorological data used in
each paper were measured at an appropriate spatial scale, given the disease data. First, using
maps, information provided in the papers, and online sources, we estimated the geographical
region represented by the disease data. Areas were estimated in km? and then categorized as
local (subnational or national) or regional (multinational) spatial scales. Methods for
determining spatial mismatch differed on the basis of whether the meteorological data were
point estimates or gridded products. Two investigators conducted all analyses separately and
compared their results in order to strengthen validity. If disagreements occurred, the
investigators reviewed the relevant information together and reached a consensus.

Point estimates—Meteorological point estimates came from meteorological station data
and direct measurements by researchers. Papers that used this type of meteorological data
either had disease point estimates or disease data covering a prescribed locality. For papers
that used disease point estimates, we determined the distance between the disease and the
meteorological point estimates (if possible). If this distance was greater than 100 km, we
classified a spatial mismatch, as the meteorological data are likely too far away to accurately
represent conditions at the site of disease data.
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Alternatively, for studies that contained a larger proscribed area of disease data (i.e., data
points spanning a geographical region), we estimated the density and placement of
meteorological stations within that area (if possible). Spatial mismatch was assigned when
the density was less than one station per 100 km? or the station(s) was further than 100 km
from the disease region.

Gridded data—Many gridded meteorological data products exist. We first determined the
types of observations used to create each gridded dataset: satellite, gauge (i.e.,
meteorological stations), or both. Owing to the sparse and discontinuous nature of gauge
data in Central Africa, gauge-only interpolated datasets provide insufficient information for
local scale analyses. Hence, we assigned spatial mismatch to any local analysis using gauge-
only gridded data. To determine spatial mismatch of gridded data derived entirely or
partially from satellite data, we calculated the number of grid cells within the geographical
area of the disease data using the gridded-product spatial resolution. If the ratio of grid cells
to the disease data area was less than one grid cell per 100 km?2, we assigned spatial
mismatch.

Spatial threshold—Ouir justification for choosing a spatial threshold of 100 km was based
on prior estimates of the decorrelation length scale for precipitation. Moron er a/31
estimated the spatial scale, defined as the distance at which spatial correlation falls below r=
0.37, for daily rainfall intensity in tropical regions with diverse topography. They found that
spatial correlation decayed exponentially with increasing distance and became much lower
than r= 0.37 for distances greater than 100 km.3! Other papers using satellite data have
found similar spatial scales (95-150 km) for tropical rainfall.32:33 Although temperature has
a larger spatial scale than rainfall in the tropics, almost every paper included in this review
that used temperature estimates also used rainfall estimates in their analyses (96%). Since all
variables need to be spatially matched, we defined 100kmas the distance demarcation of
mismatch. Of the two papers that used temperature estimates only, the spatial resolution of
the meteorological data was very high and spatial mismatch was not a problem.
Additionally, because Moron et a/3! conducted their analyses in topographically diverse
regions, the estimated length scale of 100 km can be used for all topographic contexts.

We screened 167 papers obtained from online searches and ultimately included 66 papers
written between 1970 and 2015 in this review. The papers investigated a number of
infectious diseases, but the majority studied vector-borne disease (61%), specifically malaria
(44%) (Table 4). Studies were most frequently carried out in Uganda (44%), Cameroon
(22%), Rwanda (9%), and Burundi (9%) (Table S1 in Supporting Information), and only a
few pertained to other Central African countries. The number of published papers on
meteorology and infectious diseases has increased since 1970. Two-thirds of the papers
included in this review were published after 2005 (Fig. S1 in Supporting Information).
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Climate data

The papers used climate data from many different sources (Table 5). For example, one-third
(33%) of the studies used climate data directly from meteorological stations, and 16 papers
(24%) used data from gridded datasets. Fewer studies used satellite data (n= 10, 15%) and
directly measured data (r7= 8, 12%). None of the papers used hydrological data or modeling.
Notably, four papers (6%) did not provide a source for the climate data used, and 12 papers
(18%) compared disease metrics across defined seasons instead of using climate data.

Disease data

Many types of infectious disease data were used (Table 6). Of the papers using human
disease data, 36 papers (55%) retrieved the data from local healthcare centers or large
existing datasets (e.g., WHO, U.S. Centers for Disease Control and Prevention, local
Ministry of Health), whereas 15 papers (23%) collected primary data, such as blood samples
or questionnaires. Many papers used data pertaining to animal hosts or vectors, obtained
from either primary data collection using trapping or sampling (n = 19, 29%) or from
existing species occurrence data (7= 2, 3%). Last, five papers (8%) collected water samples
to measure the presence of infective fecal matter or bacteria.

Spatial mismatch analysis

Results from the spatial mismatch analysis revealed patterns of mismatch on the basis of the
type of climate data used. Findings for each climate data category are discussed below. Table
7 summarizes the distribution of papers with spatial mismatch and papers that did not
provide adequate information about their data (referred to as unknown). Overall, the results
showed 23% of papers having spatial mismatch, and mismatch could not be determined in
25% of papers.

Directly measured—No spatial mismatch was observed between directly measured
meteorological variables and health data. Researchers placed the monitoring devices in the
locations where health data were collected or available. Although this method often limits
the temporal length of data collection, it provides the placement precision needed to avoid
spatial mismatch. All papers using directly measured climate data provided sufficient
information about their data collection to assess spatial mismatch.

Local meteorological stations—All papers reviewed using meteorological station data
directly accessed these data from local government meteorology departments. Of the 22
papers using meteorological station data, 10 (45%) did not provide enough information to
assess spatial mismatch of the data. These papers provided locations for the health data
collected, but did not provide locations for the meteorological stations, making it impossible
to determine whether the locations of the meteorological stations accurately represent
temperature and rainfall in the health area of interest.

We identified spatial mismatch in six (27%) of the papers that provided adequate spatial
information. In these papers, a limited number of meteorological stations was used to
represent climatic conditions of a large disease catchment area. Many of these papers used
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rainfall data, which vary on much shorter spatial scales, as well as temperature data from
meteorological stations.

Satellite data—No spatial mismatch was identified in the studies using satellite data.
Although there was no spatial mismatch, few papers addressed the issue of data
autocorrelation or provided an explanation of how gridded data with different resolutions
were aggregated.

Large gridded datasets—Spatial mismatch occurred in almost half (44%) of the papers
using large gridded datasets. The papers with this spatial mismatch used interpolated
datasets based on very sparse meteorological station records. Despite the paucity of
observations in these datasets, seven papers used them for fine spatial scale analyses. Four
papers (25%) did not provide enough information about the climate data for evaluation of
spatial mismatch. In these papers, datasets that are not publically available were referenced,
preventing determination of spatial mismatch. As a sensitivity analysis, the threshold was
increased to one grid cell per 200 km2. All results remained the same, except for one paper
that was no longer classified as a spatial mismatch.

Discussion

This review included 66 papers looking at meteorology and infectious diseases across
Central Africa. Eleven of these papers compared disease outcomes across different seasons,
and four papers did not source their meteorological data. Of the papers that did use
meteorological datasets, nearly one-fourth (23%) used data mismatched with the disease
spatial scale of interest. One-fourth of the studies (25%) did not provide enough information
about their meteorological datasets to assess spatial mismatch. Spatial mismatch was most
commonly identified in analyses using gridded datasets and/or local meteorological station
data.

Development of improved gauge-based datasets

The primary reason for spatial mismatch is the use of datasets based on sparse and
intermittent ground-based observations. Gauge-only interpolated datasets in Central Africa
do not contain adequate information for local-scale analyses, yet researchers are continuing
to use them. Conclusions from these studies must be interpreted cautiously due to the poor
quality of the underlying meteorological data. Spatial mismatch occurs when estimates of
temperature, rainfall, or humidity are obtained from locations farther than the defined
decorrelation length from the area of disease data collection. If the meteorological estimates
used in the analyses do not truly represent the meteorological conditions at this area of
interest, the results will not be reliable or accurate. This could produce spurious relationships
or hide true relationships between meteorological variables and diseases.

The recognition of sparse ground-based observational data in Africa may lead to improved
coverage in the future (e.g., initiatives of the World Meteorological Organization and Trans-
African HydroMeteorological Observatory). Many countries in Africa have station networks
that are not publicly available,34 but gaining access to these station networks would greatly
improve the breadth and precision of ground-based observations. The International Research
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Institute for Climate and Society has gained access to national station networks in several
East African countries and, using these data streams, has created gridded data products with
much greater resolution at local scales. Similar initiatives in Central Africa could improve
the coverage of gauge-based datasets.

Is using satellite data a good alternative?

In the absence of adequate ground-based observations, satellite data could be a good
alternative data source. Remotely sensed data have the benefit of continuity in time and
space, and have spatial resolutions appropriate for local analyses. However, the accuracy of
satellite-derived estimates of precipitation and temperature remains unclear. Indeed, the
accuracy of satellite rainfall estimates is noted to vary by location, topography, and rainfall
type.35 Despite this, some scientists have concluded that satellite-based precipitation
retrieval algorithms have acceptable accuracy across Africa.21-24 For temperature, some
researchers conclude that the relationship between satellite-and ground-measured air
temperature has not been adequately quantified in Africa,3¢ whereas others maintain that
satellite-based estimates of temperature in Africa are an accurate representation of ground-
based measurements.3’ For now, researchers might rely on the recommendations by Hay and
Lennon,38 who suggest that interpolated temperature data more accurately depict
temperatures, while satellite-based estimates better represent precipitation. However,
researchers must continue to evaluate the reliability and accuracy of satellite data for
estimating ground meteorological conditions in Central Africa.

Lack of information about climate data

Many papers in this review did not provide adequate information about the meteorological
data used in the analysis (27%). Notably, four of these papers did not even provide a source
for their data. Without information on the underlying data source and quality, it is impossible
to assess the quality of the findings. In order to move forward in understanding the links
between weather and infectious diseases, it will be important for researchers to describe and
address their meteorological data sources and quality.

Temporal mismatch

The meta-analysis presented in this paper focuses on spatial mismatch of data, but there may
also be temporal mismatch, which occurs when the meteorological and disease data are
recorded during different time periods. The time scales over which data were collected and
analyzed differ greatly in the papers included in this review. Many analyses looked at
variability during 1-2 years, while others have data that span over 20 years. Temporal
mismatch was observed: for example, one paper used satellite-derived meteorological data
from 2002 and disease incidence rates from 2006; another paper used meteorological data
spanning 1950-1960 and daily disease data from one month in 1991. Such temporal
mismatch between meteorological and disease data can also cause bias and inaccuracy of
results. Further research should investigate the true prevalence and impact of temporal
mismatch in papers studying meteorology and infectious diseases.
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Conclusion

Results linking weather and infectious diseases must be supported by high-quality, spatially
matched underlying data. In Central Africa, meteorological data are limited by sparse
ground-based data and satellite data that have not been sufficiently validated. The scientific
community must remain apprised of the limitations of the datasets available in this region
and work to improve the collection, abundance, and availability of both meteorological and
infectious disease data for credible analyses of interactions at the intersection of climate and
infectious disease.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Spatial distribution of gauge (GHCN) meteorological stations in Africa. Central African

countries are indicated in gray.
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The key terms used forWeb of Science searches

Infectious disease

Meteorology

Country

Tuberculosis

Climate

Chad

Malaria Meteorology ~ Central African
Republic

Respiratory Hydrology South Sudan

infection

Pneumonia Humidity Democratic Republic
of Congo

Mosquito? Water Rwanda

Meningitis Precipitation ~ Congo

Diarrhea? Rainfall Gabon

Diarrhoead Temperature  Equatorial Guinea

Cholera Dew point Cameroon

Influenza Uganda

Infection? Burundi

Zoono? Angola

Vector-borne

Water-borne

Virus

Bacteria

Helminth

Protozoa

Fever

Worm

Parasited

Table 3

Page 20

Note: The key terms used for Web of Science searches were separated into three categories: infectious disease, meteorology, and country. Every
search contained one key term from each category.

a . . _—
The search was conducted with all completions of the indicated word.
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Papers categorized by disease topic

Mode of Number of
transmission  Disease papers (%)
Vector-borne 40 (60.6)
Malaria 29 (43.9)
African trypanosomiasis 4 (6.0)
Plague 1(1.5)
Dengue fever 1(1.5)
Avian malaria 1(1.5)
Onchocerciasis 1(1.5)
Yellow fever 1(1.5)
Water-borne 15 (22.7)
Schistosomiasis 6(9.0)
Cholera 6 (9.0)
Guinea worm 1(1.5)
Coliform bacterial infection 1(1.5)
Hepatitis E 1(1.5)
Respiratory 7 (10.6)
Meningitis 1(1.5)
Tuberculosis 1(1.5)
Acute respiratory infections 1(1.5)
Influenza 1(1.5)
Direct contact 6(9.0)
Monkeypox 3(4.5)
Ebola 1(1.5)
Mycetoma 1(1.5)
Hookworm 1(1.5)
Fecal oral 2(3.0)
Ascariasis 1(1.5)
Trichuriasis 1(1.5)

Note: Several papers studied multiple diseases and were placed in all relevant disease categories.
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Table 5

Summary of meteorological data used in papers

Meteorological data sources  Number of papers (%)

Local meteorological stations 22 (33.3)
Large gridded datasets 16 (24.2)
Seasons 12 (18.2)
Satellite data 10 (15.2)
Directly measured 8(12.1)
Unknown 4 (6.0)

Note: Several papers used multiple types of data and are included in all relevant data categories.

Ann N'Y Acad Sci. Author manuscript; available in PMC 2017 October 01.
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Summary of disease data types used in papers

Disease data type Papers (%)
Human disease records 36 (54.4)
Animal host or vector 19 (28.7)

sampling/collection/trapping

Primary human data collection 15 (22.7)

Water samples 5(7.5)

Species occurrence data 2 (3.0)

Note: Several papers used multiple types of data and are included in all relevant data categories.

Ann N'Y Acad Sci. Author manuscript; available in PMC 2017 October 01.
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Occurrence of spatial mismatch stratified by the type of climate data used

Table 7

Data type Unknown  Mismatched Not mismatched Total
Directly measured 0 0 8 8
Local meteorological station 10 6 6 22
Satellite 0 0 10 10
Large gridded dataset 4 7 5 16
Total 14 13 29 56

Page 24

Note: “Unknown” indicates that insufficient information was provided to determine spatial mismatch. Each cell contains the total number of papers

in that category.
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