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A genome-scale Escherichia coli kinetic metabolic
model k-ecoli457 satisfying flux data for multiple
mutant strains
Ali Khodayari1 & Costas D. Maranas1

Kinetic models of metabolism at a genome scale that faithfully recapitulate the effect of

multiple genetic interventions would be transformative in our ability to reliably design novel

overproducing microbial strains. Here, we introduce k-ecoli457, a genome-scale kinetic model

of Escherichia coli metabolism that satisfies fluxomic data for wild-type and 25 mutant strains

under different substrates and growth conditions. The k-ecoli457 model contains 457 model

reactions, 337 metabolites and 295 substrate-level regulatory interactions. Parameterization

is carried out using a genetic algorithm by simultaneously imposing all available fluxomic data

(about 30 measured fluxes per mutant). The Pearson correlation coefficient between

experimental data and predicted product yields for 320 engineered strains spanning 24

product metabolites is 0.84. This is substantially higher than that using flux balance analysis,

minimization of metabolic adjustment or maximization of product yield exhibiting systematic

errors with correlation coefficients of, respectively, 0.18, 0.37 and 0.47 (k-ecoli457 is

available for download at http://www.maranasgroup.com).
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R
apid and pervasive advances in genome editing1 and
copying2 techniques have dramatically reduced the time
and cost3 for microbial strain construction. This has

enabled probing multiple and often complex intervention
strategies in pursuit of an overproducing cellular phenotype.
Existing computational strain design tools operating at a genome
scale4–6 primarily rely on a stoichiometric description of
metabolism. Despite many successes7–9, designed mutants often
fail10,11 as stoichiometric models do not directly account for
enzyme level, metabolite concentration and substrate-level
regulatory barriers. Kinetic models provide a computational
vehicle for capturing these effects; however, they have been
mostly descriptive in nature, parameterized for a single metabolic
phenotype12 and are thus incapable of predicting the often
systemic effect of metabolic perturbations. A number of efforts
have been proposed that standardize kinetic expressions through
approximation and provide a tractable parameterization
workflow even at a genome scale (for example, a log-lin
approach for Escherichia coli13 and a lin-log approach for
yeast14). However, by design, these approaches are aimed at
providing accurate production in the vicinity of the reference
state. Kinetic models that satisfy multiple flux data sets15 have so
far been limited in their metabolic scope capturing mostly central
metabolism15,16.

Recent approaches first deconstruct complex kinetic expres-
sions into their elementary steps17 and then reassemble
them into kinetic expressions that capture all known
substrate-level regulations. Uncertainty in assigning unique
kinetic parameter values is circumvented by creating not only a
single kinetic model, but rather an ensemble of kinetic models
through parameter sampling13. The ensemble modelling (EM)
approach18, for example, relies on the sampling of reaction reve-
rsibilities and enzyme fractions19 to create an ensemble of
models. The original ensemble is subsequently ‘whittled down’
by successively rejecting model parameterizations inconsis-
tent with concentration or flux data for knockout mutants18.
This approach ultimately leads to an empty ensemble if a large
number of flux data for knockout mutants are imposed as
required model output. A more efficient way to sample promi-
sing kinetic parameter space is achieved through integration of
the EM procedure with a machine-learning inspired genetic
algorithm (GA) that exchange the best reaction paramete-
rizations across all models in the ensemble through the recom-
bination operation15. This procedure was used to develop a core
kinetic model (core model) of E. coli metabolism by seamlessly
integrating flux data for a wild-type and seven mutant strains
under aerobic conditions with glucose as the carbon substrate.
The model was accurate in recapitulating genetic perturbations
as long as growth conditions remained aerobic and the list of
deleted genes was in the neighbourhood of the ones used during
model parameterization15. In fact, a follow-up study revealed
that the core model did worse than flux balance analysis
(FBA) in predicting fluxes for fermentative (that is, anaerobic)
growth11. These observations reaffirmed that, unlike FBA,
kinetic model predictive ability is determined by the comple-
teness of the modelled regulatory interactions and scope of
imposed metabolic flux data in response to gene knockouts.
Consequently, by increasing the set of flux data for mutants
distributed across a wide range of pathways and augmenting the
set of regulatory interactions, prediction fidelity is successively
improved11,15 while subsuming the benefits afforded by a
genome-scale level description. These benefits include a detailed
description of biomass and global inventory of all metabolites
and cofactors. These observations motivated this study, where
both the scope of flux data sets and the complexity of regulatory
interactions are significantly increased over previous efforts in

an attempt to endow the kinetic model with sufficient detail
to enable the reliable prediction of perturbed metabolic
phenotypes.

The k-ecoli457 genome-scale kinetic model of E. coli
metabolism was parameterized by combining a machine-learning
algorithm15 and the EM formalism18. Model parameterization is
performed by minimizing discrepancies between model predi-
ctions and experimentally measured steady-state flux distri-
butions for 25 mutant strains including 21 genetically perturbed
strains with glucose as the carbon substrate (19 under aerobic20

and two under anaerobic conditions21), and four with different
carbon substrates under aerobic conditions (three with pyruvate22

and one with acetate23). Model predictions were tested against
multiple experimentally measured data sets that were not used
during model parameterization. These included (i) 898 steady-
state metabolite concentrations for 20 of the mutant strains20–23,
(ii) 234 Michaelis–Menten constants (185 Km and 49 kcat values)
extracted from BRENDA24 and EcoCyc25 and (iii) 320 literature
reported product yields for designed strains covering 24 different
bioproducts. Comparisons revealed that 66% of the predicted
metabolite concentrations as well as 51 and 63% of the estimated
Km and kcat values, respectively, are within the experimentally
reported ranges. This level of agreement of k-ecoli457 with
experimental data exceeded the metrics reached by the core
model15, despite the significantly increased scope of the model
and coverage of fewer studied pathways. A primary reason for
this prediction fidelity is that by directly imposing the biomass
measurements in the model, the flux of over 30 reactions
(coupled to biomass) in fatty acid and amino acid synthesis
pathways is resolved. Notably, the average relative error of
k-ecoli457 predictions for the product yield in 129 out of 320
designed strains is within 20% of the measured values. Stoichio-
metric model based techniques such as FBA, minimization of
metabolic adjustment (MOMA) or maximization of product yield
were within 20% of the experimentally reported yield for only 16,
18 and 65 of the designed strains, respectively. Overall, the
predicted product yields by k-ecoli457 achieve significantly higher
value of correlation with experimental data (that is, Pearson’s
correlation coefficient of 0.84) than FBA, MOMA or maximi-
zation of product yield (that is, 0.18, 0.37 and 0.47, respectively).
These results quantitatively demonstrate that k-ecoli457 can
reliably be used to predict genetically perturbed E. coli pheno-
types under different growth conditions with a substantially
higher accuracy than any other earlier modelling effort.

Results
k-ecoli457 construction and predictions. The k-ecoli457 model
contains 457 reactions and 337 metabolites and includes all
reactions from the largest previously published mechanistic
kinetic model of E. coli15 encompassing representations for most
pathways from the genome-scale iAF1260 model (see Suppleme-
ntary Data 1 for details). In general, out of 2,390 reactions
in the iAF1260 model of E. coli, 1,603 reactions do not carry any
flux, as they are either inactive (that is, 720 reactions) upon
imposing the flux data of the reference (wild-type) strain or
blocked (that is, 883 reactions)26. From the reactions that can
carry flux, k-ecoli457 does not cover lipopolysaccharide and
murein biosynthesis pathways as the molecular composition of
some of these polymers is unknown and they only contribute
o6% of the overall biomass27. In addition, 295 substrate-level
regulatory interactions mined from enzyme biochemistry
repositories such as BRENDA24 and EcoCyc25 were integrated
in the model (see Fig. 1). In summary, k-ecoli457 is more than
three times larger than that of the previously developed largest
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core kinetic model (core model)15 (that is, 138 reactions,
93 metabolites and 60 substrate-level regulatory interactions).

For the k-ecoli457 model parameterization, an initial ensemble
of elementary kinetic models that converge to the steady-state
flux distribution of the reference (wild-type) strain was const-
ructed (see Fig. 2a). A two-step optimization procedure was used

to parameterize k-ecoli457. The first step identified the equiva-
lent Michaelis–Menten constants (that is, Km and vmax) using the
experimentally measured flux data for the nineteen mutant
strains grown aerobically with glucose. This is achieved by identi-
fying the best combination of the sampled kinetic parameters in
the ensemble (see Fig. 2b and Supplementary Methods, GA
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Figure 1 | A representation of k-ecoli457 and the core model. (a) A pictorial representation of the k-ecoli457 model of E. coli metabolism. Red X’s denote

the location of reaction deletions in the mutant data sets. Reactions in the previously developed core model15 are shown in grey (no flux data) and blue

(with flux data) while the additional reactions in k-ecoli457 are shown in green (no flux data). (b) Sub-system classification of reactions in the k-ecoli457

model. (c) Sub-system classification of the integrated regulatory interactions. Grey bars denote the content of the core model15, while green bars denote

the additional reactions/regulations included in k-ecoli457.
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Figure 2 | A schematic representation of k-ecoli457 construction procedure. (a) Reactions are decomposed into their elementary steps and an ensemble of

P models is constructed by sampling enzyme fractions and reaction reversibilities. (b) The first step of the optimization problem identifies the optimal

combination of the sampled parameters by minimizing k-ecoli457 prediction deviation from the measured flux data in the nineteen mutant strains grown

aerobically with glucose. (c) The second step of the optimization problem estimates the level of enzymes under the other three mutant conditions by
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metabolite concentrations, Michaelis–Menten constants and product yields.
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implementation). Next, the estimated parameters (that is, Km)
were fixed and the levels of enzymes (that is, vmax) were estimated
under the other three growth conditions (that is, anaerobically
with glucose, aerobically with pyruvate and aerobically with
acetate), separately, by solving the second step of the optimization
procedure (see Fig. 2c). In general, the parameterized k-ecoli457
model performs well by attaining the predicted fluxes within the
experimental ranges for 61% of the reactions with measured flux
data in the mutant strains (see Supplementary Data 2 for the
predicted and measured flux data sets). In particular, we observed
that k-ecoli457 predictions are often (that is, 73%) completely
within the experimental error ranges for the reactions eliminated
in the mutant strains, including those in the glycolysis and
pentose phosphate (PP) pathways (that is, blue coloured reactions
crossed in Fig. 1). This is because the metabolic response upon
elimination of the reaction quantifies the extent of the reaction’s
effect on metabolism and assesses the plasticity of the reaction
loss in other mutation scenarios. For the remaining reactions,
k-ecoli457 predictions are between 2 and 3 s.d. of the reported
experimental ranges for 79 and 88% of the reactions, respectively
(see Supplementary Fig. 2).

We also performed leave-one-out and leave-two-out cross-
validation analyses to assess the robustness of the estimated
parameters in k-ecoli457 compared with that of the core model
(see Supplementary Methods, cross-validation analysis). A comp-
arison showed that core model predictions exhibited higher
deviations (that is, by about threefold) compared with those of
k-ecoli457 in predicting metabolic fluxes of the cross-validated
mutant (that is, predictions within 5% of the original model
in k-ecoli457 versus 15% in the core model). This implies
that k-ecoli457 parameterization is significantly more robust
compared with that of the core model. In general, the analyses
revealed that a diverse set of mutant experimental data for
different pathways under different growth conditions is required
to achieve a robust model parameterization15. For example, we
observed that the failure of model cross-validation for mutant
Dpgi by the previously published core model15 was resolved in
k-ecoli457 through the presence of three additional mutant flux
data sets (that is, DpfkA, DpfkB and DfbaB) that filled in
information lost by removing the Dpgi data set. Unsurprisingly,
model parameterization was not as robust for the two mutant
strains under anaerobic conditions (that is, wild-type and Dldh)
as alluded by higher prediction deviations from experimental data
upon removal of one of the two data sets (that is, a 14% increase
in average scaled relative deviation). Because fluxes of the
fermentative products (that is, formate, lactate, acetate and
ethanol) are significantly different between the two data sets, both
data sets are needed as they cannot complement information
upon the loss of one of the two. These discrepancies propagate to
some extent in other parts of the network, however, model
prediction is still adequate for the rest of reactions (that is, an
average 8% deviation from the experimental ranges).

Comparison of the estimated elementary kinetic parameters.
We first compared the estimated values for each individual
elementary kinetic parameter in k-ecoli457 with those in the
previously published core model15 by defining a confidence range
of 10% from the estimated parameter values (see Supplementary
Data 2 for the estimated parameters). The comparison revealed
significant differences, as for 90% of the elementary kinetic
parameters there was no overlap between the estimated ranges.
The majority (that is, 63%) of the elementary kinetic parameters
that changed in value significantly belong to reactions utilizing
cofactors (that is, atp, adp, amp, nad(h), nadp(h)). This is due to
the fact that the core model15 could not accurately track the

concentration of cofactors as only a limited number of reactions
that contribute to the cofactor balance were included. For
example, amino acid and membrane lipid metabolism reactions
were absent in the core model15. Thus, errors in the estimation of
cofactor concentrations propagated to the corresponding
elementary kinetic parameter estimates.

Comparison of predicted Michaelis–Menten parameters. To
assess the accuracy of the estimated elementary parameters, we
compared the corresponding Michaelis–Menten constants with
experimental values from BRENDA24 and EcoCyc25. In
accordance with the EM approach, the elementary kinetic para-
meters and therefore the Michaelis–Menten constants, are scaled
by the corresponding metabolite concentrations in the reference
(that is, wild-type) strain. We used the experimentally reported
concentration data for the wild-type strain20,28 to rescale the esti-
mated Michaelis–Menten constants. We extracted 234 measured
Michaelis–Menten constants including 185 Km and 49 kcat values
for the reactions present in k-ecoli457 (see Supplementary Data 2
for the estimated and measured ranges). In general, the results
showed that 51% of the estimated Km values and 63% of the
kcat values in k-ecoli457 overlap with the reported experimental
value ranges (see Fig. 3a,b). For the parameters shared by both the
core model and k-ecoli457, the majority (that is, 77% for Km and
86% for kcat) of the predictions within the confidence ranges in
the core model were predicted again within ranges by k-ecoli457.
Notably, the computed Michaelis–Menten constants in k-ecoli457
for amino acid and pyruvate metabolism exhibited significantly
higher agreement with experimental data compared with the
values in the core model15 (see Fig. 3c,d). In addition, we
performed the same comparisons for only those parameters
whose confidence ranges did not exceed two orders of magnitude
which included 120 Km and 14 kcat parameters. Comparisons
revealed that for this set 36% of the estimated Km and 29% of the
estimated kcat values are within the experimentally reported
ranges. Overall, these analyses demonstrate the importance of
integrating pathways distant to central metabolism into the model
as they can affect the quality of parameterization through the
pools of shared metabolites such as cofactors. This motivates the
development of flux data sets in response to genetic perturbations
distal from central metabolism pathways to improve overall
model parameterization. It is also important to note that the large
magnitude in the confidence ranges for both measured and
computed kcat values detracts from the confidence for some of the
estimated kcat values.

Comparison of predicted concentrations against unused data.
Similar to the Michaelis–Menten constants, the predicted
normalized steady-state metabolite concentrations of the mutant
strains were first recast as actual concentrations. In total, we
extracted 898 experimentally measured concentrations spanning
B45 metabolites in twenty mutant strains (a total of 294
concentrations in the core model15). The comparison showed that
66% of the predicted metabolite concentration ranges overlap
with the experimentally reported ranges (see Fig. 4a and Supple-
mentary Data 2 for the predicted and measured concentration
data sets). We note that for the metabolite concentrations present
in both the core and k-ecoli457 models, the majority of
concentrations (that is, 80%) that were within the confidence
ranges in the core model15 were again predicted within the ranges
by k-ecoli457. In particular, we observed k-ecoli457 achieved
higher accuracy for metabolites in pathways challenged with
more mutant flux data (that is, pyruvate metabolism, the
tricarboxylic acid (TCA) cycle and the PP pathway). For
example, the predicted concentration ranges of the commonly
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measured metabolites acetate, lactate, succinate, malate, fumarate,
ribose-5-phosphate and xylulose 5-phosphate by k-ecoli457
showed overlap with experimental ranges in the 20 mutant
strains for 80% of the measured concentrations, while the core
model predictions showed overlap for only 31% of the measured
concentrations (see Fig. 4c). This highlights the efficacy of
parameter estimation for reactions directly affected by the
mutations in the training data sets. In addition, energy and
cofactor regulatory information, whenever available in BRENDA
or EcoCyc (that is, 64 regulations), were included to account for
the substrate-level effect of redox and energy regulation in
k-ecoli457. In general, we observed more accurate predictions for
the concentration of cofactors (that is, nad(h), atp, amp and adp)
with k-ecoli457 compared with the core model15 (82% versus 43%
of the predicted concentrations overlap with experimental ranges,
respectively). This is because a more complete integration of
cofactor utilizing pathways in k-ecoli457 led to more accurate
component balances, therefore, yielding more accurate

concentration predictions. The accuracy of prediction, however,
was often limited to the metabolites in central metabolism. For
example, a high-prediction deviation was observed for meta-
bolites in amino acid metabolism in Dpgi, Dgnd, Dzwf, DrpiA,
DrpiB and wild-type strain grown with acetate (see Fig. 4b). This
is a manifestation of the lack of flux data sets for the associated
pathways during model parameterization. In addition, the
important transcriptional regulation of cellular growth on the
oxidative section of the PP pathway29 was not captured in
k-ecoli457. This led to erroneous predictions for the aromatic
amino acid concentrations in five knockout mutants. Even with
missing experimental data and regulatory interactions, we note
that 59% of the predicted concentrations for the metabolites in
amino acid metabolism are still well within the experimental
measurement error ranges. In fact, this tight coupling of the
metabolite concentration and kinetic parameters through reaction
kinetics leads to accurate predictions by providing mutual backup
for missing information. In addition, a comparison between the

56%

44%

100

36%

64%

22

14

50%

50%

11

64%

36%

11

45%

Glycolysis/gluconeogenesis Pentose phosphate pathway

Tricarboxylic acid cycle Amino acid metabolism

Anaplerotic reactions Pyruvate metabolism

37%

63%

8

44%

56%

9

40%

60%

10

43%

57%

7

60%

40%

10

43%

57%

7

Glycolysis/gluconeogenesis Pentose phosphate pathway

Tricarboxylic acid cycle Amino acid metabolism

50%

50%

6

75%

25%

4

75%

25%

4

61%

39%

31

10

40%

60%

100%

3

4

75%

25%

3

100%

1

100%

E
st

im
at

ed
 v

al
ue

, s
–1

Measured value, s–1

kcat values

E
st

im
at

ed
 v

al
ue

, m
M

Measured value, mM

Km values

Others

75%

25%

4 2

100%

29%

71%

17

Others

14%

86%

Glycolysis/gluconeogenesis

Pentose phosphate pathway

Tricarboxylic acid cycle

Amino-acid metabolism

Anaplerotic reactions

Pyruvate metabolism

Others

55%

105

104

103

102

101

100

10–1

10–2

10–3

10–4

10–5

105

106

104

103

102

101

100

10–1

10–2

10–3

10–4

10–5 10–4 10–3 10–2 10–1 100 101 102 103 104 105 10–4 10–3 10–2 10–1 100 101 102 103 104 105 106

Estimated Km values Estimated kcat values

k-ecoli457 Core model k-ecoli457 Core model k-ecoli457 Core model k-ecoli457 Core model

a b

c d

7

Figure 3 | Estimated and measured kinetic parameters. Comparison of the computed (a) Michaelis constant Km and (b) turnover number kcat in

k-ecoli457 and the values reported in BRENDA24 and EcoCyc25. The error bars denote 1 s.d. confidence interval for the corresponding parameter, the dots

represent the mean value of the measured versus computed parameters and dashed lines show equal predicted and measured parameters. Comparison of

the computed (c) Km and (d) kcat in k-ecoli457 (left) and the core model (right)15. The numbers within the circle plots indicate the number of measured

parameters and the darker sectors represent the portion of the parameters whose estimated ranges overlap experimentally reported ranges.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13806

6 NATURE COMMUNICATIONS | 7:13806 | DOI: 10.1038/ncomms13806 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


predicted and measured concentrations with confidence ranges
no greater than two orders of magnitude (that is, 786 concen-
trations) revealed that 63% of the estimated concentrations are
still within the experimentally reported ranges.

Predicted product yield for 320 overproducing mutants. We
extracted experimentally reported yields of overproduction for 320
different engineered E. coli strains for a diverse range
of bioproducts from 47 separate studies and compared them with
k-ecoli457, FBA, MOMA and maximization of product yield
predictions (see Methods for calculation). The target products
included 24 different chemicals under both aerobic (184 mutants)
and anaerobic (136 mutants) conditions spanning biofuels (ethanol,
butanol and isobutanol), pharmaceuticals and nutraceuticals (arte-
misinin and naringenin), polymer precursors (hydroxybutyrate,
hydroxystyrene, butanediol, acetate, formate, glucaric acid and
styrene) and commodity and specialty chemicals (lycopene, indigo,
malate, fumarate, succinic, cinnamic and muconic acids)
(see Methods and Supplementary Data 2).

The Pearson’s correlation coefficients between the experimen-
tal data and product yield predictions by k-ecoli457, FBA,
MOMA and maximization of product yield, respectively, are 0.84,
0.18, 0.37 and 0.47 (Po10� 3). A comparison also revealed that
the product yield in 129 out of 320 designed strains are predicted
within 20% of the experimental measurements by k-ecoli457,
whereas FBA, MOMA and maximization of product yield
predicted the product yield for only 16, 18 and 65 of the
designed strains, respectively, with the same accuracy. In general,
under aerobic conditions k-ecoli457 closely reproduces the yields
for products that branch out from the PP pathway (for example,
naringenin and muconic acid), the TCA cycle (for example,
malate, succinate, fumarate, threonine and butanol) and pyruvate
metabolism (for example, lactate, isobutanol and 2,3-butanediol).
Both FBA and MOMA tend to underestimate their yields as more
carbon is diverted towards biomass (see Fig. 5a) with the
exception of naringenin and threonine where FBA overestimates
their yield as it is blind to substrate-level regulatory interactions.
For the naringenin engineered strain, FBA does not capture two
strong feedback inhibitions of tyrosine and phenylalanine on the
chorismate pathway30, thus pooling additional arabino-heptonate
7-phosphate (2dda7p) towards the flavanone pathway. Likewise,
regulatory inhibitions in glycolysis, chorismate and the PP

pathways limit flux towards erythrose 4-phosphate,
phosphoenolpyruvate and shikimate. The same inability to
capture multiple regulatory interactions in the aspartate, lysine,
asparagine, methionine and isoleucine pathways that share
precursor oxaloacetate with the threonine pathway leads to an
over prediction for the threonine yield by FBA. Maximization of
product yield not surprisingly typically overestimated
experimental product yield. Product yields under anaerobic
conditions were again tracked better by k-ecoli457 as both FBA
and MOMA often underestimate them (65 and 82% of strains,
respectively) by directing all carbon flux towards biomass (see
Fig. 5b). We find that reliable product yield prediction by
k-ecoli457 requires both the change in the enzyme level under
anaerobic conditions and the activation of relevant substrate-level
regulations. For example, for lactate, malate and succinate
overproducing mutants, the experimentally reported high
activities of the glyoxylate shunt31 and reductive section of the
TCA cycle32 were correctly captured by the updated enzyme
levels under anaerobic conditions (see Supplementary Data 2).

k-ecoli457 often underestimates the yield of acetate under
aerobic conditions as well as ethanol and formate under
anaerobic conditions (see Fig. 5c,d) due to inadequate training
flux data sets involving mutants of the respective pathways. For
example, only two mutant flux data sets under anaerobic
conditions (that is, a wild-type and Dldh) were available for
model parameterization implying insufficient training data as
affirmed in the cross-validation analysis (see Supplementary
Methods, cross-validation analysis). Another important factor
that is often overlooked is the lack of flux data sets that span
multiple growth phases or dilution rates, and not just early
growth phase or low dilution rates. In particular, acetate
production is poorly captured by k-ecoli457 as the fluxomic
information for all nineteen mutant strains under aerobic glucose
conditions were measured under low dilution rates (that is,
0.2 h� 1), while product yield data were often reported in higher
dilution rates. These observations identify the limits of prediction
and pinpoint needed flux measurements under different dilution
rates, growth phases, alternate substrates and anaerobic condi-
tions using both batch33 and continuous cultures16. Nonetheless,
despite of data scarcity, k-ecoli457 predictions remain substa-
ntially better than FBA, MOMA and maximization of product
yield. In general, we observed that both FBA and MOMA predi-
ctions demonstrated reasonable agreement with experimental
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data only whenever the targeted product is energy/redox coupled
with biomass and measured product yield value scaled by the
maximum theoretical yield was relatively low (that is, o0.2). The
maximization of product yield better reflected the measured
product yields whenever the scaled product yield value was
relatively high (that is, higher than 0.9). Whenever the designed
mutant’s product yield did not significantly differ from wild-type,
MOMA performed better than FBA (for example, lycopene and
styrene under aerobic conditions).

Discussion
Here, we developed k-ecoli457, a kinetic model of E. coli
metabolism that approaches genome-scale coverage (457 reac-
tions and 337 metabolites). Comparisons of k-ecoli457 with a
previously constructed core model15 revealed significant improv-
ement in prediction accuracy despite the significantly expanded
model scope and the corresponding paucity of fluxomic data for
distal pathways. We found that the global inventory of highly
participating metabolites (that is, cofactors), the large number of

resolved reaction fluxes coupled to the biomass measurement and
the complete description of the proportions of metabolites sequ-
estered within biomass contributed to the prediction improve-
ments in k-ecoli457. A comparison between predicted fluxes,
however, revealed that the average relative error of k-ecoli457
when applied to only the core reactions is higher compared with
the core model (3 versus 10%). This is because the core model
has been tuned exclusively for these reactions whereas k-ecoli457
must describe four times more fluxes in (25 versus 7)
experimental data sets. Cofactor concentrations in k-ecoli457
now participate in hundreds of reactions making it very difficult
to pinpoint a unique value that matches all experimental data.
Significant uncertainty in the experimental data sets across
multiple pathways also contributes to the inability to perfectly
match the core reaction set. Despite these challenges, 61% of the
predicted fluxes by k-ecoli457 (78% in the core model) are within
1 s.d. of the experimental data. In addition, the agreement of the
experimental yields (see Fig. 5) provides additional confidence for
the robustness of the developed model. Prediction deficiencies
remained for pathways lacking metabolic flux data sets in
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response to genetic perturbations (for example, membrane lipid
metabolism and ED pathways). For example, we observed that
even after the inclusion of additional flux data sets for k-ecoli457
parameterization compared with that of core model, the activity
of the ED pathway was not properly captured. As the majority of
the training flux data sets (that is, 22 out of 25) had an inactive
ED pathway, the k-ecoli457 model predicted the same. While
simple inclusion of additional data sets with nonzero ED flux may
have rectified this limitation, this a posteriori correction may not
be a fair representation of the proposed model and methodology.
These limitations are likely to be ameliorated as expanded
metabolomic (for example, MetaboLights34) and fluxomic (for
example, CeCaFDB35) data sets are becoming increasingly
available. Given data sets that span the metabolic capabilities of
E. coli, the proposed machine-learning inspired parameterization
strategy demonstrated that it is indeed possible to train a single
model to predict the genetic and environmentally perturbed
phenotypes with fidelity. In the same spirit, the same multi-data
set parameterization concepts can be leveraged for applications of
kinetic models in personalized healthcare36, biomarker
identification37, drug discovery38 and modelling of microbial
communities39.

Remaining challenges not addressed in this effort include
allowing for substrate(s) uptake rates to become an output of the
kinetic model. In k-ecoli457 all mutant fluxes in the training data
sets were scaled with the corresponding substrate uptake rate.
Given substrate uptake rates data sets24,40 for different mutations
and growth conditions, a kinetic formalism that describes carbon
uptake could be constructed and parameterized largely indepe-
ndent of internal reactions. In addition, large-scale metabolomic
data sets for absolute or even relative concentrations34 can
directly be ported in the machine-learning algorithm to further
constrain model parameter values. This was not attempted here
as we chose to treat metabolomic data a posteriori as a model
consistency check. In addition, the assembled compilation of
experimental product yields for 320 designed strains could serve
as a starting point for more comprehensive compilations41 that
will help to fairly assess follow-up efforts aimed at improving the
accuracy and coverage of k-ecoli457. Kinetic model parame-
terization using such comprehensive data sets, however, must be
carefully interpreted. For example, there exists substantial
evidence for the presence of pathway channelling42–44 in meta-
bolism as a mechanism for increasing the local concentration of
metabolites and thus boost reaction rates (for example,
channelling of glycolysis intermediates in E. coli45). As a result,
if the relevant metabolite participates in other reactions, then the
kinetic model will simply pool all the ‘local’ concentrations of the
metabolite within a single ‘average’ concentration. This difference
between local and average concentrations will propagate in the
value of kcat so as the reaction flux value is matched. This means
that the values of the estimated metabolite concentrations and
kcat values may not always reflect in vivo kinetics but rather
represent cell-averaged values. In addition, many other factors
such as growth stage of the strain or even experimental group
carrying out the fluxomic analysis can affect the quality and
reproducibility of the flux data sets. These factors can lead
to different flux data sets for exactly the same genotype
(for example, different flux distributions for wild-type strain in
ref. 20 versus ref. 46 or the different effect of pfkA and pfkB
knockouts on glycolytic activity in ref. 20 versus ref. 47).
Including conflicting flux data sets would cause significant
problems in parameter estimation as the model will try to
match the average values between the two data sets that are
likely not physiologically relevant. Accounting for such
variations remains an important topic to be addressed in
follow-up studies.

Looking beyond substrate-level regulation, the increasing
availability of data sets that provide genome-wide collections of
interactions between mRNAs48, proteins49 and metabolites50 has
dramatically expanded our knowledge of transcriptional,
(post)translational and substrate-level interactions. Although the
relative contribution of each of these regulatory layers is likely to
be context dependent51, systematic implementation of regulatory
events across multiple layers will ultimately be needed. Successful
implementation of allosteric modification52 and substrate-level
regulation11 with elementary kinetic mechanisms described in
this paper establish a foundation for including additional layers.
Developing efficient methods for reducing the complexity of
models into more manageable ones without any information loss
would also increase usability and community acceptance. This
will also reduce computation complexity of integrating kinetic
information into computational strain design protocols4,11. In
particular, we have recently integrated 36 reactions with a kinetic
description in the core model for strain design using the
k-OptForce procedure11. Moving towards strain design with a
full kinetic representation will ultimately require advances in
solution techniques and accelerated ways of reaching steady-state
fluxes and concentrations.

Methods
Model scope and initial ensemble construction. A metabolic model of E. coli
metabolism composed of 457 reactions and 337 metabolites was constructed
(see Fig. 1a and Supplementary Data 1). This model accounts for all reactions
from the genome-scale iAF1260 model27 that carry flux under the experimental
conditions of the flux measurements except lipopolysaccharide and murein
biosynthesis. These include reactions in glycolysis/gluconeogenesis, the PP
pathway, the TCA cycle, anaplerotic reactions, amino acid synthesis/degradation,
fatty acid oxidation/synthesis and a number of reactions in other parts of
the metabolism, such as co-factor and alternative carbon metabolism, membrane
lipid and cell envelope synthesis and oxidative phosphorylation pathways
(see Fig. 1b). In addition, 295 regulatory interactions were extracted from
BRENDA24 and EcoCyc25 and included in the model by introducing new
regulatory reactions (see Fig. 1c) (see Supplementary Data 1 for a comprehensive
list)53. A simplified version of the biomass equation for E. coli described in (ref. 54)
was also integrated into the model including all amino acids as well as other
biomass constituent precursors in the central metabolism. This biomass equation
was only used to ‘drain’ biomass precursors from the pathways absent in k-ecoli457
(see Fig. 1).

Following the EM procedure19, all metabolic reactions and regulatory
interactions in the model were first decomposed into their elementary steps
and a mass action kinetic was developed for each elementary reaction. Elementary
kinetic parameters were next expressed in terms of elementary reaction parameters,
reaction reversibilities R and enzyme fractions ê, both bounded between zero
and one. Reaction reversibility is defined as the elementary rate of the
backward reaction divided by the forward reaction for each elementary step
(R ¼ vb=vf

� �sign Vnetð Þ
where Vnet is the net flux of the reaction). Enzyme fraction

is defined as the level of unbound enzyme e normalized by the total pool of the
specific enzyme (ê ¼ e=etot and êtot ¼

P
ê ¼ 1). Metabolite concentrations were

also normalized using the reference (wild-type) strain values. Elementary kinetic
representations and scaled metabolite concentrations provide a convenient scaling
between zero and one for parameter sampling for enzyme fractions and reaction
reversibilities consistent with thermodynamic principles19. We used experimentally
measured flux data for a wild-type E. coli strain growing aerobically with glucose20

as the reference strain for the ensemble scaling and construction.
The reference flux distribution was obtained by first maximizing biomass yield

(per 100 mmol g DW� 1 h� 1 of glucose uptake and 200 mmol g DW� 1 h� 1 of
oxygen uptake) in the iAF1260 model using FBA while imposing the experimental
flux measurements (for 43 reactions)20 as constraints. Next, flux variability
analysis55 was used to identify the flux ranges for reactions without experimental
measurements upon fixing the biomass flux at the value obtained in the first step.
The obtained flux ranges were then used to constrain the reactions without
available measurements. A feasible flux distribution was then obtained by imposing
the experimental data along with flux variability analysis-driven flux ranges in
our model by maximizing biomass yield. This flux distribution was then used to
anchor steady-state fluxes during the uniform sampling of the model parameters
and elementary kinetic ensemble construction. We used an ensemble size of
217¼ 131,072 models, as no improvement in model predictions and convergence to
the optimal solution was achieved for a larger ensemble size.

Multiple flux data sets for model parameterization. Model parameterization
was carried out using steady-state flux data for 25 mutant strains of E. coli under
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aerobic as well as anaerobic conditions with multiple carbon substrates. In parti-
cular, the flux data sets include nineteen single knockout mutant strains growing
under aerobic conditions (that is, Dpgi, DpykA, DpykF, DppsA, Dgnd, Dzwf, Drpe,
DpfkA, DpfkB, DfbaB, DgpmA, DgpmB, Dpgl, DrpiA, DrpiB, DtalA, DtalB, DtktA
and DtktB)20 and two strains growing under anaerobic conditions (that is, a wild-
type and Dldh) with glucose as the carbon substrate21, three strains growing under
aerobic conditions with pyruvate as the carbon substrate (that is, wild-type, Dzwf
and Dgnd)22 and one strain growing under aerobic conditions with acetate as the
carbon substrate (that is, wild-type)23. In total, we extracted flux measurements for
B30 reactions in each mutant strain including the major intracellular reactions in
glycolysis, the PP pathway and the TCA cycle (see Fig. 1a)20. In addition, we
performed a coupling analysis with the E. coli biomass reaction56 to augment the
set of flux data beyond those in central metabolism. We found that between 33 and
36 reactions (depending on the specific mutant) were fully coupled with biomass
production and were added to the list of measured fluxes. These reactions were, not
surprisingly, located in biomass constituent biosynthesis pathways, such as cell
envelope metabolism and amino acid synthesis pathways (that is, threonine, lysine,
methionine, valine, leucine, isoleucine, tyrosine, tryptophan, phenylalanine and
histidine metabolism) (see Supplementary Data 1).

Confidence intervals of the estimated and measured parameters. Confidence
intervals were provided only for the measured fluxes of the wild-type strain in the
training data sets20. Consequently, we used the same confidence intervals reported
for each reaction in the wild-type strain to construct a flux range (that is, 1 s.d.
confidence interval) around the reported values in the mutant strains. Likewise, for
the metabolites with no reported confidence range in the mutant strains, we used
the same confidence intervals reported for each metabolite in the wild-type strain
to construct a concentration range (that is, 1 s.d. confidence interval). In addition,
for the experimentally measured Michaelis–Menten constants (that is, Km and kcat)
with multiple reported values in BRENDA24 and EcoCyc25, confidence intervals
were calculated using 1 s.d. from the mean of the reported parameter values. For
parameters with only a single measured value we used a range of 10% from the
reported parameter values as confidence intervals (see Supplementary Data 2).
In addition, the predicted normalized metabolite concentrations and Michaelis–
Menten constants were scaled by the corresponding metabolite concentration
confidence ranges in the reference (wild-type) strain to convert them into the
actual ranges (see Supplementary Methods, conversion of estimated elementary
kinetic parameters). To reduce the uncertainties of the base concentrations, we
extracted seven additional measured concentration data sets for the wild-type
strain in addition to the reference strain data and used their confidence range
intersections as the base ranges16,28,33,57–60 (see Supplementary Table 2). For
metabolites with no concentration data in the wild-type strain (that is, 12%) we
used the reported ranges in the iAF1260 model of E. coli27. Next, the agreement
quality is gauged as an overlap between the reported and predicted confidence
ranges.

Estimation of k-ecoli457 parameters. Model parameterization was performed in
two stages: (a) estimation of the elementary kinetic parameters and isozyme activity
using the experimentally measured flux data for the single knockout mutants
growing under aerobic minimal glucose conditions (that is, a total of nineteen flux
data sets); and (b) estimation of enzyme levels under minimal glucose fermentative
(anaerobic) conditions and alternate carbon substrates pyruvate and acetate
(that is, a total of six flux data sets).

Estimation of elementary kinetic parameters and isozyme activity. A GA
implementation was used that minimized the deviation of the model predictions
from the available flux measurements for the nineteen mutant strains grown
aerobically with glucose15. In essence, this optimization based approach identifies
the optimal combination of the sampled parameters and consequently the
equivalent Km and vmax values in Michaelis–Menten description by permuting
parameterizations for different reactions across models in the ensemble. The
consequence of an enzyme knockout is captured by fixing the total pool of the
normalized enzyme level êtot to zero (that is, êtot ¼

P
ê ¼ 0) for the deleted

reaction, while êtot is assumed to remain unchanged for the remaining reactions.
For the reactions catalysed by isozymes, deletion of one isozyme reduces (total
enzyme) êtot to a level between zero and the reference level (that is, 0 � êtot � 1),
as it is not clear the extent at which the remaining isozyme can complement for the
lost activity. Therefore, we allowed the minimization of the model predictions with
experimental measurements to arrive at the best value for êtot while maintaining
the sum of êtot for all the isozymes to one. In total, we allowed the normalized
enzyme levels êtotfor seven reactions catalysed by 12 isozymes to vary (that is,
DpfkA, DpfkB, DfbaB, DgpmA, DgpmB, Dpgl, DrpiA, DrpiB, DtalA, DtalB, DtktA
and DtktB under aerobic conditions with glucose as the carbon substrate) during
step one (see Supplementary Methods, GA implementation).

Estimation of enzyme levels. Upon fixing the estimated elementary kinetic
parameters (that is, Km), we next estimated êtot for the mutant strains growing
anaerobically and those with pyruvate or acetate as the carbon substrate, separately.
We note that this is equivalent to estimating vmax (¼ êtotkcat) in Michaelis–Menten

description, while fixing Km to the estimated values (see Supplementary Methods,
GA implementation). This is because we anticipated that only the enzyme levels are
likely to change significantly when growth is switched from aerobic to anaerobic or
to an alternate carbon substrate61–63. Therefore, the êtot for all reactions in the
model were allowed to vary from zero (that is, deletion) to a 10-fold overexpression
(that is, 0 � êtot � 10) for mutant strains growing (i) anaerobically with glucose
(that is, two flux data sets), (ii) aerobically with pyruvate as the carbon substrate
(that is, three flux data sets) and (iii) aerobically with acetate (that is, one flux data
set). The total number of enzymes whose total normalized pool was allowed to vary
was kept at a minimum to avoid model overparameterization (see Supplementary
Methods, enzyme level changes).

Evaluation of predicted yields for overproducing mutants. We implemented
enzyme level changes by allowing the total pool of the normalized enzyme to vary
between a 10-fold downregulation and the wild-type level (0:1 � êtot � 1) for
reported enzyme downregulations. For enzyme upregulations, the normalized
enzyme level was set between the wild-type level and a 10-fold upregulation
(1 � êtot � 10). This approximation was used because the level of enzyme change
is often not available in the relevant literature. Gene deletions were implemented
by setting the êtot of the encoded enzyme to zero.

Least squares model parameterization and yield analysis. The objective
function of the parameterization problem z is to minimize the relative deviation
of k-ecoli457 predicted flux vj from the experimental data vexp

j for reaction j with
measured data N across all the mutant strains M. For each reaction with measured
flux data, the average relative error is scaled by its coefficient of variation CVj to
capture the reported uncertainty in the experimental data (average scaled relative
deviation)64. As a result, the reactions with tighter confidence intervals have a
larger contribution in the objective function.

z ¼ 1
M

XM

m¼1

1
N

XN

j¼1

1
CVj

vj � vexp
j
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j
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Product yield y is defined as the rate of reaction that produces the product per rate
of uptake reaction (product mol per glucose mol).

y ¼ vproduct

vglucoseuptake

For comparisons, the majority of experimental studies reported only the measured
product yield with no confidence range. Consequently, for each product yield the
error was calculated based on relative deviation between the measured yexp and
predicted ypre values.

z ¼ ypre � yexp

yexp

����
����

All parameterization problems were solved using a GA implementation. All
calculations, including the ensemble construction and the GA problems, were
implemented in MATLAB (MathWorks Inc.) and solved in parallel on three nodes
of Intel Xeon E5-2670 v2 with 2.5 GHz (20 cores per node and 256 GB RAM)
on the Penn State Lion-X clusters. The k-ecoli457 parameterization took
B58,800 CPU-hour. Integrating k-ecoli457 (that is, solving the system of ordinary
differential equations) for a given metabolic condition also takes up to a few
minutes. The estimated elementary kinetic parameters as well as stoichiometry
matrix of the model are available in Supplementary Data 1 and the executable
k-ecoli457 is available for download in Supplementary Software 1 and at
http://www.maranasgroup.com as a MAT-file (MathWorks Inc.).

Code availability. The authors declare that the code supporting the findings of this
study is available within the article’s Supplementary Information files
(Supplementary Software 1) and at http://www.maranasgroup.com as a MAT-file
(MathWorks Inc.).

Data availability. All data generated or analysed during this study are included in
this published article and its Supplementary Information files.
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