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Vascular endothelial growth factor (VEGF) and bone morphogenetic proteins (BMPs), as key mediators in angiogenesis and
osteogenesis, are used in a combined delivery manner as a novel strategy in bone tissue engineering. VEGF has the potential to
enhance BMPs induced bone formation. Both gene delivery and material-based delivery systems were incorporated in previous
studies to investigate the synergistic effects of VEGF and BMPs. However, their results were controversial due to variation of
methods incorporated in different studies. Factors influencing the synergistic effects of VEGF on BMPs induced bone formation
were identified and analyzed in this review to reduce confusion on this issue. The potential mechanisms and directions of future
studieswere also proposed here. Further investigatingmechanisms of the synergistic effects and optimizing these influencing factors
will help to generate more effective bone regeneration.

1. Introduction

Globally, approximately 15 million fractures are reported per
year [1, 2], with 5–10% nonunion rate [1, 3, 4]. In addition,
other diseases including tumors, infections, and degenerative
diseases may also lead to bone defect. Bone is the second
most commonly transplanted tissue, preceded only by blood
transfusion [1]. Bone grafts performed in the United States
alone are approximately 1.6 million per year, bringing huge
medical and economic burden [2]. A variety of strategies
have been developed to repair the diseased or defected bone.
Autografts, which can provide desired growth factors, cells,
and evenmicrocirculation system, have always been regarded
as the gold standard [3, 5, 6]. Unfortunately, autografts are
restricted by some disadvantages, such as limited donor
availability and donor-site morbidity [3, 6]. Allografts and
xenografts as alternatives are limited by the potential disease

transmission and immune rejection [3, 6, 7]. Tissue engi-
neering is generally considered as a promising technique to
overcome the disadvantages of traditional therapies.

A major objective of bone tissue engineering is to get
effective bone regeneration, which is related to successful
osteoinduction. Osteogenic cytokines, such as bone mor-
phogenetic proteins (BMPs) and platelet-derived growth
factor (PDGF), are the ideal candidates to enhance the
osteoinduction [8, 9]. BMPs, identified and named by Urist
[10, 11], belong to transforming growth factors 𝛽 (TGF-𝛽)
superfamily. The osteogenic ability of BMPs has been well-
documented in literatures [12]. Among them, BMP2, BMP4,
BMP6, BMP7, and BMP9 possess osteogenic properties [12,
13]. Furthermore, rhBMP2 and rhBMP7 have been approved
by FDA (US Food and Drug Administration) for specific
clinical applications [12, 14]. However, in the last few years,
some studies showed that desired clinical results could not
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Figure 1: The role of VEGF on BMPs induced bone formation.

been obtained by using BMPs alone.Moreover, complications
caused by high-dose application were worrisome [3, 15–18].

Blood supply is arguably the largest challenge for any
tissue engineering [25, 26]. Within the body, the effective
diffusion distance of oxygen and nutrients is no more than
200𝜇m from the nearest capillary [25–27]. Bone is a highly
vascularized tissue. Reconstructing local microcirculation is
prerequisite for effective bone regeneration [28]. Inhibiting
angiogenesis will reduce bone formation [29–31], while pro-
moting angiogenesis can enhance bone regeneration [32].
Angiogenesis is regulated by several angiogenic factors, such
as fibroblast growth factors (FGFs), transforming growth
factor-𝛼/𝛽 (TGF-𝛼/𝛽), PDGF, and notably vascular endothe-
lial growth factor (VEGF) [15, 33–37]. Gerber et al. [29]
investigated the role of VEGF in angiogenesis and bone
formation. Their results shown that vascular invasion and
bone formation were both suppressed by inhibiting VEGF
in 24-day-old mice [29]. It was also revealed that application
of VEGF-specific antagonist (soluble Flt1) could inhibit the
bone regeneration induced by BMP4 and BMP2 [19, 20].

The undesirable outcomes of using BMPs alone and
the importance of blood supply inspire tissue engineering
scientists to explore the combined application of osteogenic
and angiogenic factors [15, 38–40]. One of the most studied
directions is the codelivery of BMPs and VEGF.The addition
of VEGF is expected to enhance bone formation and reduce
the amount of BMPs used.

2. The Combined Application of
VEGF and BMPS

2.1. The Role of VEGF on BMPs Induced Bone Formation.
As a key mediator of angiogenesis [15, 38], VEGF also has
direct and indirect effects on bone formation [7, 43]. VEGF
may increase vascular permeability after promoting local
angiogenesis [43, 49]. This will facilitate the recruitment of
mesenchymal stem cells (MSCs) and osteoprogenitor cells to
indirectly enhance the ability of bone regeneration [7, 43].
VEGF can also directly attract MSCs and promote their
osteogenic differentiation [7, 43]. Enhanced neovasculariza-
tion and bone regeneration were induced by the controlled

release of VEGF in the study of Kaigler et al. [32]. After block-
ing VEGF, angiogenesis and osteogenesis were both inhibited
[19, 20]. In addition to increasing angiogenesis and recruit-
ment of MSCs, VEGF can act synergistically with BMPs to
enhance cell survival, cartilage formation and resorption, and
mineralized bone formation [19, 20]. Recently, the cross-talk
of signaling pathways between VEGF and BMPs has gained
growing attention [15, 50, 51]. Studies indicated that the
synergistic effects of VEGF onBMPs induced bone formation
were not only due to the increased angiogenesis (Figure 1).
After the activation of VEGF signaling, the response of
MSCs to BMP6 was significantly enhanced both in vitro and
in vivo [15, 23, 51]. When treated with VEGF and BMP6,
the expression of osteogenic genes including ALP, Dlx5,
and osterix was significantly upregulated [50]. Furthermore,
BMP-nonresponsive osteoprogenitor cells responded well to
the costimulation of VEGF and BMP6 [51]. However, the
accurate mechanisms are still unknown.

2.2. Controversy on the Synergistic Effects between VEGF and
BMPs. Although many studies have focused on this issue,
whether VEGF can enhance BMPs induced bone formation
in vivo is still very controversial [46]. The variation of
influencing factors in different studies has led to completely
opposite results, bringing much confusion on this issue.
Based on literatures in this field, several important factors
(Figure 2), which can significantly influence the synergistic
effects between VEGF and BMPs, were identified and ana-
lyzed in the present review.These factors could partly explain
the variations in the results of different studies and provide
important information for future studies to generate more
effective bone regeneration.

3. Influencing Factors

3.1. BMPs. AmongBMP family, BMP2, BMP4, BMP6, BMP7,
and BMP9 possess osteogenic properties [12, 13, 52–54].They
may share some properties in osteoinductive activity, but
their interactions with VEGF are distinct. Synergistic effect of
BMP4 with VEGF on bone formation is quite different from
that of BMP2. Osteogenic effect of BMP4 was significantly
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Figure 2: Factors influencing the synergistic effects between VEGF and BMPs.

affected by exogenous VEGF and it was more sensitive to the
ratio of VEGF to BMP4 [19, 20]. High ratio of VEGF/BMP4
was obviously detrimental to themineralized bone formation
[19].However, BMP2 could inducedwell-formedmineralized
bone under high ratio of VEGF/BMP2, although the amount
of bone formation also decreased compared to the groupwith
lower ratio of VEGF/BMP2 [20].The reasonwhyBMP2 is less
sensitive to VEGF remains unclear. A possible explanation
is that BMP2 itself possesses angiogenic activity, leading to
a decreased reaction to VEGF [20].

3.2. DeliveryManner of VEGF and BMPs. Traditional admin-
istration of growth factors is limited by their relatively short
half-lives and potential side effects [55–57]. To overcome
these disadvantages, gene delivery [6, 58–63] and material-
based delivery system [64–70] have been developed in tissue
engineering. There are mainly two strategies used in the
codelivery of VEGF and BMPs. One of them is the expression
of transgenes [19, 71–75] and the other is controlled release
of growth factors from specific materials [38, 67, 76–78].
Transfected cell types in gene delivery and controlled release
manners in material-based delivery can obviously influence
the synergistic effects of VEGF and BMPs.

3.2.1. Transfected Cell Types in Gene Delivery. For transgenes
therapy, plasmid, virus, and transfected cells are usually used
as vectors or carriers for sustained expression ofVEGF and/or
BMPs [19–24, 79, 80] (Table 1). When transfected cells are
transplanted in vivo, the synergistic effects of VEGF on
BMPs induced bone formation are cell-type dependent. Peng
et al. [19] transfected muscle-derived stem cells (MDSCs)
to express VEGF or BMP4. Combined transplantation of
VEGF- and BMP4-expressing cells resulted in significantly
more bone formation compared to transplantation of BMP4-
expressing cells alone [19]. Human periosteum-derived
cells, osteoprogenitor cells, and bone marrow stromal cells
(BMSCs) have been also proven to be effective carriers to
achieve the synergistic effects between VEGF and BMPs [21,
23, 79]. However, when C2C12 cells (mouse myoblasts) and
NIH/3T3 cells (mouse fibroblasts) were transfected to express
BMP4 or VEGF + BMP4, VEGF inhibited the calcification

of cells in vitro and exhibited a detrimental effect on bone
formation in vivo [22].

3.2.2. Controlled Release Manners in Material-Based Delivery.
Studies have adopted different controlled release manners for
delivering VEGF and BMPs to investigate their synergistic
effects [7, 13, 41–48, 81–83] (Table 2). Biomaterials, such as
gelatin, chitosan, collagen and poly (lactic-co-glycolic acid)
(PLGA), can serve as carriers to release growth factors in a
sustained manner in vivo [38, 84–87]. The controlled drug
delivery system can be incorporated into porous materials to
form a hybrid bone substitute scaffold, which can fill bone
defect and induce effective bone repair. During normal bone
regeneration, the expression of VEGF is upregulated in the
early days and peaks around day 5–10 [43, 88–90], while
normal expression of BMPs peaks at day 21 and thereafter [43,
91, 92]. In order to achieve the sequential release of growth
factors, Kempen et al. [43] adopted PLGA microspheres and
poly (propylene) scaffold as a sustained release system of
BMP2 and used gelatin hydrogel as a fast release system of
VEGF.The in vivo release profiles of VEGF showed an initial
burst release in the first 3 days (89.9 ± 2.9% at the ectopic
site). The remaining VEGF exhibited a sustained release over
35 days at a low level. The release of BMP2 was sustained
over 56 days [43]. Ectopic bone formation was significantly
enhanced by the combined application of VEGF and BMP2
compared to that of BMP2 alone [43]. However, some other
authors supported more sustained delivery (nonfast release)
of VEGF [7, 32]. The effect of fast release of VEGF is
still controversial. The vascular network induced by VEGF
alone is immature [26, 93–95]. If its concentration falls too
low before the formation of mature vascular network, the
unstable vascular network may be remodeled or trimmed
[42, 95, 96]. This is also supported by the results of previous
studies that synergistic effect of VEGF and BMP2 was only
presented at 4 weeks in vivo, while being absent at 12 weeks
[42]. In both groups of VEGF alone and VEGF + BMP2,
a decrease of vascular density was observed at 12 weeks
compared to that at 4 weeks [46]. In fact the effective delivery
manner of VEGF in the study of Kempen et al. [43] is more
like a composite model: burst release in the early stage and
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Table 2: Controlled release VEGF and BMPs.

Authors BMPs Carrier Models Combination
delivery

Ratio
(VEGF/BMP)

Bone formation in
combined delivery group

Kakudo et al.
2006 [41] BMP2 Collagen Rat

Intramuscular (3 weeks) Simultaneous 1 : 2
Enhanced (compared to

BMP2 alone)
[41]

Patel et al.
2008 [42] BMP2 Gelatin

Rat
Calvarial defect (4/12

weeks)
Simultaneous 6 : 1

Enhanced at 4 weeks
(compared to BMP2

alone)
No significant difference
at 12 weeks (compared to

BMP2 alone)
[42]

Kempen et al.
2009 [43] BMP2

PLGA-BMP2 (sustained
release)

Gelatin-VEGF (fast release)

Rat
Subcutaneous (8 weeks)

Segmental femoral
defect (8 weeks)

Sequential 1 : 3.3

Ectopic:
enhanced (compared to

BMP2 alone)
Orthotopic:

no significant difference
(compared to BMP2

alone)
[43]

Young et al.
2009 [44] BMP2 Gelatin

Rat
Calvarial defect (12

weeks)
Simultaneous 6/12/24 : 1

No significant difference
(compared to BMP2

alone)
[44]

Roldán et al.
2010 [45] BMP7

BCP scaffold (growth
factors injected in the

scaffolds)

Mice
Subcutaneous (12 weeks) Simultaneous 2 : 5

No significant difference
(compared to BMP7

alone)
[45]

Zhang et al.
2011 [7] BMP2 Silk hydrogels

Rabbits
Sinus floor elevation
model (4/12 weeks)

Simultaneous 2 : 3
Enhanced (compared to

BMP2 alone)
[7]

Geuze et al.
2012 [13] BMP2

PLGA-VEGF/BMP2 (fast
release)

Gelatin-VEGF/BMP2
(sustained release)

Dog
Ectopic:

intramuscular (9 weeks)
Orthotopic site: ulnar

defect (9 weeks)

Sequential or
simultaneous 1 : 30

No significant
enhancement effect
(compared to BMP2

alone)
[13]

Hernández et
al. 2012 [46] BMP2 PLGA

Rabbit
Intramedullary femur
defect (4/12 weeks)

Simultaneous 1 : 10/50

Enhanced at 4 weeks
(compared to BMP2

alone)
No significant difference
at 12 weeks (compared to

BMP2 alone)
[46]

Das et al. 2015
[47] BMP6 PLGA

Rat
Mandibular defect
(2/8/12 weeks) Simultaneous 1 : 1

Enhanced (compared to
BMP6 alone)

[47]

Lv et al. 2015
[48] BMP2 Fibrin glue (fast release)

Rabbit
Femoral condyle defect

(4 weeks)
Simultaneous 1 : 100

No synergistic effect
(compared to BMP2

alone)
[48]

sustained delivery at a low level in later stage. The optimal
delivery manner of VEGF needs to be further studied. In
addition, combining other angiogenic factors, such as PDGF,
to facilitate the maturity and stability of neovascularization
may be more effective [95].

Although some authors reported that fast release of
BMP2 might induce more ectopic bone regeneration than

its sustained release [13], more papers confirmed that the
sustained delivery strategy would prolong its activity and
reduce its potential side effects [7, 43, 97–101].

3.3. Ratio of VEGF to BMPs. The ratio of VEGF to BMPs
has an obvious impact on their synergistic effects. Although
the interactions between BMPs and VEGF are inconsistent
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among different kinds of BMPs, there is a similar trend that
VEGF seems to be more effective at low ratio of VEGF/BMPs
than at a high ratio [19, 20]. Peng et al. [19] have adopted the
cotransplantation of VEGF- and BMP4-expressing muscle-
derived stem cells at different ratios to study its relationship
with bone formation. The amount of bone formation in
groups with the ratios of VEGF/BMP4 at 1 : 5 and 1 : 1 was
significantly larger compared to that in the group with a ratio
of 5 : 1 [19].The interactions of VEGF and BMPs are based on
their influence on the function and differentiation of target
cells. Under high ratio of VEGF/BMPs, excessive VEGF will
push localMSCs towards an endothelial lineage, reducing the
cells available for osteogenic differentiation [19, 44]. It was
reported that high dose of VEGFmight lead to hemangioma-
like tissue formation [102, 103]. It was also suspected that
high ratio of VEGF/BMPs may increase the recruitment and
survival of osteoclasts, leading to excessive bone resorption
[15, 104–106]. However, Peng et al. [19] disagreed with this.
In their study, the markers of osteoclasts were similar in
groups with low and high ratios of VEGF/BMP4 [19]. It
is important to note that ratio of VEGF/BMPs reported in
most studies is the ratio of total dose of growth factors
[42, 44] or total amount of transfected cells used [19, 20].
However, what actually affects the bone formation is the
ratio of released growth factors. As reported by Lohse et
al. [83], continuous delivery of VEGF and BMP2 at a ratio
approximately 1 could significantly increase the induced bone
formation compared to that at a ratio ≤0.5. Future studies
should further investigate the relationship between the ratio
of released VEGF/BMPs and the amount of bone formation
both in vitro and in vivo.

3.4. AnimalModels. Whenother experimental conditions are
controlled to be consistent, the synergistic effects of VEGF
and BMPs vary among different animal models. In the same
studies [13, 43], synergistic effects between VEGF and BMPs
were only observed in ectopic models, while being absent
in orthopaedic sites, indicating the synergistic effect was
location-dependent. Facilitating the recruitment of MSCs is
one of the mechanisms why VEGF can enhance bone forma-
tion elicited by BMPs. Nevertheless, in the bone defect site,
periosteumand exposedmarrow cavity can offer an abundant
of MSCs [43]. Furthermore, local hematoma in orthopaedic
site may serve as a source of endogenous angiogenic factors
[48, 107–109]. The abundant source of MSCs and increased
endogenous angiogenic factors may decrease the effect of
exogenous VEGF. The synergistic effects between VEGF and
BMPs are supposed to be more prominent in areas suffering
from compromised circulation, such as ischemia model and
old bone defect model.

3.5. Assessment Time. The synergistic effects of VEGF and
BMPs might be observed in a short study period, while
being absent in an extended period [42, 46]. The decrease of
concentration of growth factors, such as VEGF, may partly
explain this, as analyzed above. Another possibility proposed
in this review is whether the application of exogenous growth
factors will downregulate the secretion of endogenous VEGF

and BMPs within a certain period. If so, after depletion of
exogenous growth factors, the lack of endogenous growth
factors will be detrimental to bone regeneration. Extending
observation period and setting different time points should
be helpful to get further understanding of the synergistic
effects and to optimize the combination application strategies
in the future studies.

3.6. Other Influencing Factors. In addition to the factors
mentioned above, material carriers of the delivery system,
methods used in assessment of bone formation, and the intro-
duction of other growth factors or cells might also influence
the evaluation of synergistic effects of VEGF and BMPs.
Effective control of these related factors can help us to get
further understanding of the mechanisms of the interactions
between these two key growth factors in angiogenesis and
osteogenesis.

4. Conclusions

The combined delivery of VEGF and BMPs is a novel and
promising strategy in bone tissue engineering. VEGF can
help to promote the construction of vascular network, to
improve the local supply of oxygen and nutrients, to increase
the recruitment and survival of MSCs, and to enhance
the response of MSCs to BMPs. When they are used in a
combined deliverymanner in vivo, VEGF has the potential to
synergistically enhance BMPs induced bone formation.Many
studies have been conducted to investigate the effect of this
approach. However, due to the variation of BMPs, carriers
of growth factors, controlled release manners, growth factors
ratio, models, and assessment time, their results are pretty
controversial. These influencing factors were identified and
analyzed in this review to avoid more confusion on this issue.
Future studies should further investigate the mechanisms of
their synergistic effects and optimize these influencing factors
to generate more effective bone regeneration.
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