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This paper presents an algorithm, for use with a Portable Powered Ankle-Foot Orthosis (i.e., PPAFO) that can automatically detect
changes in gait modes (level ground, ascent and descent of stairs or ramps), thus allowing for appropriate ankle actuation control
during swing phase. An artificial neural network (ANN) algorithm used input signals from an inertial measurement unit and foot
switches, that is, vertical velocity and segment angle of the foot. Output from the ANN was filtered and adjusted to generate a
final data set used to classify different gait modes. Five healthy male subjects walked with the PPAFO on the right leg for two test
scenarios (walking over level ground and up and down stairs or a ramp; three trials per scenario). Success rate was quantified by
the number of correctly classified steps with respect to the total number of steps.The results indicated that the proposed algorithm’s
success rate was high (99.3%, 100%, and 98.3% for level, ascent, and descent modes in the stairs scenario, respectively; 98.9%, 97.8%,
and 100% in the ramp scenario).The proposed algorithm continuously detected each step’s gait mode with faster timing and higher
accuracy compared to a previous algorithm that used a decision tree based on maximizing the reliability of the mode recognition.

1. Introduction

Everyday walking is generally not only limited to level, over-
ground walking but also involves ascending and descending
stairs and ramps. Lower limb joint kinematics and kinetics
change with different types of walking environments, or gait
modes [1]. Therefore, the ability to recognize and control for
different gait modes when using powered lower limb pros-
theses or orthoses must be addressed if the devices are to be
used beyond treadmill walking or walking around a clinic or
laboratory.

Several studies have explored gait mode recognition [1–
20].Mostwere for prosthetic devices [2–11, 17–20]. Someused
manual switching schemes to deal with changing gait modes
during walking. Otto Bock [4] demonstrated an approach
where a user manually switches modes using Ottobock’s C-
Leg by tapping the heel. Au et al. proposed two finite state
controllers to classify between level ground and stair descent
mode using electromyography signals measured from inten-
tionally activated residual muscles in the amputated limb [5].
This approach also needed a large number of sensor signals

and could not detect stair ascentmode.These algorithmswere
not autonomous and needed user’s input [4, 5].

Other studies have used autonomous systems based on a
variety of electromechanical sensors for detecting gaitmodes.
A number of methods (using socket interface forces, ankle
angle, or knee angle as input signals) were studied by the
group at Vanderbilt University for use with their lower limb
prosthesis [6–11]. A 𝑘-nearest neighbor algorithm to classify
different gait modes was used; however, in that study, three
different walking speeds were considered as the different gait
modes and not the changes in walking environment [6]. In a
separate study, principle component analysis with Gaussian
mixture models was used for gait mode recognition; two
modes (standing and walking mode) were considered as gait
modes [7–9]. A supervisory intent classifier combined with
a mid-level controller based algorithm to switch modes was
also examined [11]. These schemes were capable of detecting
different phases only during level ground walking (Phase
1: stance flexion/extension; Phase 2: preswing; Phase 3:
swing flexion; Phase 4: swing extension). Another common
approach for gait mode recognition involved using inertial
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measurement units (IMUs) or other sensors [12–16]. Zhang
et al. [12] developed an algorithm to predict upcoming terrain
height using a large number of sensors (laser sensor and four
IMUs). Wang et al. [13] also detected the locomotion mode
recognition by using similar sensor signals (laser sensor and
IMUs). These algorithms needed heavy computation to deal
with lots of data collected from themultiple different sensors.
Coley et al. [17] used a miniature gyroscope attached to the
shank to detect level ground and stair ascent modes. Being
a noncausal algorithm, this procedure could not be imple-
mented in real-time and had to be implemented during
postprocessing of the data since future input is needed for the
algorithm. Jang et al. [18] measured hip joint angles of both
legs and signals from IMUs at the moment of foot contact to
recognize level ground, stair ascent, or stair descent by using
a hip exoskeleton. This algorithm had a one-step delay, such
that the first step transitioning into a new mode was always
unrecognized.

Various researchers have used EMG signals from residual
muscles in the amputated limb for detecting intent recogni-
tion using prosthetic devices [19–23]. Young et al. designed
a dynamic Bayesian network for processing both mechan-
ical (velocity and position) and EMG sensors for intent
recognition [19, 20]. Miller et al. performed walking mode
classification by using linear discriminant analysis (LDA)
and support vector machine (SVM) on EMG signals for
transtibial amputees [21]. A similar approachwas also used by
Huang et al. [22, 23]. However, EMG signals collected from
patients with lower limb impairment due to neuromuscular
deficits may likely be unreliable or nonexistent. Thus, the
use of EMG signals for gait mode recognition of powered
orthoses used on such patient populations may not be
appropriate.

Li andHsiao-Wecksler [16] proposed an algorithm to rec-
ognize gait modes by using the Portable Powered Ankle-Foot
Orthosis (PPAFO). The PPAFO can provide powered dor-
siflexor or plantarflexor torque assistance to the ankle joint
using a pneumatic systemandwaist-worn tank of compressed
carbon dioxide (Figure 1). The algorithm used the real-time
vertical position and orientation of the foot using an IMU on
the PPAFO and also foot-ground contact information from
force sensitive resistor (FSR) sensors under the heel and toe.
This algorithmused training data to calculate optimal thresh-
old values for different stair heights or ramp grades; then
during test cases, the algorithm checked the height between
two consecutive strides and foot orientation to detect changes
in gait mode. As a consequence of this comparison approach,
limitations of this algorithm were dependent on multiple
trained stair heights or ramp grades and a one-step delay in
mode recognition.

In summary, existing gait mode recognition schemes
have shortcomings of not being autonomous [4, 5], delay in
detection of a new mode until the next step [16, 18], difficulty
of implementation in real-time [6–10, 17], dependency on
trained stair heights [16], or need for a large number of sen-
sors [12–15, 19, 20]. There are currently no reliable gait mode
recognition algorithms available which can detect all of the
modes without long delays and without the use of a large
number of sensors. In this study, we proposed an artificial

neural network (ANN) based algorithm to detect gait modes
automatically. This algorithm used data from a single IMU,
with fail-safe operation using two foot switches. Two of the
greatest advantages of ANNs are to approximate an arbitrary
function and also estimate a nonlinear model after learning
fromobserved data [24]. For this reason, anANNwas used to
estimate gait modes in this paper. We hypothesized that this
approach would detect different gait modes (level ground,
ascent of stairs or ramps, and descent of stairs or ramps) with
higher accuracy and less delay than the previous autonomous
algorithm that was proposed in Li and Hsiao-Wecksler [16].

2. Method

2.1. Proposed Approach. A supervised learning recognition
approach was developed using an artificial neural network
(ANN) for detecting the gait modes. This approach used a
multilayer feed-forward ANN of one hidden layer and one
output layer. Vertical foot velocity and foot segment angle
were used as the inputs. Training was done to determine
model parameters; then the approach was applied to gait data
collected on five healthy young adults. Success rate of the
proposed algorithm was evaluated and compared with the
previously developed algorithm by Li and Hsiao-Wecksler
[16].

2.1.1. Design of Artificial Neural Network. A feed-forward,
multilayer, artificial neural network [24] was used to perform
gait mode recognition (Figure 2). In the input layer, there was
an input vector which consisted of two sensor signals (foot
velocity and segment angle) with six tapped delays each, for a
total of 12 elements. To compensate for inherent sensor noise,
tapped delays were used in this study [24]. We conducted a
preliminary study to determine the appropriate number of
tapped delays to use. Six tapped delays were chosen because
the performance of the ANN improved and then plateaued
for more than five tapped delays. The hidden layer had
10 neurons and used log-sigmoid activation functions. The
output layer had three neurons and used a linear activation
function, which provided a vector with three elements. As a
network with one hidden layer with log-sigmoid activation
function and one output layer with linear activation function
is considered as a universal function approximation [24], this
study used this configuration.

Log-sigmoid functions were used as the activation func-
tion in the hidden layer. So the output of the hidden layer, aℎ,
can be found from

aℎ = 𝑓ℎ (wℎx + bℎ) . (1)

Here, x is the vector of inputs and (wℎ, bℎ) are the weights and
biases of the hidden layers. 𝑓ℎ(𝑛) can be expressed as

𝑓ℎ (𝑛) = 1
𝑒−𝑛 + 1 . (2)

The output layer provided the vector y(𝑡)which can be found
using

y (𝑡) = 𝑓𝑜 (w𝑜aℎ + b𝑜) , (3)
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Figure 1: The pneumatic Portable Powered Ankle-Foot Orthosis (PPAFO).
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Figure 2: Artificial neural network structure for gait mode recognition.

where (w𝑜, b𝑜) are the weights and biases of the output layer.𝑓𝑜(𝑛) is the output layer activation function, which was
defined as a linear activation function:

𝑓𝑜 (𝑛) = 𝑛. (4)

The parameters (wℎ, bℎ) and (w𝑜, b𝑜) will be estimated for
finding the output of the multilayer neural network for any
input x(𝑡) and training is needed to evaluate these parameters.
The gait modes, observed during the collection of training
data, were used as the target values (t𝑖) for training the ANN.
During the training, we minimized the cost function 𝐸 (see

(5)) by using Lavenberg–Marquardt algorithm with Bayesian
regularization described by Hagan et al. [24, 25].

𝐸 = 𝛼∑ 󵄨󵄨󵄨󵄨t𝑖 − y𝑖
󵄨󵄨󵄨󵄨2 + 𝛽𝐸𝑤. (5)

Here, y𝑖 is the output of the network at the 𝑖th data point, t𝑖
is the target output of the 𝑖th data point and has the same
structure as y𝑖, 𝐸𝑤 is the sum of squares of all the network
weights and biases (i.e., wℎ, bℎ,w𝑜, b𝑜), and 𝛼 and 𝛽 are cost
function parameters. The update laws of Bayesian optimiza-
tion of regularization parameters 𝛼 and 𝛽 were described in
[25]. Target output vector, t𝑖, has three elements.The values of
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this vector represent the gait mode of walking. The meaning
of the possible structures of the t𝑖 vectors is illustrated in (6).

Three-Element Representation of Target Vector for
Different Gait Modes.

tA = [[
[

1
0
0
]]
]

represents󳨐󳨐󳨐󳨐󳨐󳨐󳨐⇒ Ascent mode,

tL = [[
[

0
1
0
]]
]

represents󳨐󳨐󳨐󳨐󳨐󳨐󳨐⇒ Level ground mode,

tD = [[
[

0
0
1
]]
]

represents󳨐󳨐󳨐󳨐󳨐󳨐󳨐⇒ Descent mode,

tX = [[
[

0
0
0
]]
]

represents󳨐󳨐󳨐󳨐󳨐󳨐󳨐⇒ Undetermined mode.

(6)

2.1.2. Collection of ANN Input. Detecting the input signals
plays an important role for developing an algorithm for
any task. In this study, our task was to recognize a change
in gait mode. It has been observed that the sagittal plane
rotation of the shank is different for level ground walking
and stair walking [17]. From pilot data, we also found similar
differences in foot segment rotation due to these different gait
modes. Moreover, the vertical component of the velocity of
the foot is also observed to be different for level ground, stair
ascent, and descent modes [26]. For these reasons, we used
the vertical velocity and segment angle of the foot shell of the
PPAFO as input signals to our artificial neural network.

The vertical component of velocity and foot segment
angle were calculated using an IMU sensor (XSens MTi-
28A53G35; XSens Technologies; Enschede, The Netherlands;
Figure 1). Before any calculation, the readings of the IMU
were converted from IMU coordinates to earth coordinates
for estimating the orientation of the IMU (see [16] for detailed
procedure). For finding velocity, the obvious approach was to
directly integrate the acceleration in the 𝑧direction.However,
this approach became erroneous because of long term drifts.
This long term drift can be avoided by recalibrating the veloc-
ity reading to zero at every zero-acceleration instance [16,
26]. Usually, the vertical component of the IMU acceleration
reading should be 𝑔 (𝑔 = 9.81m/s2) when the foot segment is
at rest during mid-stance phase. However, because of error in
orientation of the signal and the input noise, we assumed that
the zero-acceleration instance was achieved when equation
(7) holds.

󵄩󵄩󵄩󵄩𝑎𝑧 − 𝑔󵄩󵄩󵄩󵄩 < 𝜀𝑔. (7)

Here, 𝑎𝑧 is the vertical component of acceleration in theworld
coordinate system collected from the IMU accelerometer
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Figure 3: Different sensor signals during walking.

and 𝜀𝑔 is the heuristically tuned threshold value found from
training data so that the zero-acceleration instance will only
occur during mid-stance during walking when the foot is in
a stationary position. Due to noise during data collection, if
this zero instance cannot be achieved via (7) for any step,
the heel and toe force sensitive resistors (FSRs) can be used
as a fail-safe to detect this event. That is, generally, during
the zero-acceleration instance, both the heel and toe FSRs
should be in “ON” states since they are in contact with the
ground. For calculating the foot pitch angle (foot segment
angle), data were collected in a quaternion based coordinate
system. Using the equation found from the data sheet of the
IMU, the foot segment angle was calculated. Thus the input
signals to the ANN, vertical component of velocity and foot
segment angle (Figure 3), were derived.

2.1.3. Conditioning of ANN Output

(1) Filtering the Output of the Network. The output from
the network y(𝑡) was filtered to attenuate unwanted noise
(Figure 4). y was passed through a first-order filter with time
constant 𝜖 to obtain a new output variable y. For this study,
the time constant for the filter 𝜖 is chosen as 0.02 sec. The
equation for the first-order filter was described in

𝜖ẏ + y = y,
y (0) = y (0) . (8)

(2) Conversion to Binary Values. The filtered output y was
used to detect gait modes. The values of each of the three
elements of the output vector y are noninteger; thus, the
elements of the filtered output y are also noninteger values
(Figure 4). Each element was converted to either “0” or “1”
(integer binary value) after establishing a threshold value.
From the training data, the thresholding value for each ele-
ment was calculated by minimizing the risk using a loss
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Figure 4: Example of the values of an element of output vectors y and y. (a) Output of ANN before filtering (y); (b) output after filtering (y).

matrix as described below [27]. Although a simple step
function where the 0-1 threshold was 0.5 could have been
used, the statically chosen linear activation function based on
the filter improved the accuracy of the algorithm.

Let us assume that there were two classes (𝑤1 and 𝑤2)
for each element of the filtered output vector. 𝑤1 represents
the class when the value of the element should be 0 and 𝑤2
represents the class when the value of the element should be
1. Assume that 𝑧 is the noninteger value of the element. 𝜆𝑖𝑗
is a penalty term which is known as the loss that depends on
the wrong decision. The loss matrix L [27] is defined by the
following equation:

𝐿 = [𝜆11 𝜆12
𝜆21 𝜆22] . (9)

Here 𝜆𝑖𝑗 means the value of risk if an element of class 𝑖 is
classified as class 𝑗. As 𝜆11 and 𝜆22 represent the risk of
classifying class 1 and class 2 correctly, respectively, these two
values should be 0. We assumed that the element misclassify-
ing class-1 has higher risk compared to misclassifying class-2
to be on the conservative side for detecting a gait mode. For
this reason, we chose the value of risk ofmisclassifying class-1
(𝜆12) to be twice as that of misclassification of class-2 (𝜆21) to
account for this conservative side. That means we chose

𝜆12 = 2𝜆21. (10)

So, we chose our loss matrix as follows:

𝐿 = [ 0 1.0
0.5 0 ] . (11)

We assumed that these two classes with the single element
value 𝑧 have Gaussian probability density functions.

𝑝 (𝑧 | 𝑤1) = 1
2𝜎1√𝜋𝑒

−(𝑧−𝜇
1
)2/2𝜎
1

2 ,
𝑝 (𝑧 | 𝑤2) = 1

2𝜎2√𝜋𝑒
−(𝑧−𝜇

2
)2/2𝜎
2

2 .
(12)

Here, (𝜇1, 𝜎1) and (𝜇2, 𝜎2) are means and standard deviations
of probability density functions, 𝑝(𝑧 | 𝑤1) and 𝑝(𝑧 | 𝑤2),
respectively. According to [27], the threshold value 𝑧𝑜 in this
study can be found by solving the following equation:

𝑧𝑜: 𝜆12𝑝 (𝑧 | 𝑤1) = 𝜆21𝑝 (𝑧 | 𝑤2) . (13)

For this study, (𝜇1, 𝜎1) and (𝜇2, 𝜎2) for each element of the
output vector can be found from the training data. Using
these threshold values, each of the three elements of the
vector (y) was converted to either “0” or “1” and, thus, y will
be converted to ŷ, which is a binary version of y.

2.1.4. Classification of Different Modes. The proposed
approach to detect the gait modes was implemented on
the testing data by using the parameters determined from
the training data. Assume that x󸀠 was the input vector for
any instance. Using the network parameters (wℎ, bℎ,w𝑜, b𝑜,
determined during training), the output y󸀠 was calculated
by (1)–(4). Each of the elements of the output vector was
first filtered (see (8)) and later converted to a binary value
to determine the vector ŷ󸀠 (by using the three thresholding
values found from the training data). Thus using the final
output vector, ŷ󸀠, the current gait mode was determined
using the values for each element as given in equation (6).

Current gait mode 󳨐⇒
{{{{{{{{{{{{{{{

if ŷ󸀠 = tA, Ascend mode,
if ŷ󸀠 = tD, Descend mode,
if ŷ󸀠 = tL, Level ground mode,
if ŷ󸀠 = tX, Undetermined mode.

(14)

The proposed algorithm did not rely on any specific infor-
mation regarding stair height or ramp grade, since it only
depended on the vertical velocity and angle of the foot
segmentwhich reflected an individual’s walking behavior. For
this reason, this algorithm should recognize the gait mode
regardless of stair height or ramp grade.
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2.2. Experimental Data Collection. Data collected in the
previous study [16] were used to evaluate the proposed ANN
based algorithm. In that study, five healthy male subjects
(average age: 23.4 y, average weight: 82.0 kg, and height
178.6 cm) participated and gave informed consent. The study
was approved by University of Illinois Institutional Review
Board. The subjects wore the PPAFO on the right leg.

The detailed hardware description of the PPAFO can be
found in [16, 28]. The PPAFO (Figure 1) had a pneumatic
rotary actuator that could provide modest plantarflexor
(∼12Nm) or dorsiflexor (∼3Nm) torque when powered using
a small portable compressed carbon dioxide tank at 100 psig.
In the current study, analyzed data were generated when the
PPAFO was operated in passive mode with no ankle torque
assistance. An embedded microcontroller (TMS320F28335,
CPU: 150MHz, Texas Instruments, Dallas, TX, USA) col-
lected sensor signals from the IMU, two FSRs, and a rotary
potentiometer for ankle angle. The potentiometer data were
not used for gait mode recognition. The FSRs (#403, 2󸀠󸀠
square; Interlink Electronics Inc., Camarillo, CA, USA) were
attached under the heel and ball of the foot between the foot
shell and sole.The IMUwas attached to themedial side of the
foot shell. All signals were sampled at 200Hz.

During a testing session, the subject walked with the
PPAFO for two test scenarios and three trials per scenario.
Two test scenarios were collected: walking on level ground
and outdoor stairs and walking on level ground and an
indoor ramp. The total height after traversing two steps was
28 cm (i.e., 14 cm per step rise). The ramp had a 6-degree
grade. Specifically, for the stair scenario, subjects walked
uninterrupted in the following order: (1) 3 to 4 steps on level
ground, (2) 6 steps ascending stairs, (3) 3 to 4 steps on level
ground, (4) turning back, (5) 3 to 4 steps on level ground, (6)
6 steps descending stairs, and (7) 3 to 4 steps on level ground.
For the ramp scenario, the following order was used: (1) 3 to
4 steps on level ground, (2) 8 to 10 steps ascending the ramp,
(3) turning back, (4) 8 to 10 steps in descending the ramp,
and (5) 3 to 4 steps on level ground. For each scenario, the
first trial was used to train the algorithm, and the other two
trials were used to evaluate the performance of the proposed
algorithm.

2.3. Data Analysis. Vertical velocity and foot segment angle
data from the experimental trials were processed using the
classification algorithm proposed above (in Section 2.1) and
using the previous algorithm [16]. Figure 5 illustrates an
example of filtered output of the artificial neural network.
The red line represented the first element (y󸀠[1]) of the vector,
y󸀠, which indicated ascent mode. Similarly green (indication
of level mode) and blue (indication of descent mode) repre-
sented the second (y󸀠[2]) and third (y󸀠[3]) elements of the
filtered output vector of the network, respectively (Figure 5).
High values for an element signal were used to classify each
step.

To understand how quickly each algorithm could detect a
new gait mode, this time was computed from the start of the
swing phase of the transition step andmeasured as a function
of percentage of gait cycle (% GC) from the start of swing.

Level Ascent DescentLevelLevel LevelTurn

[1] (up)
[2] (level)

[3] (down)

1.2

0.8

0.4

0

10 15 20 25 30 35 40 45 505

Time (s)


(t

)

Figure 5: Output of the artificial neural network (after filtering) for
different modes of walking.

One gait cycle was defined by consecutive heel strikes of the
same limb and normalized into 0–100% GC.

Success rate was used to evaluate the performance of each
algorithm for correctly identifying the gait mode of each step.
Success rate was defined by the following [16]:

Success Rate

= Number of Correctly Recognized Steps
Number of Total Steps

× 100%.
(15)

The results of the newly proposed algorithm were compared
with that of the algorithm described in [16].

3. Results

After applying this approach, it was found that the proposed
estimator can detect each mode more effectively compared
to the previously developed algorithm [16] (Figure 6). The
previous method had more incorrect step classifications.
Additionally, the previous algorithm was not able to recog-
nize the new mode until partway into the next step after the
transition; thus resulting in a one-step delay. The proposed
algorithm was able to recognize the new mode during the
swing phase of the step during the transition. The proposed
algorithm was able to detect a new gait mode within 28%
GC, on average, after the start of the swing phase during the
stair scenario (16% GC for ramp), whereas, with the previous
algorithm, the new gait mode detected 77% GC after swing
for the stair scenario (73% GC for ramp), which put this time
into the stance phase of the next step.

Success rates for the proposed algorithm while walk-
ing during the stair scenario (Table 1) and ramp scenario
(Table 2) were found to be larger compared to the results
from the previous algorithm. Sub01 showed the best result
for both algorithms (100%). However, success rates of other
subjects had different values when compared between the
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Figure 6: Comparison between true mode and mode estimated by
original Li and Hsiao-Wecksler [16] and ANN algorithms.

two algorithms. Sub03 and Sub04 also had 100% success
rate when the proposed algorithm was used. Overall, while
subjects were walking during the stair scenario, success rates
to detect level ground, ascent mode, and descent mode were
99.3%, 100.0%, and 98.3%, respectively. On the other hand,
using the previous algorithm, these values were 93.4%, 98.3%,
and 93.3%. Similar results were found when subjects walked
during the ramp scenario.

4. Discussion

4.1. Experimental Observation. The primary purpose of this
study was to develop an algorithm to automatically distin-
guish different gait modes (level ground, ascent and descent
of stairs or ramps), as controller schemes for powered devices
vary for different gait modes. When walking on level ground
and ascending stairs or ramps, the ankle should be dorsiflexed
and the toes held up to prevent tripping. When descending,
the ankle should be plantarflexed and the toes point down-
ward in preparation for contacting the lower surface. The
proposed gait mode recognition algorithm, using an artificial
neural network, successfully classified gait mode with high
accuracy and without the previous one-step delay limitation.
For both stair and ramp scenarios, the proposed algorithm
demonstrated better performance compared to the algorithm
developed by Li and Hsiao-Wecksler [16] (Tables 1 and 2).

For the stair scenario, the proposed algorithm worked
very well in the ascent mode condition with an average
success rate of 100%, while the previous vertical position
tracking algorithm had an average success rate of 98.3% [16].
In level ground walking, the overall success rate was 99.3%,
while previously it was 93.4%. The proposed algorithm had
also shown better performance in descent mode in the stair
scenario. Most of the time, except Sub02 for level ground
mode and Sub05 for descent mode, the proposed algorithm’s
success rate was 100%.As awhole, whenwalking on stairs, the
new algorithm performed better than the previous method
based on success rate.

For the ramp scenario, the proposed algorithm had
98.9%, 97.8%, and 100% average success rate at level ground
walking, ascent mode, and descent mode, respectively. All of
these values are better than the corresponding values when
the previous algorithm was used. For ramp descent mode,
the proposed algorithm had the best result having 100% of
success rate for all subjects. In the level ground mode, the
proposed algorithm also had a 100% success rate, except for
Sub01. Similarly, except for Sub03, the proposed algorithm
had a 100% success rate. Overall, the new algorithm showed
promising results while walking on the ramp.

The proposed algorithm used an artificial neural network
where the inputs were amoving six-sample size window from
the input signals: vertical velocity and foot segment angle.
Since calculations were done continuously, this algorithm
was faster at detecting a new gait mode, that is, soon after
the new step was started. The average delay to detect a new
gait mode was 28% GC and 16% GC after start of the swing
phase for stair and ramp scenarios, respectively; whereas the
previous algorithmwas not able to detect amode change until
well into the next step. Additionally, because the signals from
vertical velocity and angle of foot segment were used as input
signals, the proposed algorithm should recognize the gait
mode regardless of stair height or ramp grade. The previous
algorithmdepended on the height of the stair size or the grade
of the ramp to make comparisons between threshold and
real-time data, that is, the algorithm required new training
to calculate thresholds for stairs with different heights and
ramps with different grades.

4.2. Limitations and Future Recommendations. Though the
proposed algorithm showed promising results, there are
limitations of this study. One limitation of the proposed
algorithm was that we used subject-specific training data.
Ideally, a best approach will work for all wearers using a
generic training data set. Making training data frommultiple
subjects or using input from multiple IMUs (e.g., one IMU
on foot and another IMU on shank) might help to overcome
this limitation. Furthermore, we used the success rate as
the measurement of the performance of the algorithms. As
mentioned in [16], it is not clearwhat should be the acceptable
value of success rate [9, 13, 17, 29, 30].

There are several aspects of this study which open
prospects for new studies. The current algorithm was devel-
oped and applied on previously collected data. Implemen-
tation of the algorithm to detect the gait mode and also
control for ankle actuation should be addressed in the future.
It was hypothesized that the proposed algorithm should not
depend on stair height and the grade of the slope. A new
study should check the claim. Training and testing were
done separately for the two scenarios (stairs and ramps). A
future recommendation would be to create a test protocol
that mixed both scenarios during both testing and training
to show greater flexibility to identify multiple environments.
Overall, the current study demonstrated that an artificial
neural network can be used to detect gait modes with higher
accuracy and opened new opportunities for exploring the
area of recognizing gait modes.
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Table 1: Success rate during stair scenario.

ANN algorithm
Success rate (%)

Algorithm by Li and Hsiao-Wecksler
[16]

Success rate (%)
Level mode Ascent mode Descent mode Level mode Ascent mode Descent mode

Sub01 100.0 100.0 100.0 100.0 100.0 100.0
Sub02 96.9 100.0 100.0 81.3 100.0 91.7
Sub03 100.0 100.0 100.0 100.0 100.0 91.7
Sub04 100.0 100.0 100.0 93.3 91.7 91.7
Sub05 100.0 100.0 91.7 93.3 100.0 91.7
Overall 99.3 100.0 98.3 93.4 98.3 93.3

Table 2: Success rate during ramp scenario.

ANN algorithm
Success rate (%)

Algorithm by Li and Hsiao-Wecksler
[16]

Success rate (%)
Level mode Ascent mode Descent mode Level mode Ascent mode Descent mode

Sub01 95.0 100.0 100.0 90.0 100.0 94.7
Sub02 100.0 100.0 100.0 94.4 94.1 93.8
Sub03 100.0 90.0 100.0 94.4 90.0 95.0
Sub04 100.0 100.0 100.0 93.3 100.0 94.1
Sub05 100.0 100.0 100.0 87.5 100.0 93.8
Overall 98.9 97.8 100.0 92.0 96.7 94.3

5. Conclusion

Portability of powered orthotic or prosthetic devices opened
new challenges to detect gait modes (level ground, ascent and
descent during walking on stairs or ramps). The actuation of
these kinds of powered assistive devices should be changed
accordingly based on the gait modes. Manually switching
for a new gait mode is the most common approach. In
this study, a novel algorithm based on an artificial neural
network was proposed which continuously analyzed the
input signals for automatically detecting the gait mode using
an inertial measurement unit.This algorithm recognized new
gait modes faster and with higher accuracy than a previous
method used with the PPAFO.
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