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The model cyanobacterium, Synechococcus elongatus PCC 7942, is
a genetically tractable obligate phototroph that is being devel-
oped for the bioproduction of high-value chemicals. Genome-scale
models (GEMs) have been successfully used to assess and engineer
cellular metabolism; however, GEMs of phototrophic metabolism
have been limited by the lack of experimental datasets for model
validation and the challenges of incorporating photon uptake.
Here, we develop a GEM of metabolism in S. elongatus using ran-
dom barcode transposon site sequencing (RB-TnSeq) essential
gene and physiological data specific to photoautotrophic metabo-
lism. The model explicitly describes photon absorption and ac-
counts for shading, resulting in the characteristic linear growth
curve of photoautotrophs. GEM predictions of gene essentiality
were compared with data obtained from recent dense-transposon
mutagenesis experiments. This dataset allowed major improve-
ments to the accuracy of the model. Furthermore, discrepancies
between GEM predictions and the in vivo dataset revealed biolog-
ical characteristics, such as the importance of a truncated, linear
TCA pathway, low flux toward amino acid synthesis from photo-
respiration, and knowledge gaps within nucleotide metabolism.
Coupling of strong experimental support and photoautotrophic
modeling methods thus resulted in a highly accurate model of
S. elongatus metabolism that highlights previously unknown areas
of S. elongatus biology.
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The unicellular cyanobacterium Synechococcus elongatus PCC
7942 is being developed as a photosynthetic bioproduction

platform for an array of industrial products (1–3). This model
strain is attractive for this purpose because of its genetic trac-
tability (4) and its reliance on mainly CO2, H2O, and light for
metabolism, reducing the environmental and economic costs of
cultivation. For low-cost, high-volume products, such as biofuels,
however, one of the biggest challenges is attaining profitable
product yields (5, 6). Genome-scale models (GEMs) of metabo-
lism provide a valuable tool for increasing product titers by opti-
mizing yield in silico and then, reproducing the changes in vivo (7).
For instance, GEMs were used to select the optimal synthetic
pathway for 3-hydroxypropanoate biosynthesis in Saccharomyces
cerevisiae (8). In Escherichia coli, GEM optimization was used to
realize heterologous production of 1,4-butanediol synthesis and
increase titers three orders of magnitude (9). Although there have
been numerous modeling efforts in Synechocystis sp. PCC 6803
(here in referred to as PCC 6803), this organism is highly divergent
from S. elongatus, where limited modeling has been done (10).
This deficit can partially be explained by the lack of in vivo

validation datasets, such as 13C metabolic flux analysis (MFA),
for obligate phototrophs (11). Development of metabolic models
of S. elongatus with strong experimental support is necessary to

exploit the organism as a bioproduction platform and advance
models of obligate phototrophic metabolism.
A metabolic network reconstruction is a representation of all

metabolic reactions, the enzymes responsible for their catalysis,
and the genes that encode them. Genome-scale reconstructions have
a proven record of contextualizing organism-specific information and
facilitating the characterization and engineering of cellular metabo-
lism (12, 13). When complete, the reconstruction enables quantita-
tive prediction of metabolic phenotypes represented as reaction
fluxes. The overall predictive power of a GEM is naturally de-
pendent on its quality (14). Essentiality datasets have been suc-
cessfully used to increase the accuracy of GEMs (15). We recently
determined genome-wide gene essentiality by screening ∼250,000
pooled mutants for their survival under standard laboratory con-
ditions with continuous light via random barcode transposon site
sequencing (RB-TnSeq) (16). This dataset facilitated the genera-
tion and testing of a high-quality genome-scale reconstruction
through comparison of the model outputs and in vivo phenotypes
at the genome scale. Inconsistencies between model predictions
and in vivo data can highlight parts of S. elongatus metabolism
where current understanding is inadequate (17).
Another key characteristic of an accurate GEM is the appli-

cation of constraints that place physical, chemical, and biological
limitations on a culture and generate biologically relevant phe-
notypic predictions. Incorporating light, a dominant constraint
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on phototrophic growth, into a GEM remains a challenge (18).
Photon uptake is typically fixed based on experimental results, an
approach that allows retrospective analysis but not predictive
modeling (19). Therefore, no current model inputs light quantity,
quality, and shading, resulting in a linear growth curve charac-
teristic of photoautotrophic batch culture.
Here, we present a comprehensive GEM of obligate photo-

trophic metabolism. We performed a complete reannotation and
reconstruction of metabolic genes in the S. elongatus genome and
developed an approach to incorporate light absorption that
factors in the effects of cell shading. In addition, GEM predic-
tions have been compared with and improved by essentiality data
(16). These comparisons are also used to reveal unique attributes
of the organism’s metabolism. The result is a comprehensive
metabolic model of S. elongatus metabolism.

Results
Genome-Scale Reconstruction of Phototrophic Metabolism. A meta-
bolic reconstruction is a knowledge base that places biochemical,
genetic, and genomic information into a structured framework.
The reconstruction contains the functional annotation of the ge-
nome and defines the organism’s metabolic capability: the sub-
strates that it can use and the reactions that it can perform. To
properly define the metabolic capability of S. elongatus, we curated
the genome annotation, leveraged state of the art in silico methods,
incorporated comprehensive in vivo essentiality data, and included
a detailed reconstruction of light harvesting. The resulting model
is an organized collection of the extensive data available for
S. elongatus in a format that enables accurate predictions of
phototrophic metabolism (Fig. S1).
Manual curation of S. elongatus genome annotation. Because the met-
abolic capability reflected in a reconstructed network is dependent
on the functional annotation of the organism, we reannotated the
metabolic genes using amino acid as well as protein functional
domain homology-based methods. This functional reannotation
enabled the conversion of an initial draft reconstruction to a
completed GEM (20) (SI Materials and Methods). Of 2,723 genes
in the S. elongatus genome, 785 (29%) were included in the final
version of the model, and 118 of these genes (15%) had updated
functional annotations. This GEM is named iJB785 (model files
are in Dataset S1, and the Excel file is in Dataset S2) following
convention (21).
Protein structure-guided reconstruction. Amino acid and protein do-
main-based annotations often do not provide sufficient detail to
assign enzyme function. Therefore, enzymes are often incorrectly
annotated as functionally equivalent (isozymes). In S. elongatus,
this challenge resulted in instances where multiple genes that are
essential in vivo were assigned to the same reaction; however, if the
enzymes were truly compensatory, none should be essential. The
importance of enzyme structure in catalytic activity suggests that
structural homology modeling, which uses in silico-derived 3D
analysis of a target protein based on the crystal structure of a similar
enzyme, may provide additional insight into protein function.
Protein structure data have recently been applied in the global

analysis of GEMs (22). We set out to apply structural modeling to
protein annotation by determining the functional difference between
four annotated phosphoglycerate mutases (PGMs; Synpcc7942_2078,
Synpcc7942_1516, Synpcc7942_0485, EC 5.4.2.11; and Synpcc7942_0469,
EC 5.4.1.12) in the S. elongatus genome, three of which are es-
sential in vivo. Previous work in S. elongatus suggested that mul-
tiple PGMs work in concert to regulate metabolic flux during shifts
in CO2 availability (23). However, it seemed unlikely that three
of four PGMs would be essential for regulation in a stable CO2
environment. To test the hypothesis of divergent functions be-
tween the S. elongatus PGMs, structural homology models were
generated and compared with published control crystal structures
(SI Materials and Methods, Table S1).

Based on the structural comparison, it was possible to ascribe
a more detailed function to each of the annotated PGMs. The
Synpcc7942_0469 protein is structurally distinct from the three
other PGMs and was annotated as the primary glycolytic PGM in
S. elongatus based on its canonical PGM structure and the fact
that it is essential. Previous work indicated that two PGMs are re-
quired to regulate central carbon flux during a transition from high
to low CO2 (23). The Synpcc7942_2078 protein shares structural
features with an E. coli PGM control but is nonessential; thus, it
was annotated as a PGM performing this regulatory function.
Synpcc7942_0485 shares strong structural similarity to a phos-
phoserine phosphatase (PSP) inHydrogenobacter thermophiles (24)
and has sequence homology to the recently characterized PSP in
PCC 6803 (25). Thus this gene was confidently annotated as a PSP
in S. elongatus. Synpcc7942_1516, however, has structural features
that could not be classified as a traditional PGM or PSP and is es-
sential in vivo. Based on genomic neighborhood analysis and tran-
scriptomemapping data (26), we hypothesized that Synpcc7942_1516
plays a regulatory role in an uncharacterized signaling network. As a
regulatory enzyme, it fell outside the scope of the metabolic
model. These results indicate that structural homology modeling
is a promising annotation tool to increase the quality of genome-
scale reconstructions and hypothesize enzyme function.
Improved reconstruction through incorporation of essential gene data.
The essential gene calls for S. elongatus determined by RB-TnSeq-
enabled refinement of the gene reaction annotations during de-
velopment of the reconstruction (16). This in vivo dataset provides
a gauge of gene importance by identifying genes that cannot sustain
insertion mutants, which are interpreted to be essential, and the
growth rate of those that can, which are interpreted to be beneficial
or nonessential. Alternatively, in silico essentiality calls are made by
quantifying the impact on growth when the flux through each en-
zyme in the model is independently set to zero (SI Materials and
Methods). Discrepancies between essential gene calls in the in silico
draft model and the RB-TnSeq results were investigated, and with
sufficient evidence, the gene assignment for the model reaction
was updated accordingly. For example, the S. elongatus genome
encodes two annotated uroporphyrinogen methyltransferases
(Synpcc7942_0271 and Synpcc7942_2610, EC 2.1.1.107), catalyzing
an early step of both vitamin B12 and siroheme biosynthesis.
However, both genes are essential in vivo, suggesting that they are
not compensatory. Genomic neighborhood analysis indicated that
synpcc7942_2610 is adjacent to an iron chelatase gene; thus, we
proposed that it is dedicated to the biosynthesis of siroheme, not
vitamin B12. However, discrepancies between the in silico and
in vivo essential gene data were not forced into agreement without
additional evidence, and these remaining discrepancies are
contained in Dataset S3. For example, S. elongatus has two genes
annotated for type II NADH oxidoreductases (synpcc7942_0101
and synpcc7942_0198, EC 1.6.5.9); however, the in vivo data in-
dicated that one is essential (synpcc7942_0101) and thus, the en-
zymes are not redundant. Nevertheless, the manual curation
process did not reveal any significant difference between the two
genes, and they were annotated as isozymes, although the RB-
TnSeq data suggest divergent functions.
Discrepancies also led to a more complete representation of

cellular biomass. For example, alkanes were not initially included
in the biomass, because their function is unknown. However, their
synthesis is essential. Recently, it was discovered that alkanes can
play a role in cyclic electron flow in PCC 6803 (27). Hypothesizing
a homologous function in S. elongatus, they were added to the
biomass equation. Thus, applying the essential gene data to the
curation process increased the quality of the reconstruction.
Explicit modeling of light absorption. The dominant constraints on
photoautotrophic growth are light and CO2 availability. A fun-
damental barrier to predictive modeling of photoautotrophic
growth has been the inability to translate light irradiance into a
metabolite. Traditionally, light uptake has been inferred and not
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explicitly determined. A two-step optimization method is commonly
used, where the CO2 uptake rate is fixed based on experimental
values at the observed growth rate followed by minimization of
the photon flux (19, 28). However, the resulting values reflect
only the photons that perform metabolic work, not the totality of
absorbed light. Excess photon absorption has a significant impact
on growth rate and metabolism. Reactive oxygen species, such as
singlet oxygen generated in the pigment antenna and photosystem
II (29) as well as superoxide at photosystem I (30), damage the
photosynthetic apparatus and consume metabolic resources. Thus,
the two-step optimization method does not accurately account for
total light absorption and is incapable of predictive modeling of
phototrophic metabolism.
In a more extensive description of photon capture, a metabolic

reconstruction of Chlamydomonas reinhardtii accounted for light
source quality (31). This approach was more mechanistic than
the two-step optimization but still did not consider cellular pig-
mentation as a factor in photon absorption, and therefore, light
uptake could not be quantified into a typical modeling input flux.
In another paper, a light distribution function was combined with
flux-balance analysis to model cyanobacterial growth in photo-
bioreactors; however, a mechanistic model of light harvesting
was not included (32). Our approach goes further by combining
light source irradiance with in vivo absorption to define photon
use from measurements of incident light. We incorporated the
chlorophyll-normalized optical absorption cross-section (33),
derived from the in vivo absorption spectrum, to link photon
uptake to cellular composition. Because the model’s biomass ex-
plicitly defines the cellular composition, the biomass-normalized
photon absorption rate was calculated from the combination of
irradiance, optical absorption cross-section, and the chlorophyll
component of the biomass. This approach enabled comparison
between the photon absorption capacity of the cell and the photon
delivery rate of the light source at a given irradiance (Fig. 1).
Accurate modeling of obligate phototrophic metabolism also

required a new level of detail in the reconstruction of the pho-
tosystem. We used recent proteomics (34) and fluorescence mi-
croscopy data (35) to reconcile membrane localization of electron
transport complexes that previous cyanobacterial models had in-
cluded inaccurately in the cytoplasmic membrane. Additionally,
the ferredoxin:plastoquinone oxidoreductase complex gene asso-
ciations were updated to include additional subunits and the use
of ferredoxin as the electron donor (36, 37). We also included
the photoinactivation of the D1 subunit of photosystem II. Using
the photodamage rates in PCC 6803 (38), we were able to cal-
culate a D1 repair metabolic cost as a proportion of flux through
photosystem II. Finally, we generated stoichiometric reactions
accounting for the energy transfer efficiencies of each of the
photosynthetic pigments. Targeted excitation of S. elongatus per-
maplasts provided relative efficiency metrics for the transfer of
energy from a given pigment to the photosystems (39). Reactions
including these efficiencies enabled the model to account for light
spectrum-specific photosynthetic efficiency. This comprehensive
reconstruction of light gathering set the framework for accurate
constraint-based modeling of phototrophic metabolism.
The completed reconstruction, iJB785, consists of 785 genes,

850 metabolic and transport reactions, and 768 nonunique me-
tabolites distributed over seven cellular compartments (Dataset
S2). The reconstruction was completed in the BiGG Models
format (40), enabling standardization and cross-referencing to
external databases (bigg.ucsd.edu). Combining an updated an-
notation, whole-genome RB-TnSeq data, and an advanced rep-
resentation of light harvesting resulted in a comprehensive
phototrophic model.

Modeling Phototrophic Growth. Conversion of a reconstruction into
a mathematical model and the subsequent application of bi-
ologically relevant constraints enable the simulation of cellular

phenotypes. Modeling cellular growth is typically computed as
either yield or specific growth rate, which assumes exponential
growth (41). In both cases the inputs are normalized, such that
the simulation reports a single value representative of cellular
growth as long as there is a constant ratio between the biomass
and the input flux. However, as the culture becomes denser, the
photon absorption capacity can exceed the amount of light
delivered by the light source and in the process, alter the ratio
of uptake to biomass. When this phenomenon occurs, it results
in a linear growth curve caused by self-shading–induced light
limitation. Cells closest to the light source absorb excess pho-
tons, preventing cells in the inner culture from achieving their
maximum growth rate. We accounted for shading with an un-
steady-state growth modeling methodology (42), which resulted
in an accurate model of linear photoautotrophic growth over the
duration of a batch culture.
An additional constraint was required to capture the point when

light absorption became excessive. As the other dominant con-
straint on growth, the maximum carbon uptake rate marks the
transition between a light- and a carbon-limited culture. It is de-
pendent on the availability of inorganic carbon in the media (43)
and the acclimated state of the cell (44). However, an approxi-
mation of maximum photosynthetic output, a proxy for carbon
uptake, can be captured in a single parameter: the oxygen evolution
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rate (45). We used experimentally determined oxygen evolu-
tion rates to constrain the maximum photosynthetic output at a
given irradiance (Fig. S2). Excess photon absorption was allowed
to leave the system in a manner that did not incur a metabolic
cost, simulating loss as heat or fluorescence. Reactive oxygen
species production in the light-harvesting antenna caused by
excess light is currently not modeled.
A growth curve for a typical S. elongatus culture was simulated

using the oxygen evolution constraint and the calculated photon
uptake rate. To account for self-shading, at 1-h intervals, the
flask was sectioned into 50 concentric rings, with each ring
modeling the biomass production of a 2% fraction of the culture.
Light was modeled from the side of the flask, and the photon
absorption of an outer ring was made unavailable to the re-
mainder of the inner rings (Fig. S3). For the nonshading simu-
lation, the growth rate matched the in vivo culture until light
limitation, at which point the in silico growth remained expo-
nential, whereas the in vivo curve became linear (Fig. 2). Growth
simulations factoring in self-shading transitioned into linear
phase on light limitation, characteristic of in vivo growth. This
more accurate prediction of photoautotrophic growth was made
possible by the combination of modeling photon uptake and
shading as a function of culture density.
Model parameters are specific to the cellular phenotype: in

particular, the chlorophyll-normalized optical absorption cross-
section, which depends on the photoacclimation state of the cell.
The primary photon-harvesting complex in S. elongatus, the
phycobilisome, which can efficiently deliver light energy to both
photosystems (39), is highly adaptive (46) but devoid of chloro-
phyll. Photosystem I contains 80–95% of the chlorophyll a in
S. elongatus (39). Because photoacclimation causes fluctuation in
the photosystem I to photosystem II ratio and changes to the
phycobilisome (47), a given chlorophyll-normalized optical ab-
sorption cross-section may no longer be representative. The
model can be easily reparameterized to account for this adap-
tation. Additionally, the oxygen evolution rate can be adjusted to
account for phenotypic changes in different carbon environ-
ments. The mechanistic nature of this approach is generally
applicable to any phototrophic reconstruction and expands ge-
nome-scale modeling into new phenotypes, such as photo-
acclimation and with additional constraints, photoinhibition.

Validation and Refinement of the GEM Through Essential Gene Comparison.
The RB-TnSeq data served as not only a powerful guide during
reconstruction but also a validation metric of the resulting model.
The accuracy of the model was determined through a comparison
of the in silico essential gene calls with the in vivo dataset. The gap
between model predictions and in vivo realities highlights the

limitations of the model as well as additional constraints on cel-
lular metabolism. Evaluation of the disagreements enabled de-
velopment of additional constraints beyond simple network
connectivity (nonnetwork constraints), increasing the accuracy of
the model predictions.
Essential gene-based model validation. We compared the in silico es-
sential gene calls between our reconstructed model, iJB785, and a
previous model of S. elongatus, iSyf715 (48) (Table 1). Minimal
standardized constraints were applied to both models, allowing a
direct comparison of the metabolic flexibility of the two networks. Of
752 genes in iJB785 with in vivo data, 587 (78%) were correctly
assigned as either essential or nonessential (Fig. 3A and Dataset S3).
The 165 disagreements were separated into explanatory categories
(Fig. 3B). iSyf715 contained 683 genes with in vivo data, of which 377
(55%) were correctly assigned. Neither model was able to accurately
predict the reduced growth rate phenotype indicative of genes cat-
egorized as beneficial (growth defect when mutated). The 319 genes
essential in vivo that were not included in iJB785 participate in
cellular processes, such as protein synthesis and transcription,
that are out of scope for this GEM (Fig. S4). Incorporating the
RB-TnSeq data during manual curation prevented the addition
of excess metabolic flexibility (i.e., metabolic capabilities that
are implied from the genome annotation but not observed
in vivo) as evident by the increased accuracy of iJB785 compared
with iSyf715.
Although both models incorporate only 25–30% of the ORFs

identified in the S. elongatus genome, ∼50% of the experimentally
shown essential genes and 44% of functionally annotated ORFs
are represented in iJB785. Additionally, of 157 genes labeled
beneficial in vivo, 46% are present in iJB785. This enrichment of
genes that impact cellular fitness underscores the value of GEMs
for contextualizing meaningful in vivo genetic perturbations.
Increased model accuracy through nonnetwork constraints. GEMs offer
a tool for visualizing the metabolic network use for a given KO ge-
notype. The resulting flux map identifies alternate routes available to
the network to respond to genetic perturbations. However, there are
instances where the network connectivity indicates a metabolic
pathway, but an additional constraint prevents its use in vivo. Such
nonnetwork constraints resulted in a disagreement in the essentiality
call for the pyruvate dehydrogenase (PDH) complex. Single-gene
deletion of PDH in silico indicated that phosphoketolase
(Synpcc7942_2080, EC 4.1.2.9) enables bypass of lower glycolysis
by generating acetyl phosphate from the Calvin cycle intermediate
fructose-6-phosphate or xylose-5-phosphate. Acetyl phosphate is
converted to acetyl-CoA by the combined action of reversible
acetate kinase and acetyl-CoA synthase, enabling bypass of PDH.
This bypass has been investigated in PCC 6803 (49), and flux
balance analysis in that organism also bypassed lower glycolysis
with this pathway (50). The essential nature of PDH in vivo in-
dicated an additional constraint that prevents this bypass from
carrying sufficient flux to satisfy the acetyl-CoA needs of the cell.
However, proteomics (51) and transcriptomics (26) datasets for
S. elongatus indicated phosphoketolase abundance on the same
order of magnitude as PDH subunits.
Because enzyme abundance could not explain the essentiality

of PDH, we investigated metabolite channeling as a factor.
Channeling is the result of spatial aggregation of pathway en-
zymes that prevents the intermediates from being acted on by
enzymes outside of the pathway. MFA in PCC 6803 suggested
metabolite channeling of Calvin cycle intermediates (11). This
phenomenon can be modeled by coupling the flux between two
reactions, forcing a ratio, and analyzing the result on the
metabolic network. The analysis in silico of metabolite chan-
neling indicated that, if more than 1% of Calvin cycle inter-
mediates were allowed to enter the phosphoketolase bypass,
PDH would be nonessential. These results indicate that either
substantial metabolite channeling occurs in the Calvin cycle of
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S. elongatus or the phosphoketolase pathway is functioning in a
yet uncharacterized way.
An additional nonnetwork constraint suggested by discrep-

ancies between the model and the in vivo data is the phototrophic
reaction catalyzed by ferredoxin-NADP oxidoreductase (FNOR;
Synpcc7942_0978, EC 1.18.1.2), an essential reaction in vivo.
The model indicated that FNOR was bypassed by NADPH:NAD+

transhydrogenase (Synpcc7942_1610, Synpcc7942_1611, and
Synpcc7942_1612, EC 1.6.1.2), resulting in a discrepancy between
the model and in vivo data. The canonical function of trans-
hydrogenase is to provide metabolic flexibility by interconverting the
two primary redox carriers. However, previous work in PCC 6803
had called into question the presence of an active transhydrogenase
in cyanobacteria (52, 53). Previous modeling of PCC 6803 also ob-
served dramatic changes in flux predictions depending on the ac-
tivity of the transhydrogenase reaction (50), with the authors
retaining the canonical transhydrogenase function. However, when
we repeated the in silico essential gene assessment setting the trans-

hydrogenase reaction bounds to zero; along with additional non-
network constraints, such as routing flux through PDH, 13 genes
that had previously been discrepancies fell into alignment with
in vivo data. These additional constraints, suggested for modeling in
constant light, are provided in SI Results.
Central carbon metabolism flux predictions. The intracellular flux distri-
bution maps the metabolic reaction use in a given condition. This
visualization provides insight into highly used pathways that can be
drawn on for product synthesis. The photoautotrophic flux distri-
bution for central carbon metabolism in S. elongatus predicted by
our GEM is shown in Fig. 4. Our flux values were in close alignment
with PCC 6803 13CMFA data (11), the in vivo equivalent of these in
silico data. In PCC 6803, the flux ratio between carbon uptake and
fixation was 1:1.27, whereas our model prediction for S. elongatus
was 1:1.14. The flux ratio between the Calvin cycle and lower
glycolysis, indicative of the biosynthetic carbon requirements of the
cell, was 7.9:1 in our model prediction, in good agreement with the
ratio of 9.8:1 observed in PCC 6803. The differences may be at-
tributed to variations in the biomass composition for the two
species or the fact that the model predicts optimality, whereas the
in vivo data reflect inefficiencies naturally present in a living or-
ganism. Overall, the high accuracy of the essential gene assess-
ments and consistency with published photoautotrophic flux data
underscore the quality of the GEM.

Unusual Attributes of S. elongatus Metabolism. Taking into account
the essential gene dataset (16) during the modeling process greatly
improved the consistency of the model and the in vivo data. Still,
reactions for which no evidence existed to bring the in silico pre-
diction into agreement with the in vivo data deserved additional
attention. The network reconstruction represents a repository of
current knowledge; thus, discrepancies between in silico and in vivo
results highlighted potential gaps in understanding of S. elongatus
metabolism. Disagreements between iJB785 and the RB-TnSeq
essential gene calls were separated into categories reflecting the
hypothesized source of the discrepancies (Fig. 3B and Dataset S3).
Some categories, such as the Network Bypass and Annotated Iso-
zymes, have already been discussed. Only 7% of discrepancies were
categorized as Out of Scope, and these reactions were included in
iJB785 for completeness but operate in cellular processes not
necessary for in silico growth. For example, the tRNA modification
queuosine (54) is beneficial according to the RB-TnSeq data but
was not explicitly modeled in silico, resulting in a discrepancy for all
genes in the pathway.
The Nonessential Biomass discrepancies include enzymes

that synthesize biomass components of the WT cellular com-
position but do not result in a significant in vivo growth defect
when missing. Because every component of the defined biomass
is required for in silico growth, this category represents in vivo
flexibility not present in iJB785. Two such examples of known
nonessential biomass components are sulfoquinovosyl diacylglycerol,

Table 1. Comparison of essentiality results between iJB785 and iSyf715

Gene category ORFs

S. elongatus PCC 7942

iJB785 (this study) iSyf715 (previous model)

Included in GEM Essentiality prediction Correct* (%) Included in GEM Essentiality prediction Correct* (%)

Essential 718 399 457 350 (88) 360 134 118 (33)
Beneficial 157 72 5 0 (0) 56 1 0 (0)
Nonessential 1,748 281 323 237 (85) 266 579 258 (97)
No in vivo data 100 33 0 N/A 32 0 N/A
Total genes 2,723 785 785 587 (78†) 714 714 376 (55†)

N/A, not applicable due to a lack of in vivo data.
*Equal to the number of genes correctly predicted to be essential in silico.
†Total correct genes/(total genes included in GEM − model genes with no in vivo data) × 100%.

33 32 
165 

306 

587 377 

0 
100 
200 
300 
400 
500 
600 
700 
800 

G
en

es
 in

 m
od

el
 

iJB785 
(This study) 

iSyf715 
(Previous model) 

Agreement 

Disagreement 

Not analyzed 

9 

12 

16 

19 

23 

36 

50 

0 10 20 30 40 50 

Steady state assumption 

Out of scope 

Non-essential biomass 

Annotated isozyme 

Non-essential subunit 

Network bypass 

Knowledge gap 

Number of disagreements

A

B

Fig. 3. Comparison of in vivo vs. in silico gene essentiality. (A) Comparison
of in silico gene essentiality results for the model iJB785 and the previous
model of S. elongatus iSyf715. The agreements/disagreements are based on
the comparison with in vivo RB-TnSeq results. (B) Sources of disagreements
between in silico iJB785 and in vivo gene essentiality.

E8348 | www.pnas.org/cgi/doi/10.1073/pnas.1613446113 Broddrick et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1613446113/-/DCSupplemental/pnas.201613446SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1613446113/-/DCSupplemental/pnas.1613446113.sd03.xlsx
www.pnas.org/cgi/doi/10.1073/pnas.1613446113


a component of the photosynthetic membranes (55), and the
O-antigen polysaccharide, which even confers a fitness advantage
against predators when mutated (56).
We also identified Nonessential Subunits of multiprotein

complexes. If one gene in the complex is essential in silico,
every subunit associated with that reaction is considered es-
sential, even if the loss is tolerated in vivo. These disagree-
ments included known nonessential subunits of the PCC 6803
photosynthetic electron transport chain (57) and ferredoxin:
plastoquinone oxidoreductase complex (36).
Nucleotide salvage metabolism. Other discrepancies were placed
into the categories Steady-State Assumption and Knowledge Gaps.
Examples of both can be found in nucleotide salvage metabolism.
Although S. elongatus encodes a complete set of enzymes for de
novo biosynthesis of both purine and pyrimidine nucleotides, salvage
reactions are mostly absent (Fig. S5). One exception is adenine
phosphoribosyltransferase (Synpcc7942_2454, EC 2.4.2.7), which
recycles adenine into AMP and is nonessential in vivo but essential
in silico. Without this reaction, adenine produced during biosynthesis
of polyamines would accumulate and violate the Steady-State As-
sumption in the model. However, the in vivo data suggest that ad-
enine accumulation is not lethal to the organism, likely because of
the small predicted flux through this pathway. Conversely, the ca-
tabolism of uracil into UMP by the enzyme uracil phosphoribosyl-
transferase (Synpcc7942_1715, EC 2.4.2.9) is essential in vivo but not
in silico. The in vivo source of uracil and the metabolic requirement
to salvage it to UMP represent a Knowledge Gap in our under-
standing of S. elongatus. Therefore, overlaying in vivo essentiality
information over the model’s predictions reveals multiple classes of
unknowns in nucleotide salvage alone.
Photorespiration. The key carbon-fixing enzyme of the Calvin cycle
in photosynthetic metabolism is ribulose-1,5-bisphosphate carbox-
ylase/oxygenase (RuBisCO; Synpcc7942_1426 and Synpcc7942_
1427, EC 4.1.1.39). This enzyme can fix not only CO2 but O2 as
well, generating 2-phosphoglycolate. Buildup of this molecule is
toxic and needs to be recycled through the process of photorespi-
ration (58). To represent photorespiration in silico, a basal level of
oxygenase activity needed to be added to the model’s RuBisCO
reaction. Based on extrapolation from 13C flux analysis in PCC
6803 (11) and metabolite concentrations in low- vs. high-carbon
experiments in S. elongatus (59), we set the model RuBisCO
oxygenase flux at 1% of total RuBisCO activity. Interestingly,
the first step of the photorespiratory pathway is nonessential
in vivo, although the model predicts it to be essential. In this
step, phosphoglycolate phosphatase catalyzes the conversion of
2-phosphoglycolate to glycolate (Fig. S6). This enzyme, present
upstream of the branching of photorespiration, has no high-
confidence isozymes in S. elongatus. The nonessentiality of phos-
phoglycolate phosphatase suggests either an unknown enzyme for
this function or dispensability of the pathway.
It is improbable that the photorespiratory pathway is non-

essential. In PCC 6803, three pathways of photorespiration exist
and have been included in previous GEMs of this species (50):
the plant-like C2 cycle, full decarboxylation, and the glycerate
pathway—which when disrupted in concert, cause a high-CO2
dependency (60). S. elongatus may be missing the last of these
pathways (Fig. S6). The glycerate pathway begins with glyoxylate
carboligase (GCL), an enzyme that combines two molecules of
glyoxylate and ends with the central carbon metabolite 3-phos-
phoglycerate after the investment of ATP, NAD(P)H, and the
release of CO2. The gene found in PCC 6803 (sll1981) that
is most similar to GCL in E. coli does not have a homolog in
S. elongatus. Therefore, it is possible that only the plant-like C2
cycle and full decarboxylation via formate occur in S. elongatus.
The potential to generate glycine through photorespiration

raised the possibility that the process could compensate for de
novo glycine/serine biosynthesis. When RuBisCO oxygenase ac-
tivity was set at 1%, the model predicted that sufficient glycine
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would be created to support growth, similar to predictions in
previous cyanobacterial GEMs (50, 61). Therefore, even when
the de novo synthesis pathway of glycine from 3-phosphoglyc-
erate via serine was broken in the model, it still predicted that
cells grow at 72% of their normal rate. This finding runs counter
to the in vivo data, which show that the entire biosynthesis pathway
of serine from 3-phosphoglycerate is essential. The experimental
data suggest low flux to amino acid biosynthesis through photores-
piration, which could be explained by lower than expected photo-
respiration activity. Along these lines, in silico essential gene results
became consistent with the in vivo data only when RuBisCO’s
oxygenase activity was lowered to 0.15% of its carbon-fixing ac-
tivity. Another possibility is decreased flux specifically toward the
amino acid biosynthesis pathway of photorespiration. Glycine
hydroxymethyltransferase (Synpcc7942_0282, EC 2.1.2.1) in PCC
6803 is a choke point for the conversion of glycine from photo-
respiration into serine (62); it is possible that the same limitation
exists in S. elongatus. There is also evidence for essentiality of the
de novo serine biosynthetic pathway beyond simple metabolic re-
quirements in PCC 6803 (25). Therefore, because of lower than
expected photorespiration, limited flux toward glycine synthesis, or
undiscovered requirements of de novo serine synthesis, photores-
piration is not able to replace de novo amino acid biosynthesis
from 3-phosphoglycerate.
A truncated TCA cycle. The completeness of the cyanobacterial
TCA cycle has been an oft-debated subject (63). Since the dis-
covery that 2-oxogluterate dehydrogenase is missing in cyano-
bacteria, it was accepted for many years that the TCA cycle is
incomplete (64). However, a complete TCA cycle is responsible
for the majority of energy intermediates created by oxygenic
metabolism and nearly ubiquitous throughout nature (65). For
this reason, extensive effort has been applied to uncover routes
that complete cyanobacterial TCA cycles. A number of bypasses
of the missing 2-oxoglutarate dehydrogenase have been discov-
ered, such as the 2-oxoglutarate decarboxylase pathway (66), the
GABA shunt (67), and the glyoxylate shunt (68). These bypasses
revealed that cyanobacteria harbor complete, albeit noncanonical
TCA cycles (63). More recently, however, the necessity of the
newly circularized TCA cycles of cyanobacteria has been called
into question by experimental (16) and modeling studies (50).
Therefore, the structure and biological relevance of a TCA cycle
remains an open question in cyanobacteria.
For these reasons, we were particularly interested in discrepancies

between the draft model simulations and the in vivo essentiality for
two enzymes of the TCA cycle: fumarase (Synpcc7942_1007, EC
4.2.1.2) and malic enzyme (Synpcc7942_1297, EC 1.1.1.40). These
enzymes are required by the model’s steady-state assumption for the
recycling of fumarate, a by-product of both purine and arginine
synthesis. However, the overlay of the in vivo data on the model not
only suggests that this recycling is not an essential function but more
broadly, led us to evaluate the importance of a complete TCA cycle
in S. elongatus.
We began by examining the bypasses that complete TCA cycles in

other model cyanobacteria (63) for their potential presence in
S. elongatus. Our reconstruction, however, revealed none of the
known cyanobacterial bypasses (Fig. 5A). Additionally, we were
unable to find evidence of the core TCA-cycle enzymes malate de-
hydrogenase (EC 1.1.1.37), malate:quinone oxidoreductase (EC
1.1.5.4), and succinyl-CoA synthetase (EC 6.2.1.5). Furthermore, the
succinate dehydrogenase genes (synpcc7942_0314, synpcc7942_0641,
and synpcc7942_1533, EC 1.3.5.1) are nonessential in vivo in addi-
tion to genes for fumarase and malic enzyme. Together, these data
provide evidence that the metabolically important portion of the
TCA cycle in S. elongatus is highly abridged. We call this oxidative,
noncyclic portion of the TCA cycle that is essential in S. elongatus the
TCA pathway (Fig. 5B). To explain the feasibility of this TCA
pathway, we examined whether it would be sufficient to accomplish

the central functions of the TCA cycle: precursor metabolite pro-
duction, by-product recycling, and energy generation.
The TCA pathway preserves the enzymes necessary for the

synthesis of oxaloacetate and 2-oxoglutarate, which are pre-
cursors for many required biomass components; additionally,
2-oxoglutarate serves as the gateway to nitrogen assimilation.
Therefore, functionality in producing precursor metabolites
and nitrogen assimilation can be provided by the TCA pathway.
The TCA pathway does not include functionality for the recycling

of fumarate. Fumarate is created as a by-product of nucleotide and
arginine synthesis, the salvage of which is posited by previous
models to be essential (69). However, loss of function mutants for
fumarase and malic enzyme show that this recycling function is not
required for viability on solid media or in liquid culture (Fig. 5C and
Fig. S7 A and B). The dispensability of fumarate salvage could be
explained by the ability of S. elongatus to excrete fumarate into the
media (70), and when this possibility was added into the model, the
in silico predictions for fumarase and malic enzyme become non-
essential in agreement with the in vivo data. In addition, iJB785
shows a minor cost of excreting useable carbon backbones (Fig.
S7C). This cost is commensurate with the in vivo data that show a
significant decrease in colony size in the fumarase and malic enzyme
mutants (Fig. 5C). Therefore, fumarate recycling is a dispensable
function of the TCA cycle, despite a slight fitness cost.
The final core function of the TCA cycle is energy production.

During photosynthetic metabolism in S. elongatus, however, full
oxidation of pyruvate by the TCA cycle would amount to
“metabolic suicide,” in which the cell is fixing and degrading the
same carbon compounds concurrently (71). The wastefulness of
a complete TCA cycle for energy generation in S. elongatus is
supported by viability of mutants defective for succinate de-
hydrogenase subunit B (Synpcc7942_1533, EC 1.3.5.1) (Fig. 5C),
which in addition to its importance for cycle flux, is an electron
donor to the electron transport chain in PCC 6803 (53). At
nighttime, however, when the cell switches from photosynthesis
to glycogen as its energy source (72), we might expect that a
cyclic TCA process would become essential, because it would
enable further energy generation from glycogen. In fact, ex-
pression of TCA cycle enzymes has been shown to occur in the
dark period during light–dark cultivation (73), and modeling has
shown cyclic flux through the cycle in PCC6803 under these
conditions (50). Therefore, we repeated the viability assay under
day–night conditions but found that fumarase, malic enzyme, and
succinate dehydrogenase remain nonessential (Fig. 5D). Further-
more, iJB785 simulations of dark metabolism indicated that full
oxidation of glycogen through the oxidative pentose phosphate
(OPP) pathway could generate equivalent ATP compared with a
complete TCA cycle in S. elongatus (24.4 mol ATP/mol glucose in
OPP vs. 24.7 mol ATP/mol glucose via TCA bypass). This pre-
diction is supported by previous experimental evidence that the
OPP pathway is important for diurnal survival in S. elongatus (74–
76). Taken together, the model, the essential gene dataset, and our
loss of function mutants support the hypothesis that an abridged
TCA pathway, focused on generation of precursor metabolites, and
not the traditional TCA cycle is the physiologically relevant TCA
process for S. elongatus. This finding diverges from the current
paradigm of complete TCA cycles in cyanobacteria (63).
TCA cycles focused on biosynthesis instead of energy generation

have precedents. Green sulfur bacteria run their TCA cycle in re-
verse to fix CO2 in a process called the reductive TCA cycle (77). It
also is common for obligate autotrophs to lack the enzyme 2-oxo-
glutarate dehydrogenase (71). The hypothesized TCA mechanism in
the absence of 2-oxoglutarate is a bifurcated process, in which a
reductive branch leads to succinyl-CoA and an oxidative branch leads
to 2-oxoglutarate (71). According to iJB785, however, S. elongatus
does not require succinyl-CoA or any other metabolites of the re-
ductive branch of this TCA process. Thus, it is likely that just the
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oxidative wing of the TCA cycle, represented as the TCA pathway, is
important largely as a biosynthetic pathway in S. elongatus.
The truncated TCA pathway of S. elongatus probably generalizes

to other members of the phylum. Even if we artificially model
the complete TCA cycle in S. elongatus by adding malate de-
hydrogenase and the 2-oxoglutarate dehydrogenase bypass present

in Synechococcus sp. PCC 7002 (66), the model still predicts no
cyclic flux through the completed TCA cycle. In PCC 6803, which
contains a complete TCA cycle, both flux balance analysis (50) and
13C MFA (78) show negligible flux from 2-oxoglutarate to the rest
of the TCA cycle. Furthermore, when the complete TCA cycle of
PCC 6803 is blocked, only minor decreases in growth rate are
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observed (67). Finally, a bifurcated TCA cycle with a reductive
branch for succinyl-CoA synthesis is likely to be nonessential in
many cyanobacteria because of the presence of a heme biosynthesis
pathway that begins with 2-oxoglutarate instead of succinyl-CoA
(79). Based on these data, the abridged TCA pathway as opposed to
a complete or bifurcated TCA process is likely relevant in other
cyanobacteria, even those with genes making a complete TCA cycle.

Conclusions
The iJB785 GEM of metabolism in S. elongatus presented here is a
comprehensive representation of obligate phototrophic metabolism.
Our mechanistic modeling of photon absorption and self-shading
addresses the persistent challenge of accurately modeling light as a
metabolite. This approach can be applied to any phototrophic
GEM, enabling modeling of core aspects of light-driven metabo-
lism. The predictive nature of the method also enables tailored light
regimes for bioprocess optimization of photosynthetic platforms.
In addition to iJB785’s value for metabolic engineering and its

technical improvement to phototrophic modeling, it serves as a
platform for biological discovery. In synthesizing much of the
physiological understanding available for S. elongatus, iJB785 re-
veals the holes in this knowledge. Some of these holes include
missing elements of the nucleotide salvage system, the reason that
phosphoketolase is unable to bypass lower glycolysis, and the ap-
parent noncanonical activity of the transhydrogenase. Further-
more, the incorporation of essential gene data both improved the
model’s accuracy and highlighted disagreements, which could not

be explained by published data for S. elongatus. Many of these
inconsistencies represent new biology for S. elongatus, such as the
importance of a linear, noncyclic TCA pathway. Finally, as a
representation of our current best understanding of S. elongatus,
iJB785 is an ideal surface on which to overlay whole-genome
datasets. The future addition of omic datasets to the model will
both greatly improve in silico representation of S. elongatus me-
tabolism and identify additional biological unknowns.

Materials and Methods
Methods used to generate the genome-scale reconstruction, derive con-
straints, and generate in silico results are presented in SI Materials and
Methods. Briefly, the metabolic reconstruction was assembled using an
established protocol (20), and biomass-normalized photon absorption rate
for a given wavelength range was calculated from the combination of ir-
radiance, optical absorption cross-section, and the chlorophyll a component
of the biomass equation. Growth rates and reaction fluxes were simulated
by maximizing the biomass objective function. All additional experimental
protocols can be found in SI Materials and Methods.
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