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This inaugural article has a twofold purpose: (i) to present a simpler
and more general justification of the fundamental scaling laws of
quasibrittle fracture, bridging the asymptotic behaviors of plastic-
ity, linear elastic fracture mechanics, and Weibull statistical theory
of brittle failure, and (ii) to give a broad but succinct overview of
various applications and ramifications covering many fields, many
kinds of quasibrittle materials, and many scales (from 10�8 to 106

m). The justification rests on developing a method to combine
dimensional analysis of cohesive fracture with second-order accu-
rate asymptotic matching. This method exploits the recently es-
tablished general asymptotic properties of the cohesive crack
model and nonlocal Weibull statistical model. The key idea is to
select the dimensionless variables in such a way that, in each
asymptotic case, all of them vanish except one. The minimal nature
of the hypotheses made explains the surprisingly broad applica-
bility of the scaling laws.

D iscovery of the concept of stress and strength by Galileo (1)
may, in retrospect, be regarded as the first scaling theory of

solid mechanics. This theory, now known to apply only to
elastoplastic behavior, captures the fact that, under controlled
load P, geometrically similar structures of different sizes D fail
at the same nominal stress �N, defined as the maximum stress in
the structure (if no stress singularities exist) or simply as �N �
P�D2 or P�bD for three- or two-dimensional scaling (b �
structure thickness). Any departure from such scaling came to be
known as the ‘‘size effect.’’

About 350 years ago, Mariotte (2) pointed out that a size
effect must arise because the local material strength is random
and its minimum encountered in a structure decreases with D.
Nevertheless, proper mathematical formulation of this idea
had to wait until 1939. That year, Weibull (3) experimentally
demonstrated that �N for brittle structures has the probability
distribution that came to bear his name, although already in
1928 this distribution was derived by Fischer and Tippett (4)
as the only possible limiting distribution with a threshold for
the minimum of a set of n independent random variables for
n3 �. The tail of this distribution is a power law, from which
Weibull deduced that the statistical size effect is also a power
law, the exponent of which is a function of the coefficient of
variation � of material strength.

For half a century afterward, whenever a size effect was
observed, it was generally attributed to Weibull theory (3, 5, 6),
which was amply confirmed for fatigued metals and fine-grained
ceramics. However, beginning with studies of concrete for
nuclear reactors during 1970–1985, it gradually transpired that
Weibull theory does not apply to materials now termed ‘‘qua-
sibrittle’’ (7–9). These are materials in which the fracture process
zone (FPZ) is not negligible compared with the cross-section
dimension D (and may even encompass the entire cross section).

Depending on the scale of observation or application,
quasibrittle materials include concrete, fiber composites,
toughened ceramics, rigid foams, nanocomposites, sea ice,
consolidated snow, rocks, mortar, masonry, fiber-reinforced
concretes, stiff clays, silts, grouted soils, cemented sands,
wood, paper, particle board, filled elastomers, various refrac-
tories, coal, dental cements, bone, cartilage, biological shells,
cast iron, and modern tough alloys. In these materials, the FPZ

(the length of which is usually 5–50 times the dominant
material inhomogeneity size) undergoes softening damage
such as microcracking; it represents almost the entire nonlin-
ear zone at the crack tip, and the transverse stress declines
gradually along the FPZ length (9–13). In ductile fracture of
metals, by contrast, the FPZ is essentially a point within a large
nonlinear zone undergoing plastic yielding rather than dam-
age. The FPZ length can vary enormously; it is typically �50
cm in normal concretes, 5 cm in high-strength concretes, 10 �m
to 1 mm in fine-grained ceramics, 10 nm in a silicon wafer,
100 m in a mountain mass intersected by rock joints, 1–10 m
in an Arctic sea ice f loe, and �20 km in the ice cover of Arctic
Ocean (consisting of thick f loes a few kilometers in size,
connected by thin ice). If the FPZ is negligible compared with
D, a quasibrittle material becomes perfectly brittle, i.e., follows
linear elastic fracture mechanics (LEFM). Thus, concrete is
quasibrittle on the scale of normal beams and columns but
perfectly brittle on the scale of a dam. Arctic Ocean cover,
fine-grained ceramic, or nanocomposite are quasibrittle on the
scale of 10 km, 0.1 mm, or 0.1 �m but brittle on the scale of
1,000 km, 1 cm, or 10 �m, respectively.

Scaling Laws and Their Asymptotic Support
Asymptotics of Energetic Size Effect. First, let us show an elemen-
tary explanation of the nonstatistical size effect in a very specific
situation (14). Consider rectangular panels of different sizes
under initially uniform uniaxial tension �N (Fig. 1a) and assume
that their failure modes are similar, which means that a0�D �
constant at maximum load Pmax (a0 � crack length excluding the
FPZ). Formation of a crack relieves the stress, and thus releases
strain energy, approximately from the shaded triangles on the
crack flanks, limited by lines of some slope k emanating from
the middle of the FPZ. To determine k, one would need to solve
the boundary value problem of elasticity, but for us it suffices to
know that k is constant for similar panels of different sizes D.
The potential energy (ends being fixed) is �(a) � �0 �
(�N

2 �2E)bAr where �0 � constant and Ar � area of the
triangles � ka2 (a � a0 � cf � equivalent crack length, cf �
constant � half length of the FPZ; Fig. 1a). The supports being
fixed, the fracture can grow if the rate of energy release,
�����a, is equal to the energy dissipation rate bGf (Gf �
fracture energy of material). Solving �N from this condition, one
obtains the classical energetic size effect law for failures with
large cracks or notches (14) (Fig. 1 e and j–p):

�N � �0�1 � ���1/2, � � D�D0 . [1]

D0 � cf(D�a0) and �0 � (EGf�kcf)1/2 are constants (indepen-
dent of D). The size-effect law in Eq. 1 applies to many
geometries. It was verified experimentally and justified theo-
retically for a surprisingly broad range of many different

Abbreviations: FPZ, fracture process zone; LEFM, linear elastic fracture mechanics; pdf,
probability density function; CoV, coefficient of variation; SFEM, stochastic finite element
method.
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materials and structures (9, 12–23). The law was derived by
asymptotic approximations of equivalent LEFM (9, 15, 18, 24),
of the cohesive crack model (9, 12) and of J-integral (25) and
was verified by numerical simulations with the crack band
model, nonlocal-damage model, and various types of random-
particle or lattice models. Another nonstatistical scaling law of
broad applicability was later found for failures at crack initi-
ation (9, 12, 13, 17, 26–32).

It will now be shown that both scaling laws follow logically
from the general asymptotic properties of quasibrittle fracture if
one exploits the asymptotic matching philosophy well known
from fluid mechanics (33–36). Although the asymptotic match-
ing properties of the size-effect laws were recently highlighted
(12, 13, 37–39), a systematic matching procedure was not used
and will be presented here.

As a compromise between reality and simplicity, quasibrittle
fracture may be described by the cohesive (or fictitious) crack
model, originated by Barenblatt (40) and extended by others (9,
41–44). The FPZ at the crack front (Fig. 1 a, e, and o) is modeled
as a fictitious line crack transmitting cohesive (crack-bridging)
stresses � � ft�(w̄); w̄ � wft�Gf � dimensionless opening; w � crack
opening (separation); ft � tensile strength of material; �(w̄) �
monotonically decreasing (softening) function (Fig. 1c), assumed to
have a finite initial slope; Gf � �ft

2�[2d�(0)�dw] � area under the
initial tangent of � (w)-curve (Fig. 1c); Gf is called the initial
fracture energy, to be distinguished from the usual fracture energy

GF � 	0
� �dw � Gf	0

� �(w̄)dw̄ � total area under the complete
�(w)-curve (Fig. 1c) � critical energy flux into the FPZ in infinite
body (41). By definition, �(0) � 1 and �
(0) � �1�2.

Depending on the first two nonzero terms of the asymptotic
expansions in powers of D and D�1, there exist three and only
three types of size effect (12, 13, 37):

For D 3 0: �N � b0 	 c0D � . . . �all types� [2]

For D 3 � : �N � b1 � c1D�1 � . . . �type 1� [3]

�N � D�1/2�b2 	 c2D�1 � . . .� �type 2� [4]

�N � D�1/2�b3 	 c3D�2 � . . .� �type 3� [5]

where b0, c0, . . . , c3 are positive constants determined by
structure geometry (sections 2.12 and 9.4 and equations 9.61,
9.39, and 9.73 in ref. 12). Type 1 (Fig. 1d) occurs if the geometry
is such that Pmax is reached at crack initiation from the FPZ at
a smooth surface, i.e., as soon as the FPZ is fully formed; type
2 (Fig. 1e) occurs if there is a large notch or preexisting
stress-free (fatigued) crack and if the geometry is positive (12),
i.e., such that Pmax occurs while the FPZ is still attached to the
tip; and type 3 occurs if a large crack can grow stably prior to Pmax
[negative geometry (12)]. The size-effect types 1 and 2 are very
different, but types 2 and 3 are quite similar and hardly distin-
guishable in fracture testing (Fig. 1e). Eq. 2 was derived by

Fig. 1. Explanation of the causes and trends of size effect and documentation of its experimental support and engineering application. (a and b) Size-effect
sources in notched and unnotched beam. (c) Stress-separation curve. (d–i) Size-effect laws. (j–q) Type 1 and 2 size-effect laws compared with tests of various
materials (referenced in refs. 9, 12, and 13). (r) Universal size-effect law. (s and t) Example of Malpasset Dam and its size effect.
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perturbation analysis of the elastic boundary value problem (12,
13, 37). Eqs. 3–5 were derived from equivalent LEFM and
verified by asymptotic expansions based on the smeared-tip
method (12, 13, 15, 45).

The first terms in Eqs. 2–5 represent power-law scaling.
Transition from one power law to another is normally handled
by renormalization group transformation (34). This transforma-
tion, however, merely identifies the intersection of adjacent
power laws, relating one power law to another. It does not
describe the gradual transition between them, which can be very
broad, often spanning 3 or 4 orders of magnitude. Thus, the
second asymptotic terms are important, too.

Asymptotics of Energetic-Statistical Size Effect. In Weibull theory,
the failure probability at a continuum point is assumed to be a
function of the stress at that point. However, for heterogeneous
(quasibrittle) materials, one must introduce a nonlocal general-
ization in which it is assumed that the probability of failure at a
given point of the macroscopic smoothing continuum is a
function of the average strain in a certain neighborhood of that
point, the size of which is a material property (46). This
hypothesis, which was shown to give good agreement with
experimental observations (29–32), has the nonlocal damage
model as its deterministic limit and permits dealing with failures
occurring not only at crack initiation (type 1) but also after large
crack growth (types 2 and 3). Numerical simulations as well as
asymptotic approximations of nonlocal Weibull theory (46) have
shown that, in quasibrittle failures, material randomness does not
appreciably affect the mean energetic size effect except for large
structures failing at crack initiation. Therefore, the asymptotic
properties in Eqs. 2–5 apply to the mean �N, except that Eq. 3
for asymptotic type 1 size effect must be modified:

for D 3 � : �N � C1D�n/m � . . . �type 1� . [6]

Here m � Weibull modulus and n � number of dimensions in
which the structure is scaled (n � 1, 2, 3); typically, m � 10–40
and n�m �� 1. Eq. 6 means, not surprisingly, that Weibull size
effect must apply for failures at crack initiation if the FPZ is
negligible compared with D.

Asymptotic Matching Law for Type 2 or 3 Scaling. The general
approximate size-effect law can be derived by combining dimen-
sional analysis with asymptotic matching. From the �-theorem
of dimensional analysis (33, 34), two special size effects can be
readily proven: (i) if the failure depends on ft (dimension N�m2)
but not Gf, then there is no size effect, i.e., �N � constant (this
is so for all elastoplastic failures); (ii) if the failure depends on
Gf (dimension J�m2) but not on ft, then there is a size effect of
the type �N � D�1/2 (this is so for LEFM if the cracks or notches
are geometrically similar). Nothing more can be deduced from
dimensional analysis alone.

One can, however, deduce more information after considering
the physical meaning of the material characteristic length gov-
erning the FPZ size, � � EGf�f t

2 (47). The FPZ length and width
for D 3 � are 
� and 

� where 
 and 

 are constants of the
order of 1 depending on microstructure characteristics (the
parameter le � Gf�E is also a length but is irrelevant for failure
because it controls the ratio of deformation to stress intensity
factor KI in LEFM). Depending on the ratio D��, two asymptotic
cases may be distinguished (Fig. 1 e and j–p). (i) When D�� 3
0, the body is much smaller than a fully developed FPZ. Thus,
Gf cannot matter. Therefore, the case of no size effect, �N �
constant, is the small-size asymptote. (ii) When D�� 3 �, the
FPZ becomes a point in dimensionless coordinates and the stress
field approaches a singularity. Thus, ft cannot matter. Therefore,
the LEFM scaling, �N � D�1/2, is the large-size asymptote of
quasibrittle failure [which is represented by a straight line of

slope �1/2 in the plot of log �N versus log D (Fig. 1 e and j–p)].
For the intermediate sizes, the size-effect curve may be expected
to be a gradual transition between these two asymptotes. It will
now be shown that the approximate form of this transition can
be deduced after noting how the asymptotes are approached, i.e.,
by exploiting the higher-order asymptotic terms in Eqs. 2 and 4.

Examining the formulation of the boundary value problem with
cohesive crack to dimensionless variables, one concludes that [if
the structure shape, a0�D and curve �(w̄) are fixed] �N depends
on only three parameters, ft, D and Kc, where Kc � (EGf)1/2 � mode
I fracture toughness for plane strain, E � Young’s modulus
[for plane stress, E needs to be everywhere in this article replaced
by E
 � E�(1 � �2); � � Poisson ratio]. Thus, there are four
governing parameters, �N, D, ft, and Kc. Because they involve two
independent physical dimensions (length and force), the �-theorem
(33, 34) implies that there can be only 4 � 2, i.e., two independent
dimensionless parameters, �1 and �2.

So, the equation governing failure may be written as F(�1,
�2) � 0, where function F is assumed to be sufficiently smooth.
Although many diverse choices of �i (i � 1, 2) are possible, the
key idea proposed here is to make a choice for which, in each
asymptotic case, all �i vanish except one. If consideration is
limited to dimensionless monomials, this can be most generally
achieved by choosing

�1 � ��N�ft�
p�D���u, �2 � ��N�ft�

q�D���v, [7]

where p, q, u, and v are four unknown real constants. Indeed, if
we let �1 � 0 correspond to D 3 0, then F(0, �2) � 0, which
implies that �2 � constant or �N

q Dv � constant for D3 0, which
must be the case of no size effect; hence, v � 0. If we let �2 �
0 correspond to D 3 �, then F(�1, 0) � 0, which implies that
�1 � constant or � N

p Du � constant, or �N � D�u/p for D 3 �,
which must be the LEFM scaling; hence, u�p � 1/2 or u � p�2.
To find p and q, we truncate the Taylor series expansion of F
after the linear terms:

F��1 , �2� � F0 � F1�1 � F2�2 � 0 [8]

or F1��N�D�f t���p � F2��N�f t�
q � �F0 , [9]

where F1 � [�F���1]0 and F2 � [�F���2]0 (evaluated at �1 �
�2 � 0) and F0 � F(0, 0) (F0, F1, F2 
 0). For general p and
q, the last equation cannot be solved explicitly for �N, but it can
for D:

D � �f t
2��F0�F1�

2/p�N
�2�1 � �F2�F0f t

q�� N
q �2/p. [10]

This may be compared with the inverse of the large-size asymp-
totic expansion (Eq. 4), which has the form

D � B2�N
�2�1 	 C2�N

2 � . . .� [11]

for �N 3 0 (B2, C2 � positive constants). Evidently, matching
of the first two terms of this expansion requires p � q � 2. Then,
Eq. 9 can be solved for �N. This yields, and verifies, the
size-effect law (Eq. 1) (Fig. 1 e and j–p) in which �0 �
ft(�F0F2)�1/2 and D0 � �F2�F1. For D 3 0, Eq. 1 has the
approximation

�N � �0�1 	 D�2D0�, [12]

which verifies that the form of the second term of small-size
expansion (Eq. 2) can be matched, too. Thus, Eq. 1 is the simplest
formula for type 2 size effect that can match four asymptotic
terms, two for D3 0 and two for D3 �. [However, if not only
the form of the second-order terms but also the values of all four
coefficients b0, c0, b2, and c2 are given, a slightly more general
formula with four adjustable parameters is needed (48).]
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More complex formulas of the same asymptotic accuracy, but
more flexible in data fitting, can be obtained by replacing Eq. 7
with dimensionless polynomials (or other monotonic functions
of �1 and �2). Such formulas can make a significant difference
only if the size effect needs to be modeled for a size range
exceeding �11⁄2 orders of magnitude of D. Their merit is that
they can capture a spectrum of fracture energies (12, 49), each
of which is associated with a different order of magnitude of D.

The type 3 size-effect formula ensues similarly. The result is

�N � �0��1 � D��D0�
�1 � D�D0�

�1/2, [13]

where �0, D0, and � � constants (Fig. 1e). To ensure monoto-
nicity, � 
 1 (12, 37).

Asymptotic Matching Law for Type 1 Scaling. Failures at macrocrack
initiation from a smooth surface need a somewhat different
approach. They can be treated as a limit case of finite crack for
a03 0 (12, 15, 28), but because the energy release rate at crack
initiation is zero, it is easier to analyze the stress redistribution
caused by a finite FPZ that releases energy and must occur
before a macrocrack can initiate. The nonstatistical type 1 size
effect (also called, albeit not quite accurately, the strain-gradient
effect) can be instructively explained by the flexural test of a
beam (Fig. 1 b and q) (26). Gf is here irrelevant for Pmax, and what
matters is the thickness, ��, of the boundary layer of cracking (�
being a constant of the order of 1, depending on microstructure
properties). Pmax occurs roughly when the average of the elas-
tically calculated flexural stress � over the thickness of the
boundary layer equals ft, i.e., when kMMc�I � ft, in which I �
bh3�12, c � D�2 � ���2, M � kML(�NbD) � bending moment,
L � beam span, and kM � constant for geometrically similar
beams. Solution yields �N � f r

0�(1 � �), where � � ���D and
f r

0 � ft(D�L)�6kM (26). This approximation is second-order
accurate for � �� 1 or D �� � but unacceptable for smaller D
because it jumps to negative �N. To get acceptable approxima-
tion of the same second-order accuracy in D�1, set (1 � �)�1 �
(1 � r�)1/r (r � constant 
 0); this gives the deterministic type
1 size effect (Fig. 1d):

�N � f r
0�1 � r���D�1/r �type 1, m 3 �� . [14]

For general dimensional analysis, we need a slightly different
procedure than for type 2. Consider the deterministic type 1 first
(m 3 �). Because, according to Eqs. 2 and 3, both asymptotes
in the plot of log �N vs. log D are horizontal, the curve in Fig.
1d must have an inflexion point. This postulating suggests the
existence of what is called an ‘‘intermediate asymptote’’ (34),
which consists of some unknown power law. Because it separates
the large-size and small-size asymptotics, we now try to match
the large-size asymptotic terms alone and choose the large-size
asymptote to correspond to �1 � 0, i.e., to F(0, �2) � 0. This
means that �2 � constant for D 3 �, and thus v � 0 in Eq. 7.
The linear approximation (Eq. 8) cannot in general be solved for
�N, but it can for D:

��D � ��F0�F1�
�1/u�� f t��N�p � �F2�F0�� f t��N�p�q��1/u.

[15]

The large-size expansion may be generalized as �N � (b1 �
rc1D�1 � . . .)1/r, without contradicting Eq. 3 (r � arbitrary
constant 
 0). The inverse expansion is 1�D � (�b1 � �N

r �
. . .)�rc1, and matching of Eq. 15 obviously requires u � �1 and
p � q � �r in Eq. 7. So �1 � (ft��N)r��D and �2 � (ft��N)r.
Now Eq. 8 can be solved for �N. This yields, and thus verifies, Eq.
14, in which � � F1�rF2 and f r

0 � ft(�F2�F0)1/r.
For the statistical case (m � �), we again choose the large-size

asymptote to correspond to �1 � 0, �2 � constant. To match Eq.

6, �N � C1D�n/m � ft(D��)�v/q; thus, v�q � n�m. Not to loose
the deterministic limit, we keep p � q � �r and u � �1. Eq.
8 can now be solved for �N, which leads to the mean type 1
energetic-statistical size effect (Fig. 1 d and q),

�N � f r
0�����D�rn/m � r�����D��1/r, [16]

where f r
0 � ��n/m(�F2�F0)1/r, � � �rn/m�1F1�F2r, and r is a

parameter of the order of 1, sensitive to structure geometry.
Eq. 16, however, violates the small-size asymptotics in Eq. 2,

and therefore must be modified further, but without affecting the
first two large-size asymptotic terms. To bridge the small-size
and intermediate asymptotes, we could engage in similar argu-
ments as we did for bridging the large-size and intermediate
asymptotes. Suffice to say, the complete law for the mean-size
effect of type 1 (Fig. 1d), matching the small-size asymptotics in
Eq. 2, is obtained by replacing ���D in Eq. 16 with � (39):

�N � f r
0��rn/m � rs���1/rs, � � �1 � D�s
���s��
,

[17]

where 
 � positive constant of the order of 1 and s may be taken
as 1. Note that if we let 
 �� D�� �� �, or ��
 3 �, Eq. 17
converges to the intermediate asymptote, which is given by the
power law �N � s0(�r
0�)1/r D�1/r and coincides with the
small-size asymptote of Eq. 16 as well as with the large-size
asymptote of f r

0�n/m. The physical reason for the existence of an
intermediate asymptote is that normally the size of averaging
domain in nonlocal Weibull theory (approximately the FPZ
width) is much smaller than the FPZ length (39). Eq. 17 is
supported by finite element simulations with nonlocal Weibull
theory as well as test data from 10 different labs [all combined
in one dimensionless plot in Fig. 1q (29–31)]. However, test data
for concrete and composites show that the D values for which the
difference between Eqs. 16 and 17 is significant are less than the
material inhomogeneities, which means that Eq. 16 should
mostly suffice in practice.

For bending of laminates or unreinforced concrete beams, the
Weibull statistical component in Eq. 16 or 17 is usually insig-
nificant for normal sizes (30, 50). It becomes significant only for
bending fracture of very large structures such as arch dams.

Bridging of LEFM and Plasticity. To identify the size-effect param-
eters, one needs to anchor them to LEFM for D 3 � and to
plasticity for D3 0. In LEFM, the dimensionless energy release
function g(�) characterizes the effect of structure geometry; it is
defined as g(�) � k2(�), where � � a�D � relative length of
crack or notch and k(�) � KI(a)��N�D. The tip � of an
equivalent LEFM crack is placed into the middle of the FPZ, and
the LEFM relation �N � [EGf�Dg(�)]1/2 is expanded into
Taylor series in � � � � �0 � cf�D about the initial relative
length �0 of crack or notch, which is assumed to be the same for
different D. Depending on which terms of this series vanish
(first, second, or neither), and making sure that �N for D 3 0
is finite (as required by plasticity), one obtains type 1 and 2
size-effect Eqs. 1 and 17. However, their parameters are now
expressed in terms of g(�), which introduces the effect of
structure geometry [similar formulas ensue more rigorously by
the smeared-tip method, in which a cohesive crack is regarded as
a superposition of infinitely many LEFM cracks with continu-
ously distributed tips and infinitely small KI (12)]. For type 2, the
relation �N � [EGf�Dg(�)]1/2 with g(�) � g(�0) � g
(�0)cf�D
yields Eq. 1 with

D0 � cf g
��0��g��0�, �0 � �EGf�D0 g��0� , [18]

where cf � EGf��0
2 g(�0) � �(ft��0)2g
(�0) � half of FPZ length

at Pmax (ref. 48, Eq. 13) (cf depends on geometry but not on D);
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and � � D�D0 � (D�cf)g(�0)�g
(�0) � B2g(�0)(D��) is called
the brittleness number, because it characterizes proximity to the
brittle behavior of LEFM, even for different geometries (18, 51);
B is a geometry parameter of the order of 1, computed as if the
crack were filled with a plastic ‘‘glue’’ (48).

Type 2 size effect has also been described in terms of
equivalent KI

eq, evaluated from tests as if cf were 0, using LEFM;
from Eq. 1 we have KI

eq � Kc[��(1 � �)]1/2 (18, 51).
Eq. 16 for type 1 size effect (typical of f lexure of unnotched

unreinforced beams) can be obtained as the limit case of
equivalent LEFM when �0 3 0. Because g(0) � 0, one has
g(�) � g
(0)cf�D � g�(0)cf

2�2D2. If (as usual) g�(0) � 0, the
second-order approximation leads to Eq. 16, in which � �
�rf t

2g�(0)�4�0
2, f r

0 � �0�ftg
(0) (12, 28).

Universal Size-Effect Law. The size-effect that bridges types 1 and
2 (i.e., for short notches or short cracks comprised within the
boundary layer) is more complex. Using similar asymptotic
matching procedures, one can construct the universal size-effect
law (17). Fig. 1r shows a plot of its formula (38) matching all the
seven asymptotic terms in Eqs. 2 and 4, and in Eq. 6 for the
statistical case (with finite m).

Scaling of Probability Density Distribution of Failure Load. Structures
must typically be designed for failure probabilities pf of the order
of 10�7. Such a low probability can be assessed only theoretically,
taking into account the size effect on the probability density
function (pdf) of �N, based on the nonlocal Weibull theory (39).
For D 3 0, failure is nonpropagating and must occur nearly
simultaneously along the entire failure surface. Thus, the pdf of
�N must be Gaussian (except in far-off tails), as deduced from
Daniels’ fiber bundle model (52) (Fig. 1f Upper Left). With
increasing D, the asymptotic size effect on the mean strength is
nil, and the coefficient of variation (CoV) asymptotically
decreases as D�1/2. For D 3 �, the pdf must be Weibull,
corresponding to the weakest-link chain model (Fig. 1f Right),
which implies a size-independent CoV. The gradual transition
of pdf from Gaussian to Weibull, exemplified by various
load-sharing models (53, 54), can be obtained by asymptotic
matching (39) and calibrated by a chain-of-bundles model
(Fig. 1f Center) (31).

Scaling for Interacting Fractures. Some failures require several
fractures to form at different places. For example, statically
indeterminate reinforced concrete beams or frames will collapse
only after several critical cross sections (Fig. 1 h and i) develop
fractures due to bending (either at the tensioned face or, if
reinforced for tension, at the compressed face). For not too large
D, the cohesive fractures in different cross sections develop
simultaneously (Fig. 1h), causing a complex size effect. For D3
0, the behavior tends to be quasiplastic (Fig. 1g) with no
size effect. For large enough D, the fractures occur in sequence
(note the spikes in Fig. 1i), and then only one of them governs
Pmax (12, 13).

Some Generalizations. In compression fracture, e.g., kink bands in
fiber composites, the softening curve of � versus w may termi-
nate with a finite residual stress �R. In that case, Eq. 1 must be
replaced by

�N � �0�1 � ���1/2 � kr�R, [19]

(kr � constant), which can be deduced from the J-integral (25).
Gf now represents the area between curve �(w) and line � � �R.
Eqs. 2–5 and 7–12 remain valid if �N is replaced by �N � kr�R.

Shear fracture of mode II or III can be analyzed similarly, with
Gf replaced by the shear fracture energy.

Conspectus of Applications and Ramifications
Now that the general theory has been expounded, various appli-
cations and ramification will be reviewed succinctly. There is no
room for complete references; they are found in refs. 9, 12, and 13.

Standards for Material Fracture Testing. Expressing the size effect
in Eq. 1 with 18 by means of function g(�) brings about the
advantage that, by measuring the maximum loads for not-too-
small notched specimens of different sizes (and possibly also
different geometries), one can identify the mean and CoV of Gf,
cf, and � (9, 12, 18, 24, 51) [this became a standardized testing
method (55)]. The data fitting can be reduced to linear regres-
sion with slope 1�Gf and intercept cf. The Gf thus obtained is
the so-called initial fracture energy (48) (Fig. 1c) (roughly, Gf �
0.4 GF for concrete, although the scatter is large). The reason
why the size-effect method yields Gf rather than GF is that the
cohesive stresses � at Pmax are everywhere in the FPZ of test
specimens (as well as not-too-large structures) on the initial
tangent (and not on the long tail, Fig. 1c) of the softening curve,
exceeding ft�3 everywhere (48, 56, 57) (which explains why Gf,
rather than GF, must be used in Eqs. 7–13).

Recent work led to a more convenient (zero-brittleness) version
of the size-effect method of Gf testing (48), in which it suffices to
measure the maximum loads of only one notched specimen of a
small size and one small unnotched specimen [except for statistics,
this method is equivalent to the measurement of initial slope (57)].
The unnotched specimen permits determining the zero-size limit �0
(27) of notched specimen strength, because for D 3 0, failure is
independent of Gf. For D 3 0, the size-effect method based on
equivalent LEFM requires a certain geometry-dependent correc-
tion, given by parameter B defined below Eq. 18 and computed
from the cohesive crack model (48).

Measuring the type 2 size effect, one can also deduce the resis-
tance curve (R curve), describing how the apparent fracture energy
(determined as in LEFM) varies with the crack extension from a
notch. The R curve is the envelope of the family of fracture
equilibrium curves for various D, and using this property one can
derive from Eq. 1 an expression for the R curve (9, 18, 24).

Compression Fracture and Concrete Columns. Compression failure
of concrete and other particulate composites is normally caused
by a band of compression splitting cracks, propagating either in
the direction of compression or inclined to it. The former is
preferred (because extension of the existing axial microcracks
requires less energy than formation of new ones). However
(similar to Fig. 1a), the inclined transverse propagation causes an
asymptotically quadratic increase of energy release with fracture
growth, whereas the axial propagation causes a linear increase.
Therefore, the former must cause size effect, and the latter must
not. So, there must exist a certain critical structure size above
which the size effect will favor the inclined propagation. This
behavior explains the size effect observed in concrete columns
(9, 12, 13, 58) and large compression test specimens (59). The
strain energy, and thus the size effect, is greater as the concrete
columns are made more slender.

Stable growth of a tensile crack may provoke fracture under
compressive stresses parallel to the tensile crack. This is so, e.g.,
for diagonal shear failure of reinforced concrete beams (60) (in
which the size effect is due to compression fracture) and partly
for compression punching of concrete slabs. However, for a
dipping crack in gravity dam, running in compression direction,
failure is caused not by compression but by a flexural crack
branch through the ligament. Thus, compression fracture dis-
plays a rich palette of large-crack size effects.

Sea Ice Fracture. Size effects in sea ice have long been denied,
because normal-size tests could not verify them. In retrospect,
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the reason was that brine voids, channels and pockets, thermal
cracks, bottom roughness, and snow drifts cause the character-
istic length of sea ice to be quite large: � � 2–10 m for horizontal
and �0.5 m for vertical propagation of fracture (12, 25, 61).
However, recent Arctic Ocean field tests of f loating notched ice
specimens of sizes up to 80 � 80 � 1.8 m, organized by Dempsey
et al. (22), have established that, on the large scale, Eq. 1 is
indeed followed, as predicted by both analytical and numerical
studies of vertical penetration and of forces exerted against
obstacles by moving ice (61). Eq. 1 explains why the forces
measured on oil platforms are �1.5 orders of magnitude less
than predicted by standard elastoplastic software.

Long cracks in the Arctic Ocean cover tend to run straight
through thick ice floes rather than circuitously through thin ice
between them. To explain this curious observation, it was shown
(62) that the temperature drop �T needed to cause horizontal
propagation of long flexural cooling cracks over the Arctic
Ocean exhibits anomalous asymptotic scaling �T � D�3/8 rather
than D�1/2 (D � ice thickness). The reason is that the charac-
teristic f lexural wavelength L of a floating plate is proportional
to D3/4 rather than D, which means that �T � L�1/2, and D needs
to be replaced by L in Eq. 1.

Failure of Fiber Composites. Similar to concrete or ice, this is
another field in which size effects have generally been ignored in
practice. However, tests (12, 25, 50, 63–65) motivated by new
interest in building large ship and aircraft parts almost entirely
with polymer composites clearly indicate a strong size effect,
unobservable on the normal laboratory scale. For notched
specimens, or structures in which a large crack or damage zone
develops before Pmax, the type 2 size-effect law (Eq. 1) was shown
to apply (63), but the expressions for D0 and �0 are complicated
by material orthotropy and irregular or star-like shape of a large
FPZ. Compression failure due to fiber kinking (with micro-
buckling) also follows type 2 size effect law (Eq. 1) but with
a modification: �N must be replaced by �N � �r, where �r �
residual compressive stress across the propagating kink band,
equal to about a half of the initial compression strength (25).
This was deduced from the compressive cohesive crack model for
kink band using perturbation analysis of the J integral for the
energy flux into the FPZ of kink band and was verified by tests
of size effect in compression failure of unidirectional carbon–
epoxy and carbon–PEEK (poly-ether-ether-keton) composites.

Fiber-reinforced concretes and polymers with short fibers exhibit
more complex size effects, different for two local peaks on the
load-deflection curve: one peak for matrix fracture and another for
fracture and frictional pullout of fibers from the crack faces.

The size effect observed in flexural failure of laminates (66, 67)
has long been attributed to pure Weibull statistical theory. The
existing size-effect data alone can of course be fitted by that theory,
but it has been neglected to check the corresponding CoV of
strength, which would have to match Weibull theory but does not.
Weibull moduli m obtained from size-effect data for various lay-ups
of the same prepregs vary immensely (from 4 to 40), but this
corresponds to CoV � 23% and 4%, respectively, both of which are
totally unrealistic, thus ruling out pure Weibull size effect (50). The
mean size-effect data can be matched consistently with the type 1
size-effect law (Eq. 16), in which the statistical part is irrelevant
(equal to 1) for normal situations (thickness � 5 cm) and can matter
only for much thicker laminates.

Foams, Sandwich Structures, and Composite Beams. Vinyl foam
typically used for sandwich plates is normally thought to be
ductile (68), but tests and simulations reveal a strong type 2
size-effect if the foam has a notch or damaged zone (64, 69–71).
So, size effect must naturally be expected in sandwich plates with
foam core, as indicated by preliminary tests. However, the size

effect is complicated by core indentation, skin wrinkling, and
delamination buckling.

Hierarchical Size Effects in Composite Structures. In a large steel–
concrete composite beam, the connectors do not fail simulta-
neously, as plastic limit analysis dictates, but in sequence, similar
to a propagating crack. Of course, size effect ensues. But the
pullout of the connectors themselves from concrete slab also
exhibits a size effect, amplifying the first. The result is a size
‘‘super effect,’’ such that �N � D�3/4 for D 3 � (12, 13, 72).

Ceramics, Rocks, and Masonry. Testing of ceramics (e.g., refs. 18
and 73) shows them to be quasibrittle and exhibit a size effect of
type 1 or 2 but on a smaller scale (� from 0.1 to 10 mm). The same
applies to intact rocks (24, 74). � and D0 are roughly proportional
to the grain size (and can differ by as much as 100:1 between
marble and breccia, e.g.). In rock masses, however, the dominant
heterogeneity is not the grain size but the spacing of rock joints,
typically �10 m. Accordingly, one must expect the characteristic
length � for size effect on the sliding of a mountain that consists
of jointed rock to be of the order of 100 m. However, the rock
excavation scale in normal construction is generally too small for
significant size effect of this kind.

Masonry is also quasibrittle, with � of the order of 1 m, which
may help to explain the collapses of ancient massive towers in
Italy, after about seven centuries of placid existence. The critical
time is set by long-term drying of thick walls, causing shrinkage,
which leads to compression failure of cladding, assisted by size
effect (D. Ferretti and Z.P.B., unpublished results).

Breakout of Boreholes in Rock and Mining Excavations. The breakout
of deep boreholes under remote compressive stress �N exhibits size
effect as a function of borehole diameter D. There may be a residual
stress �r, and it was shown that �N � �r asymptotically approaches
either D�1/2 or D�2/5 (the anomalous exponent �2�5 arises if the
spacing of axial splitting cracks around the borehole is not dictated
by grain size but is free to minimize �N) (75). The explosive
breakout of mining stopes doubtlessly exhibits a similar size effect.

Triggering of Snow Avalanches and Landslides. Dry snow-slab ava-
lanches are triggered as mode II (shear) fractures in a weak layer
at the slab base. The cohesive crack model leads to a type 2 size
effect of slab thickness D but with a modification: the size effect
depends on preexisting frictional stress in a weak layer and is
offset by an effect of D (or snow weight) on fracture energy and
residual shear stress. The theory correlates with hundreds of
avalanche observations (21).

Structures with Finite Angle Notches. The power �(�) of the elastic
stress singularity at finite-angle notches is known to decrease
as the notch angle, 2�, increases (76). However, Pmax of a body
with such a notch must be determined not from the singularity
but from the analysis of a cohesive crack emanating from the
notch tip. For �3 0, the type 2 size effect must be approached:
for � 3 �, the type 2 size effect must disappear; and for D 3
�, Williams’ (76) stress field must be approached for any �.
From these asymptotic conditions, one can deduce (by similar
asymptotic matching as above) the size-effect formula

�N � �0�1 � ����D�D0�
�����1, [20]

where functions �(�) and �(�) are taken from ref. 76. This
formula agrees with finite element solutions for a cohesive crack
emanating from the notch as well as with tests (38).

Fatigue, Rate Effect, and Dynamics. The classical Paris–Erdogan
law for increments of crack length a per cycle, �a��N �
(C�KI)n, requires a size-effect correction of C if the FPZ is not
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negligible (�KI � amplitude of cyclic KI, and n � constant
of the order of 10). Based on Eq. 1, it was shown that C �
(1 � D0�D)�1/2 (9, 12, 13). Under monotonic or sustained
loads, viscoelastic behavior of the material causes the FPZ to
shorten, which makes the size effect and brittleness for slow or
long-time loading greater than for fast or short-time loading
(77). For very fast loading, the size effect is significantly
modified by rate dependence of the softening stress-separation
law of cohesive cracks (77). In dynamics, any type of viscosity

v implies a characteristic length, �v � 
v�v�, and then tch �
��v becomes a characteristic time for developing size effect
(v � wave velocity and � � mass density).

Size-Effect Simulation with the Cohesive Crack Model. Finite element
computations of size effect with the cohesive crack model used
to require step-by-step computation of the entire loading process
for each size (43). However, the size-effect curve can be com-
puted directly after conversion to an eigenvalue problem (12, 13,
78, 79). One must reformulate the problem in dimensionless
variables, choose a series of relative crack lengths �i (i � 1,
2, . . .), and then search for size D for which the condition
d�N�d� � 0 is satisfied. This leads in dimensionless coordinates
to a homogeneous Fredholm integral equation with D as the first
eigenvalue. The load Pmax corresponding to each �i can then be
accurately evaluated after integrating the eigenvector.

Size-Effect Simulation by Crack Band, Nonlocal, and Discrete Models.
The theoretical length of a fully developed FPZ, as well as its
width, may in some applications be much larger than the
structural cross-section size D. In that case, typical for concrete
and geotechnical engineering and often composites as well, the
FPZ volume needs to be subdivided by finite elements, and
the constitutive model must capture gradual strain softening of
the material due to distributed damage. However, in the
absence of countermeasures, the structural tangent stiffness
matrix of such a model is not positive-definite. The result is ill
conditioning of the boundary value problem, excessive strain
localization into a set of measure zero, pathological zero-
dissipation failure, spurious mesh sensitivity, and false size
effect. The proper countermeasure is some form of nonlocal
continuum concept (80), involving a material characteristic
length �. This is achieved by the nonlocal concept of damage
(81) and its diverse refinements (82) [including statistical
(31)], in which the nonlocal inelastic strain (or its parameter)
at a continuum point is averaged over a zone of a certain
characteristic size equal roughly to the FPZ width.

Frequently for large structures, the FPZ width need not be
subdivided into finite elements, and then the simplest approach
is the crack band model (8, 10), now widely used in industry and
specialized commercial software (SBETA, DIANA, and ATENA). In
that model, the postpeak portion of the softening constitutive
law is scaled according to the finite element width so as to ensure
correct energy dissipation. For localizing deformation, both the
crack band and nonlocal models are approximately equivalent to
the cohesive crack model. The long-standing challenge of a
realistic three-dimensional constitutive model for softening
damage in the FPZ has been met for concrete-like composites
with the microplane model (83, 84). A more realistic nonlocal
model requires capturing the tensorial interactions of microc-
racks of various orientations, with their spatial decay, and
distinguishing between the shielding and amplification zones of
each microcrack (85). Even better is direct simulation of the
coarse microstructure by a random particle or lattice model (86).

Stochastic Finite Element Methods (SFEMs). Computing loads with
required failure probability pf � �10�7 is a challenge that cannot
be met by the existing standard SFEMs, because they can capture
only low-order statistical moments and not the far-off pdf tail. To

meet this challenge, Weibull statistical size effect must ensue from
SFEM for D3 � if the structure fails at crack initiation (32, 39).
The existing standard SFEMs do not pass this check. As a remedy,
the probabilistic theory of extreme values must be embedded in the
SFEM in some way. This can be done by subdividing the structure
into many domains scaled up with the structure size, in each of
which the material strength limit is scaled down (according to the
stability postulate of extreme value statistics) as a function of
domain size (31).

Grim Example: Malpasset Dam. Collapse of this record-thin arch dam
in 1959 flooded the town of Fréjus (founded by Caesar), killing
almost 400 inhabitants. The identified direct cause (slipping of
gneiss in abutment; Fig. 1s) is undisputable; however, according to
scaling law (Eq. 16), the tolerable displacement of abutment would
today be 51% smaller than considered in design in 1951 (30) (and
doubtless still smaller if the pdf tail at pf � 10�7 were properly taken
into account). The scatter of energetic statistical size effect when
the dam is scaled by various ratios is documented in Fig. 1t by
computations of M. Vořechovský at Northwestern University (un-
published data) using a Weibull-adapted crack band model (31).
Their mean matches Eq. 16 perfectly. Because this law can be
calibrated by deterministic computations alone, the use of SFEM,
extremely demanding computationally, can be skipped in practice.

Challenge for Concrete Design Codes. With many thousands of
different structures designed annually, structural engineering
(unlike aeronautical engineering) is a field that cannot get by
without a simple design code. However, codes are approved by
broad society committees and thus are notoriously difficult to
update. Nevertheless, the size effect, with probabilistically jus-
tified safety provisions, must eventually be introduced into all the
code articles guarding against brittle failures of various types
(numbering �20) (60).

Scaling of Metal Plasticity at a Micrometer Scale. Free-standing
metallic thin films with a thickness of �1 �m exhibit under pure
tension a strong size effect and stable strain softening similar to
concrete on a meter scale (Z.P.B., Z. Guo, and H. Espinosa,
unpublished data). The cause is that, on the face that was in contact
with substrate, there exists an epitaxially induced boundary layer of
much elevated yield strength, which acts in the manner of a type 1
size effect. Moreover, in bending, torsion, and indentation tests, the
yield strength is increased due to geometrically necessary disloca-
tions associated with plastic strain gradients. Asymptotic scaling
analysis analogous to the present one points out a way to improve
the strain-gradient theory (13, 87) and explains the effect of particle
size in metal–matrix nanocomposites.

Closing Comments
Even if the size effect per se is not the analyst’s objective, the
knowledge of size effect, or scaling, helps in obtaining analytical
failure predictions in general. For the actual size of interest, a
direct analytical solution may be next to impossible. However, by
scaling the structure down to a vanishing size or up to an infinite
size, one gets a problem of plasticity or LEFM, each of which is
much easier. Knowing these asymptotic solutions, an approxi-
mate analytical solution for the actual size can then be obtained
by asymptotic matching. It is for this reason that the size effect
is the key problem for all quasibrittle failures.

Fracture scaling often interacts with spatial, temporal, and ther-
mal scaling of mass transport and chemical processes. An example
is the modification of size effect due to shrinkage stresses and
microcracking caused by drying of concrete (56), which evolves
initially as a square root of both depth and time, and the half-time
of which scales as structure thickness square. Processes of material
deterioration include microfracturing due to expansion of reacting
particles of various sizes (e.g., alkali-silica reaction or sulphate
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attack in cements). Typically, particle reactivity goes up when the
particle size decreases, but this is offset by the fact that the particle
pressure required to fracture the matrix increases (88). Such
phenomena, however, are beyond the scope of this overview, and
so are the polemics on a possible role of crack fractality (20).

Further opportunities abound. One is bone, the microstruc-
ture of which is sure to cause quasibrittle behavior. Hardly

explored from the present viewpoint are biological shells, wood,
paper, particle board, stiff clays, silts, coal, super-strength alloys,
and most materials on approach to nanoscale. It is doubtless
much fertile ground lies beyond our horizon.

This work was supported by Office of Naval Research Grant N00014-
02-I-0622 to Northwestern University.
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21. Bažant, Z. P., Zi, G. & McClung, D. (2003) J. Geophys. Res. Solid Earth Planets

108, 2119–2129.
22. Dempsey, J. P., Adamson, R. M. & Mulmule, S. V. (1999) Int. J. Fract. 95,

346–378.
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28. Bažant, Z. P. (1998) in Fracture Mechanics of Concrete Structures (Proc.,

FraMCoS-3), eds. Mihashi, H. & Rokugo, K. (Aedificatio, Freiburg, Germany),
pp. 1905–1922.
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38. Bažant, Z. P. & Yu, Q. (2004) Proceedings of the Fifth International Conference
on Fracture Mechanics of Concrete Structures (FraMCoS-5), eds. Li, V. C.,
Leung, K. Y., Willam, K. J. & Billington, S. L. (Intern. Assoc. of Fracture
Mechanics of Concrete Structures, Evanston, IL), pp. 153–162.
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48. Bažant, Z. P., Yu, Q. & Zi, G. (2002) Int. J. Fract. 118, 303–337.
49. Bažant, Z. P. (2002) Eng. Fract. Mech. 69, 165–206.
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51. Bažant, Z. P. & Pfeiffer, P. A. (1987) ACI Mater. J. 84, 463–480.
52. Daniels, H. E. (1945) Proc. R. Soc. London Ser. A 183, 405–435.
53. Phoenix, S. L. & Beyerlein, I. J. (2000) Phys. Rev. E Stat. Phys. Plasmas Fluids

Relat. Interdiscip. Top. 62, 1622–1645.
54. Mahesh, S., Phoenix, S. L. & Beyerlein, I. J. (2002) Int. J. Fract. 115, 41–85.
55. RILEM (1990) Mater. Struct. 23, 461–465.
56. Planas, J. & Elices, M. (1992) in Fracture Mechanics of Concrete Structures, ed.
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82. Bažant, Z. P. & Jirǎsek, M. (2002) J. Eng. Mech. 128, 1119–1149.
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