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Cell size and growth kinetics are fundamental cellular properties
with important physiological implications. Classical studies on
yeast, and recently on bacteria, have identified rules for cell size
regulation in single cells, but in the more complex environment of
multicellular tissues, data have been lacking. In this study, to char-
acterize cell size and growth regulation in a multicellular context,
we developed a 4D imaging pipeline and applied it to track and
quantify epidermal cells over 3–4 d in Arabidopsis thaliana shoot
apical meristems. We found that a cell size checkpoint is not the
trigger for G2/M or cytokinesis, refuting the unexamined assump-
tion that meristematic cells trigger cell cycle phases upon reaching
a critical size. Our data also rule out models in which cells undergo
G2/M at a fixed time after birth, or by adding a critical size in-
crement between G2/M transitions. Rather, cell size regulation
was intermediate between the critical size and critical increment
paradigms, meaning that cell size fluctuations decay by ∼75% in
one generation compared with 100% (critical size) and 50% (crit-
ical increment). Notably, this behavior was independent of local
cell–cell contact topologies and of position within the tissue. Cells
grew exponentially throughout the first >80% of the cell cycle,
but following an asymmetrical division, the small daughter grew
at a faster exponential rate than the large daughter, an observa-
tion that potentially challenges present models of growth regula-
tion. These growth and division behaviors place strong constraints
on quantitative mechanistic descriptions of the cell cycle and
growth control.
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How cells coordinate growth and division to achieve a par-
ticular cell size remains a fundamental question in biology.

Our understanding of this basic property of cells is limited, in
part, by the lack of quantitative data on cellular growth and size
kinetics over multiple generations, especially in higher eukary-
otes (1). Classical studies of cell size homeostasis focused on
whether division occurred upon reaching a critical size or after a
fixed time period has elapsed (2, 3). However, time-lapse studies
of single-celled organisms spanning a range of bacteria (4–7) and
the yeast Saccharomyces cerevisiae (8) have recently indicated
that cell size is regulated by the addition of a fixed volume in-
crement between divisions. Identification of the size regulation
behavior constrains the set of feasible molecular scenarios for how
growth and division are coordinated with the cell cycle (8–10). In
multicellular tissues, the loss of growth and division/cell cycle
coordination could have an impact on the organism’s develop-
ment, yet, to the best of our knowledge, cell growth and size ki-
netics have never before been measured over generations in a
tissue context. The experimental challenges are particularly acute
because interdivision times are often on the order of tens of hours,
cells have a diversity of shapes necessitating digital reconstruction
in three dimensions to measure size accurately, and tissues are
often difficult to access for imaging while keeping the organism
alive. Further, the assumption, central to previous quantitative

studies, of a fixed environment in which homeostasis is achieved, is
generally invalid in multicellular tissues, where patterns of cellular
differentiation can modulate growth and division.
The Arabidopsis thaliana shoot apical meristem (SAM) is a

multicellular tissue whose central zone harbors stem cells that
proliferate throughout the plant’s life span, dividing in-plane to
produce the epidermis of all above-ground organs. As cells
proliferate radially outward from the SAM’s central zone into
the peripheral zone, they remain fixed in position relative to one
another, experience a gradient of the stem cell reporterCLAVATA3,
initiate developmental programs, increase their growth rates,
and decrease their interdivision times (11–16). These tissue-level
growth kinetics are common to several plant species (13, 16, 17).
Current models of the SAM and other tissues have assumed that
cells trigger cytokinesis upon reaching a critical size (18–20).
SAM cells recover their normal mean size following a genetically
induced transient size increase, indicating some degree of size
regulation (21), although whether size is regulated by the critical
size, critical increment, or some other rule remains untested.
Further, it is not known if size regulation acts upon cell vol-
ume, surface area [as reported for fission yeast (22)], or some
other metric (e.g., anticlinal surface area). Moreover, whether
size regulation is dependent on cellular parameters such as
cell shape or growth rate, tissue-level properties such as cell–
cell contact topology, or position within the SAM has not
been determined.

Significance

How does a cell decide when to divide or initiate DNA replica-
tion? How does it regulate its own growth? These fundamental
questions are not well understood in most organisms; this lack of
understanding is particularly true for multicellular eukaryotes.
Following classical studies in yeast, we have quantified the key
aspects of cell growth and division dynamics in the Arabidopsis
apical stem cell niche. Our results disprove various theories for
plant stem cell size/cell cycle regulation, such as that cell cycle
progression is triggered when a prefixed critical size is attained,
and constitute the necessary first step in the development of
integrative mechanistic theories for the coordinated regulation
of cell cycle progression, cell growth, and cell size in plants.
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Fig. 1. Four-dimensional pipeline for single-cell quantification and lineage tracking over multiple cellular generations to characterize cell growth and size kinetics. (A)
Time-lapse confocal stacks were acquired for each SAM every 4 h for 0 to ∼80 h (every 8 h is shown). Plants were grown on NPA to inhibit growth of floral primordia that
would have obstructed time-lapse imaging. The membrane reporter pUBQ10::acyl-YFP (red in top left panel) permitted accurate cellular segmentations and tracking
using the MARS/ALT software (Materials and Methods), as well as quantification of cell size metrics. Cells are colored according to lineage, demonstrating that lineage
tracking is ∼100% accurate. A CLAVATA3 nuclear-bound reporter (green in top left panel) permitted nuclear segmentations. (B) Snapshot of SAM 1 at 48 h with all L1
division planes formed between 24 h and 48 h colored in red. (C) Cells within 30 μm of the center of the SAM, defined by O where O corresponds to the peak of
CLAVATA3 expression, which coincides with lowest cellular growth rates, are regarded as the central zone and are included in the analysis; for sister asymmetry statistics,
cells within 45 μm of the SAM’s center are included in the analysis. (D) Distributions of L1 central zone cell volumes at each time point over the ∼3-d time lapse, with
light/dark cycles shaded in yellow/blue for SAM 3. The blue dashed line shows the time-averaged mean of cell volumes. There was a shift-up in volume after ∼36 h of
imaging (SI Appendix, Fig. S9). (E) Distribution of the number of L1 neighbors surrounding a cell (Left) and the linear relationship between the number of L1 neighbors
(Nneigh) and outer periclinal wall area (Aop), Nneigh ≈ −0.15 + 0.2 Aop, (Center) are in agreement with previously published data (SI Appendix, Table S1). (Right) Scaling
between cell volume and anticlinal wall area is V ∼ Aa

0.5, as demonstrated by the slope of 0.5 for log(V/mean(V)) vs. log(Aa/mean(Aa)); this scaling relationship is
expected, given the in-plane growth and division of L1 cells (SI Appendix, Text S1). In each panel, data from all time points have been amalgamated for SAM 3 (n =
1,867) and black dots and error bars show medians and interquartile ranges, respectively. The corresponding data for other SAMs are provided in SI Appendix, Fig. S1
and Table S1. norm., normalized.
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The rule for cell size regulation, together with growth kinetics
over the cell cycle, determines a cell’s interdivision time, and
hence impact on the durations of its cell cycle phases. At least in
some environmental conditions, various bacteria (23, 24) and
budding yeast (8, 25, 26) grow at constant rates per unit size
(constant relative growth rates) throughout the cell cycle, and
metazoan lymphoblasts (27) and human osteosarcoma cells (28)
grow at constant relative rates during certain cell cycle phases,
whereas fission yeast has been reported to show bilinear growth
(two distinct phases of a constant absolute growth rate) (29). In
plant tissues where wall–wall contacts between cell neighbors
impose additional growth constraints compared with single cells,
constant relative growth rates have been tacitly assumed (12, 14,
30), but this assumption and whether growth rate varies through
the cell cycle have not been tested experimentally.
Here, we develop a pipeline for high-throughput quantification

of the size of epidermal cells in tissues of the A. thaliana SAM
while tracking their growth over multiple generations. We applied
this pipeline to characterize growth kinetics and to determine the
nature of size regulation in the multicellular SAM context. Our
data revealed that cells regulate their size by a mode intermediate
between critical size and critical increment independent of posi-
tion within the tissue, and that cell growth kinetics vary according
to asymmetrical division of the mother cell.

Results
Neither a Cell Size Nor an Interdivision Time Checkpoint Is the Trigger
for the G2/M Transition or Cell Division. Using our 4D quantifica-
tion pipeline, we tracked 1,013 complete cell cycles between cell
birth and division within the epidermal (L1) cell layer of the
central zone over 3–4 d among SAMs grown on naphthylph-
thalamic acid (NPA), which inhibited the initiation of floral
primordia (31), and in 16-h light/8-h dark cycles (Fig. 1 A–D and

Movies S1 and S2). The central zone is defined to be <30 μm
from the center of the SAM (Fig. 1C); the CLAVATA3 signal is
maximum at the center and decreases to ∼0 over this range
(Movies S1 and S2). The mean interdivision time was 21–31 h
among SAMs, which is similar to a previous time-lapse imaging
study of SAMs not grown on NPA (15). Our data confirmed
reported distributions of L1 cell neighbor numbers, outer peri-
clinal wall areas, and the linear relation (Lewis’ law) between
number of neighbors and outer periclinal wall area (32–35) (Fig.
1E and SI Appendix, Figs. S1 and S2 and Table S1). Our data also
confirmed the power-law scaling of cell volume ∼ (anticlinal wall
area)1/2 (Fig. 1E) that is expected, given the in-plane growth of
L1 cells (SI Appendix, Text S1). In all SAMs (n = 6), cell volume
and total surface area in the central zone did not vary with radial
distance from the SAM center, whereas the proportions of sur-
face area allocated to the outer periclinal and anticlinal walls
increased and decreased, respectively (Fig. 2A and SI Appendix,
Figs. S3–S7), demonstrating spatial variation of these size met-
rics and of mean cell shape. This result demonstrates that cell
growth rate, which increases with distance from the SAM cen-
ter, can be up-regulated independent of mean cell volume and
surface area.
The methods used to deduce whether cells divide at a critical

size, after a specific time period has elapsed, or after adding a
critical increment rely on the assumption of homeostasis, and
variations in mean cell size in space or time can create correla-
tions among cell cycle variables that lead to erroneous conclu-
sions about size regulation (SI Appendix, Fig. S8). Thus, to infer
the mode of SAM cell size regulation correctly, given the spa-
tiotemporal variability in cell size measurements, it was critical to
devise cell cycle statistics that do not vary in space or time. First,
because cell volumes in the L1 central zone did not vary with
space (SI Appendix, Fig. S3) but increased marginally (∼20%)

Fig. 2. G2/M transition and division are not triggered when the cell reaches a critical size, when the cell adds a critical increment, or when a specific time period
has elapsed. (A) Although mean cell volume remained constant across the SAM, cell outer periclinal and anticlinal wall areas increased and decreased with
distance from the SAM’s center, respectively. Data points are colored according to cell volume. (B) Normalized cell birth volume (Vb/μV

t) was positively correlated
with normalized division volume (Vd/μV

t) with a slope of f ≈ 0.5, whereas normalized birth volume was negatively correlated with normalized volume increment
(Δ/μVt). Further, normalized birth volume was negatively correlated with interdivision time (T/μT). (C) Asymmetry in sister-cell birth sizes [αb = (Sb − Ssisb)/(Sb + Ssisb)]
correlated positively with the asymmetry in sister-cell division sizes [αd = (Sd − Ssisd)/(Sd + Ssisd)] for outer periclinal wall areas (Aop; R = 0.46, P = 10−22; n = 415) and
anticlinal wall areas (Aa; R = 0.55, P = 10−34; n = 415). Similarly, the asymmetry in sister birth sizes correlated negatively with both the asymmetry in sister size
increments (αb vs. αΔ: R = −0.48, P = 10−25 for outer periclinal walls; R = −0.47, P = 10−23 for anticlinal walls) and interdivision times (αb vs. αT: R = −0.77, P = 10−82

for outer periclinal walls; R = −0.79, P = 10−91 for anticlinal walls) (SI Appendix, Table S5). In each panel, red lines show least-square linear fits; black error bars
show medians and interquartile ranges; and N, R, and P give the sample size, the Pearson correlation coefficient, and the corresponding P value, respectively.
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during the time lapse (SI Appendix, Fig. S9), we normalized cell
volumes (V) at time t by the average volume of L1 central zone
cells (μV

t) at time t. Second, we quantified sister-cell asymmetries
as the differences between sister size metrics normalized by their
sum; for example, the asymmetry in anticlinal wall area Aa is αb =
(Aa,b − Aa,b

sis)/(Aa,b + Aa,b
sis), where Aa,b and Aa,b

sis are the an-
ticlinal wall areas at birth of two sister cells. Because a sister pair
is born and divides at approximately the same position and time,
these sister size asymmetry statistics have no spatiotemporal
variation (SI Appendix, Figs. S10–S14 and Table S2).
In each SAM, for cells that were tracked over a complete cell

cycle, both birth volume (Vb) and normalized birth volume (Vb/μV
t)

were positively correlated with division volume (Vd) and nor-
malized division volume (Vd/μV

t), respectively (with division be-
ing defined by the appearance of a new cell membrane/wall; for
each plant, n = 100–296 cell cycles; P ∼ 10−16–10−4 in SI Ap-
pendix, Table S3 and P = 10−41 and 10−56 for nonnormalized and
normalized pooled data in Fig. 2B). These correlations argue
against an absolute cell volume checkpoint triggering division.
Because our data show that G2/M occurs ≈40 min before di-
vision (SI Appendix, Table S4), whereas the mean interdivision
time is 21–31 h (SI Appendix, Table S1), division events are es-
sentially concurrent with G2/M, so G2/M also cannot be trig-
gered by a cell volume checkpoint. Our sister size asymmetry
statistics corroborate this result for total wall area, and outer
periclinal, inner periclinal, and anticlinal wall areas (n = 415
sister pairs that underwent complete cell cycles that began <45 μm
from the SAM center; P < 10−21 in Fig. 2C and SI Appendix, Table
S5). Moreover, the strong negative correlations between birth
volume and volume increment and between normalized birth
volume and normalized volume increment (P = 10−64 for pooled
data in Fig. 2B and SI Appendix, Table S3), indicate that plant
stem cells do not add a fixed size between divisions; this result was
again corroborated for wall surface areas by sister size asymmetry
statistics (P < 10−22 in Fig. 2C and SI Appendix, Table S5). Thus,
no critical size or critical increment checkpoint is imposed at
G2/M or division.
Furthermore, in each SAM, strong negative correlations were

observed between normalized birth volume and normalized
interdivision time (T/μT, where μT is the mean interdivision time
across a SAM) (P = 10−114 for pooled data, Fig. 2B), and be-
tween sister size asymmetry at birth (αb) and interdivision time
asymmetry, αT = (T − Tsis)/(T + Tsis) (P < 10−66 in Fig. 2C and SI
Appendix, Table S5). Thus, there is not an interdivision time
checkpoint triggering the G2/M transition, indicating that cells
do not simply grow for a fixed period between divisions. Because
the durations of our experiments are finite, spanning the mean
interdivision time by approximately threefold (SI Appendix, Table S1),
cells with shorter interdivision times are inevitably overrepresented
at the end of the experiment (SI Appendix, Fig. S15). To address
this potential source of bias, we verified that the statistics were
unaffected after recomputation using only data from cells born
in the first half of the experiment (SI Appendix, Table S6).
Taken together, our data reveal that neither division nor the
G2/M transition is triggered by the cell reaching a critical size,
adding a critical increment, or after a critical time has elapsed
since birth.

Cells Grow at a Constant Rate per Unit Size, with the Smaller Sister
from an Asymmetrical Division Growing at a Higher Relative Rate
than the Larger Sister. We next computed statistics to reveal the
nature of cell growth kinetics over the cell cycle. Averaged over
the sample, the absolute growth rate of cell volume (dV/dt × μT/μb,
where μb is the mean birth volume) increased by a factor of ∼1.8
over the first 80% of the cell cycle, whereas the relative growth
rate (growth rate per unit volume, dV/dt × μT/V) remained nearly
constant with a slight reduction within the final 20% of the cell
cycle (Fig. 3A), indicating that volume grows at a rate proportional

to volume through >80% of the cell cycle. This result continued
to hold when the spatiotemporal growth rate variation across the
SAM (SI Appendix, Fig. S16) was taken into account (SI Ap-
pendix, Fig. S17). Next, we determined the growth kinetics of
different components of the cell wall. The planar growth of
epidermal cells and their slow rates of shape change over the cell
cycle necessitate power-law scalings among cell volume and wall
area measurements (SI Appendix, Table S7). Such scalings com-
bine with constant volumetric relative growth rates to predict that
cells grow in proportion to their size, whether size is measured by
volume, anticlinal wall area, periclinal wall area, or total wall area;
this prediction was confirmed by our wall area measurements
(SI Appendix, Text S1 and Fig. S18). Finally, we quantified how
nuclear volume changes with cell size: The nuclear-localized
CLAVATA3 reporter pCLV3::dsRED-N7 permitted the seg-
mentation of nuclei within the approximately six to nine cen-
tral cells positioned <8 μm from the SAM center (SI Appendix,
Supplemental Materials and Methods). These data show that
nuclei grew continually throughout the cell cycle and scaled
approximately proportionally with cell volume (Fig. 3 B and C),
occupying 30 ± 7% of cell volume.
We noticed that following asymmetrical divisions, the ratio of

large/small daughter cell sizes decreased over the course of the
cell cycle (Fig. 4A and SI Appendix, Table S8). This decrease
occurred because the small sister grew at a faster relative rate
than its larger sister (Fig. 4B). Division volume asymmetry, de-
fined by (Vb − Vb

sis)/(Vb + Vb
sis), was strongly correlated with

both cell birth volume (R = 0.87, P = 10−242) and the normalized
difference between a cell’s volume and the cell volume of its
nonsister neighbors, defined by (V − Vns-neigh)/(V + Vns-neigh),
where Vns-neigh is the mean volume of nonsister neighbors (R =
0.47, P = 10−280; SI Appendix, Fig. S19). To determine whether
the difference in relative growth rates between sister cells is
driven by a dependence on birth volumes, on cells having dif-
ferently sized neighbors, or on division asymmetry of mother
cells, we first restricted our analysis to cells generated by sym-
metrical divisions [cells with j(Vb − Vb

sis)/(Vb + Vb
sis)j ≤ 0.11, to

include ∼50% of data in the analysis] and found that relative
growth rate then did not depend significantly on birth volume
(Kruskal–Wallis: H = 3, P = 0.4) or on the relative sizes of
nonsister neighbors (Kruskal–Wallis: H = 5, P = 0.14) (SI Ap-
pendix, Fig. S20 and Table S8). Second, we determined that the
dependence of relative growth rates on asymmetrical divisions
persisted when the data were restricted to either cells of in-
termediate birth volumes (H = 73, P = 10−15 for jVb/mean(Vb) −
1j ≤ 0.16, to include ∼50% of data) or cells with sizes similar to
the average size of their nonsister neighbors [H = 43, P = 10−9

for j(V − Vns-neigh)/(V + Vns-neigh)j ≤ 0.11, to include ∼50% of
data] (SI Appendix, Fig. S20 and Table S8). In sum, there is no
dependence of relative growth rate on either birth volume or the
volume difference between a cell and its nonsister neighbors for
cells generated by symmetrical divisions, whereas for cells born
close to the average volume, the dependence of relative growth
rate on asymmetrical division of the mother cell is strong; these
data indicate that the difference in sister-cell relative growth
rates is driven primarily by the asymmetrical division, and, con-
sequently, there is a negative correlation between asymmetrical
division and relative growth rate and between cell birth size and
relative growth rate. Results for inner and outer periclinal wall
areas were similar, but for anticlinal and total wall areas, the
relative growth rate no longer depended significantly on asym-
metrical division after the analysis was restricted to data subsets
as described above (SI Appendix, Table S8).
Beyond the position dependence of relative growth rates as

cells proliferate away from the central zone, we found no evi-
dence that relative growth rates are inherited from mother to
daughter cells (SI Appendix, Fig. S21), although it is possible that
noise in our data precludes detection of such an inheritance. We
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could discern no strong and consistent impact across the SAMs
of light/dark cycling on growth rates or division patterns (Movies
S3 and S4 and SI Appendix, Fig. S22); this observation may be
due either to the frequent interruptions of the light/dark cycles
during image acquisition or to the suppression of signaling re-
sponses to light that are partly mediated by auxin (36), and thus
may be partly suppressed in NPA-grown plantlets. Regardless,
our data indicate that the difference in relative growth rates
between sister cells resulted from asymmetrical divisions, and,
because the small sister grew more between divisions than the
large sister, the higher relative growth rate of the small sister
resulted in more similar sister interdivision times (Fig. 4B).

Size Regulation in the SAM Is Cell-Autonomous Rather than Position-
Dependent. In a multicellular tissue, it is feasible that the mode of
cell size regulation varies according to interactions between
neighboring cells or when cells are subject to a chemical/hor-
monal gradient. For single-celled organisms in homeostatic en-
vironments, the various modes of size regulation can all be
captured by a single equation:

Vd = f   Vb + μbð2-f +ZÞ, [1]

where Z is Gaussian noise with mean 0 and SD (4σd
2 − f2σb

2)1/2;
where σb and σd are the coefficients of variation of Vb and Vd,
respectively; and f defines the mode of cell size regulation. The
expression f = 0 gives division size = Vd = constant + noise,
which corresponds to the critical size mode; f = 1 gives size in-
crement = Vd − Vb = constant + noise, which corresponds to the
critical increment mode; and f = 2 gives interdivision time = μT ×

log2(Vd/Vb) (given that cells grow at a constant relative rate) = μT
× log2(2 + μb/Vb × Z) ≈ constant + noise, which corresponds to
specific time mode (4, 37). The finding that cell volume grows at
a constant relative rate implies that cell volume increases expo-
nentially with time, so V(t) = Vb e

g t where, necessarily, g = ln2/μT
because, in homeostatic environments, cells double their vol-
ume, on average, over a cell cycle. Our pooled data from all
SAM cells tracked over a complete cell cycle and from sister-cell
pairs tracked over a complete cell cycle both give f ≈ 0.5 (Fig. 2B
and SI Appendix, Text S2 and Tables S3 and S5). Therefore, plant
stem cells regress to their mean target size over several genera-
tions, with fluctuations decaying to one-fourth of their initial
value over one cell cycle on average: Subtracting the mean cell
size at division (2 μb) from either side of Eq. 1 with f = 0.5 gives
that (fluctuation away from mean division size) = (Vd − 2 μb) =
0.5 (Vb − μb) = 0.5 × (fluctuation away from mean birth size);
because cells divide in half, on average, to produce newborn
cells in the next generation, therefore (fluctuation away from
mean birth size in the next generation) = 0.25 × (fluctuation
away from mean birth size). This rate is intermediate between
the critical increment and critical size modes: The same calcu-
lation shows that for critical size (f = 0), fluctuations decay to
0 within one generation, whereas for critical increment (f = 1),
fluctuations decay to one-half of their initial value within one
generation.
To establish whether the relation Vd ≈ 0.5 Vb + μb × (1.5 +

noise) is robust and independent of cells’ spatiotemporal posi-
tions, we removed 50% of the data at random or according to
whether cells are born (i) early/late during the time lapse,
(ii) small/large compared with the mean birth size, (iii) during light
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Fig. 3. Cells grow at a rate proportional to their size, and nuclei grow continually through most of the cell cycle. (A) Absolute volumetric growth rate in-
creased by ∼1.8-fold over the first 80% of the cell cycle, whereas the volumetric relative growth rate remained constant throughout the cell cycle at the
expected value of ln(2) (green horizontal line) for V/μV

t (n = 4,299). Cell cycle stage is defined as time from birth of a cell, t, divided by its cell cycle duration,
T. Growth rates during mitosis/new cell wall formation are omitted. (B) Nuclear volume was approximately proportional to cell volume as it varied over an
approximately twofold range [red line corresponds to y = x; a least-square linear fit gives nuclear volume/mean(nuclear volume) = 0.86 × cell volume/mean
(cell volume) + 0.13]. The plot includes data from all time points and all cells within a radius of 8 μm (n = 726): The CLAVATA3 signal diminished with distance
from the SAM center, rendering nuclear volume segmentations inaccurate beyond ∼8 μm (Movies S1 and S2 and SI Appendix, Fig. S23). Black error bars show
medians and interquartile ranges. (C) Nuclei grew continually throughout the cell cycle, so that the average nuclear volume/cell volume ratio remained
approximately constant at ∼30%. Each plot includes data from all completed cell cycles that began within a radius of 8 μm (n = 332).
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or dark periods, (iv) in the inner/outer region of the central zone,
(v) with comparatively small/large neighboring cells, or (vi) with a
comparatively small/large number of L1 neighbors. In all cases,
there is little effect on f (SI Appendix, Table S6). Through this
inspection, we excluded several phenomenological hypotheses
that may have accounted for f ≈ 0.5. For example, if cell division
were triggered once cells attained both a critical size and a critical
increment where the critical increment (μb) is approximately half
of the critical size (2 × μb), then small cells (Vb < μb) would, on
average, reach the critical increment first; thus, they would divide
upon reaching a critical size, giving f ≈ 0, whereas large cells (Vb > μb)
would reach the critical size first and then divide upon reaching a
critical increment, giving f ≈ 1, thus accounting for f ≈ 0.5 across
the whole population. However, there was no such trend in our
data (Fig. 2B and SI Appendix, Table S6). Similarly, division is
not triggered when cells attain either a critical size or a critical
increment; then small cells (Vb < μb) would give f ≈ 1, whereas
large cells (Vb > μb) would give f ≈ 0. If a subset of cells divided at
a particular point in the light/dark cycle according to a circadian

rhythm, then cells born at this point would divide after a specific
time had elapsed, giving f ≈ 2; again, no such trend is apparent in
our data (Fig. 2B and SI Appendix, Table S6). Furthermore, we
could discern no clear cell division spatial pattern or tendency for
synchronization from movies of different SAMs (Movies S3 and
S4). Because asymmetrical division of the mother cell affects rel-
ative growth rate of the two daughter cells (Fig. 4B), we assessed
whether size regulation depends on division asymmetry. When our
data were split according to whether cells were born of a sym-
metrical or asymmetrical division, we again obtained f ≈ 0.5 (SI
Appendix, Table S6).
The fact that f does not vary with cell position within the

meristem’s central zone, the size of neighboring cells, or other
spatial variables suggested a cell-autonomous mode of size reg-
ulation. To test this hypothesis further, we compared our experi-
mental data with simulations of cell size kinetics parameterized by
Eq. 1, with all simulation parameters prescribed by our experi-
mental measurements and with cells growing at constant relative
rates that depend on mother-cell division asymmetry (SI Appendix,
Text S3). All statistics were closely recapitulated, with no fitting
parameters (Fig. 5 and SI Appendix, Table S9). The close agree-
ment between our simulations and experiments indicates that a
cell-autonomous mode of G2/M regulation is consistent not only
with the mean trends (Fig. 5 B, i–iii) but also with most of the
variability (Fig. 5 B, iv–vi) in our data. The simulation noise value
of ∼0.23 indicates that ∼60% of cells miss their target mean di-
vision size (≈0.5Vb + 1.5μb) by <12%, in approximate agreement
with previous noise measurements for single-celled organisms
(6); this plausible degree of size regulation and the frequency of
asymmetrical division together account for the variability in cell
size (compare Fig. 2B with Fig. 5A, Inset). Further, the de-
pendence of relative growth rate on asymmetrical division of the
mother cell was sufficient to account for the quantitative de-
pendencies among cell cycle variables determined by birth vol-
ume and interdivision time (Fig. 5 B, iii and vi).

Discussion
In this study, we have refuted the long-standing unexamined
assumption that epidermal cells in the SAM undergo G2/M and
divide at a critical size, or after a fixed time period has elapsed
(Fig. 2 B and C). Instead, cells follow a size regulation rule that is
intermediate between dividing at a critical size and adding a
critical increment, causing cell size fluctuations from the mean to
decay by ∼75% in one generation. Cells in the SAM experience
molecular gradients, alter growth rates depending on position,
and are subject to cell–cell contact constraints, yet our analyses
indicate that the size regulation rule persists independent of
position within the tissue or cell–cell contact topologies. In other
eukaryotes, both G1/S and G2/M are subject to size checkpoints
(2, 38, 39). Cell size and ploidy increase together when the
endocycle, which bypasses mitosis, is implemented in A. thaliana
sepals (40) and other differentiated tissues or by blocking di-
vision with the microtubule inhibitor oryzalin (13), indicating
that the trigger for G1/S may affect regulation of the cell size/
ploidy ratio rather than cell size per se (41). Our results indicate
that in the SAM, where cells are diploid, G1/S is not triggered by
the attainment of a critical size or critical cell size/ploidy ratio,
because such regulation would contradict the positive correla-
tions between birth and division sizes (Fig. 2 B and C).
We showed that during the cell cycle, cells expand continually

at a rate proportional to their size at least until the final <20% of
their cell cycle, with nuclei also growing continually at a similar
rate until mitosis (Fig. 3 B and C). Because in Arabidopsis shoot
apices G1, S, and G2, phases have been reported to last for
∼50%, ∼25%, and ∼15% of the cell cycle (42), our data imply
that nuclei grow through each of these phases, as in other or-
ganisms (43, 44). Following an asymmetrical division, the small
daughter grew at a faster rate per unit size than the large daughter
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Fig. 4. Smaller daughters grow at a faster rate per unit size than their
larger sisters following asymmetrical divisions. (A) Ratio of large to small
sister-cell volumes decreased over the course of the cell cycle among mother
cells that divided asymmetrically (time since birth, t, is normalized by the
average of sister interdivision times, Tsis). (Inset) Degree of asymmetrical
division, αb = (V − Vsis

b)/(Vb + Vsis
b), was negatively correlated with the cell’s

average relative growth rate over its cell cycle (black error bars show me-
dians and interquartile ranges, red line is least-square linear fit to the me-
dians). (B) Smaller sisters born of an asymmetrical division (αb ≤ −0.11; n =
1,586) grew at an above-average constant relative rate throughout their cell
cycle, whereas larger sisters (αb ≥ 0.11; n = 1,054) grew at a below-average
constant relative rate; the schematic illustrates that this growth pattern re-
sults in sisters having more similar interdivision times.
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(Fig. 4 A and B). Although it is challenging to infer dependences
from these data due to the tight correlations among variables, the
simplest interpretation of our analyses (SI Appendix, Fig. S20) is
that the difference in per unit size growth rates between sisters is
driven primarily by the asymmetrical division of the mother cell
rather than by other size-related metrics with which asymmetrical
division is correlated. This phenomenon is not straightforwardly
accounted for by a cell wall growth rate that depends on elastic
stress or strain of the wall, a mechanism that partially controls
growth rate and is modulated by turgor (45–48). How this sister-
cell growth heterogeneity can be integrated with the report that
growth heterogeneity is induced by neighbor interactions (30) is a
future challenge. A feasible mechanism features a master regu-
lator of growth with the following dynamics: (i) its concentration is
fixed through the cell cycle and is proportional to the per unit size
growth rate; (ii) upon mitosis, the growth regulator is degraded or
synthesized to attain a specific concentration; and (iii) upon di-
vision, the regulator is partitioned equally in number between the
two daughters perhaps via titration against DNA (41). Such a
mechanism would impart a higher concentration of the master
regulator to the smaller sister.
Molecular mechanisms regulating cell size in budding and fission

yeast have recently been characterized. In fission yeast, the pe-
ripheral membrane protein kinase cdr2p has been reported to
regulate cell surface area to a critical value at G2/M (22). In the
SAM, our data show that cell surface area and volume are regu-
lated by a mode intermediate between critical size and critical in-
crement. In budding yeast daughter cells, through cyclin-dependent
kinase (CDK)/cyclin activity inhibition, the transcriptional inhibitor
Whi5 controls cell size at G1/S via a dilution process whereby Whi5
is synthesized at a roughly constant rate through S/G2/M, which
lasts for an approximately fixed time, and is then diluted out by
growth during G1, triggering S-phase when it falls below a specific
concentration (49). This or a similar mechanism can potentially
implement the critical increment mode of size regulation (8). Such

a diluter mechanism may account for a regulatory mode that is
intermediate between critical increment and critical size as identi-
fied in this study, but with modification such as inhibitor degrada-
tion during the cell cycle. A. thaliana has no structural whi5 or cdr2p
homologs, but the A. thaliana homolog of human retinoblastoma
(RBR1) plays a functional role that is similar to Whi5 (50, 51). It
would be informative to quantify the spatiotemporal dynamics of
RBR1 through the cell cycle. Because it is feasible that different
cellular components are subject to different size regulatory rules, a
second scenario that could account for size regulation intermediate
between critical size and critical increment is that the cytoplasm
grows to a critical size, whereas the nucleus adds a critical in-
crement. Single-cell tracking experiments can again be used to es-
tablish the growth and size kinetics of different cellular components
and key growth regulators such as ribosomes.
Cell size has important physiological implications, determining

both the surface area/volume ratio and the ratio of cytoplasm/
DNA, thereby likely impacting nutrient uptake rates, protein
concentrations, and transcription frequencies. Cell size and
growth rates vary strongly within a plant according to tissue and
developmental stage, particularly among cells that follow ter-
minal differentiation paths, such as guard cells and pavement
cells. Growth and size are evidently regulated in coordination
with the cell cycle. The array of cyclins and the two types of
CDKs of A. thaliana and their multiple levels of regulation in-
dicate that cell cycle control, as well as its interplay with de-
velopmental signals, is complex (52). However, results in yeast
suggest that the underpinning molecular features of CDK/cyclin-
dependent cell cycle progression are surprisingly simple (53), and
the role of CDKs/cyclins is broadly conserved among eukaryotes
(52). Our methodology is potentially transferrable not only to
other A. thaliana tissues and cell cycle fluorescent reporters but
also to other plant species, and thus should be able to illuminate
features of cell size, growth, and cell cycle control in different
multicellular contexts, perhaps identifying conserved strategies
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Fig. 5. Our experimental data are consistent with cell-autonomous growth and size regulation in the SAM, with no apparent dependence on cell position. (A)
Simulation with no free parameters closely recapitulated all experimental data. In the simulation, division size depended on birth size according to Eq. 1 and cells
grew exponentially in proportion to their size over the cell cycle, with smaller sisters growing at a faster relative rate than their larger sister; parameters were set
to their experimentally measured values [compare Fig. 4A (main panel and Inset) with Fig. 2B and SI Appendix, Text S3 and Table S9], and the sample size, nmodel,
was set close to the sample size of the experimental data. (B) Simulation recapitulated experimentally measured fitted slopes (i–iii) and Pearson R values (iv–vi)
only when simulation parameters were set close to their experimentally measured values. Experimentally measured medians and 90% confidence intervals are
shown by dashed lines and shaded regions for fitted slopes and Pearson R values in red and for simulation parameters f (size regulation rule) and σ (noise) in blue
(SI Appendix, Text S3). The effect of varying the strength of growth rate dependence on asymmetrical division, gasym, is shown in each panel by different gray
shades (gasym = −0.03 to 0.1 × i, i = 0, . . ., 8 increases with opacity of gray; shaded regions, which are overlapping in i, ii, iv, and v, show 90% confidence intervals
from simulations). The discrepancies between simulated and experimental Pearson R values indicate that the experimentally measured noise (σ) may be over-
estimated by ∼10%. These plots show that our experimental data and simulations are nontrivially consistent with one another.
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for linking together these controls. The regulation of cell size is a
fundamental challenge for all organisms, and its study can ulti-
mately provide insight into the control of multiple processes
essential to life.

Materials and Methods
Construction of a YFP Plasma Membrane Marker and Other Transgenic Lines.
DNA containing the coding sequence for YFP was amplified by PCR using
primers attb1-mYfwd (5′-AAAAAGCAGGCTATGGGAGGATGCTTCTCTAAGA-
AGGTGAGC) and attb2-YFPrev (5′-AGAAAGCTGGGTTTACTTGTACAGCTCG-
TCCATGCCGAGAGTG).

The total reaction volume was 50 μL. The forward primer contains a short
sequence encoding a motif that is acylated in plant cells (54). Both primers
contain a portion of the attB gateway sites. Amplification conditions were
96 °C for 1 min followed by 25 cycles of 96 °C for 30 s, 54 °C for 55 s, and
72 °C for 30 s, and a final elongation of 72 °C for 30 s. After checking for
products on a gel, 5 μL of the PCR was used in a second reaction (40 μL total)
containing primers B1 adapt (5′-GGGGACAAGTTTGTACAAAAAAGCAGGCT)
and B2 adapt (5′-GGGGACCACTTTGTACAAGAAAGCTGGGT).

Amplification conditions were 95 °C for 2 min followed by five cycles of
94 °C for 30 s, 48 °C for 30 s, and 72 °C for 1 min; 20 cycles of 94 °C for 30 s,
55 °C for 30 s, and 72 °C for 1 min; and a final elongation of 72 °C for 1 min.
Products were PCR-purified (Qiagen) and then used in a one-tube format
Gateway reaction as per the manufacturer’s instructions, with the destina-
tion vector pUB-DEST containing the UBQ10 promoter upstream of the
Gateway site (55). The resulting vector, pUBQ10::acyl-YFP, was transformed
into A. thaliana Col-0 containing pPIN1::PIN1-GFP (56, 57). The pUBQ10::acyl-
YFP/pPIN1::PIN1-GFP plants were taken to the second filial (F2) generation
and crossed with pCLV3::dsRED-N7 (58), a nuclear-localizing reporter for
CLAVATA3 expression. This cross was taken to the F3 generation, yielding
pUBQ10::acyl-YFP/pPIN1::PIN1-GFP/pCLV3::dsRED-N7 A. thaliana seeds. The
pUBQ10::acyl-YFP reporter localized strongly and uniformly to cell mem-
branes; it was stably expressed without cellular internalization and without
affecting plant growth or development. These features permitted the ac-
curate segmentation and tracking of cells. The reporter pCLV3::dsRED-N7, a
nuclear-localized CLAVATA3 reporter, identified the stem cell niche’s center
and, in a subset of SAM cells, enabled nuclear volume quantification (59) (SI
Appendix, Supplemental Materials and Methods). The pPIN1::PIN1-GFP re-
porter was not analyzed as part of this study.

Plant Growth Conditions. NPA-treated pUBQ10::acyl-YFP/pPIN1::PIN1-GFP/
pCLV3::dsRED-N7 A. thaliana Col-0 plants were grown on plates with Ara-
bidopsis medium supplemented with 10 μM NPA (31) at 20 °C with 16 h of
light per day. These plants were later selected for imaging between 24 and
28 d after germination. NPA was used to inhibit organ formation (31)

without substantially slowing proliferation in the SAM’s central zone (15) so
that time-lapse images could be acquired without dissection, and therefore
with minimal disturbance to cell proliferation.

Time-Lapse Image Acquisition and Quantification. NPA-grown plantlets with
naked, organ-free meristems were selected and gently transferred to lidded
boxes measuring 5 × 5 × 3 cm3 containing room-temperature Arabidopsis
medium supplemented with 10 μM NPA to a depth of ∼1 cm. Plantlets were
screened for the expression of pUBQ10::acyl-YFP, pPIN1::PIN1-GFP, and
pCLV3::dsRED-N7 using confocal microscopy, and then left to recover for
12 h in the same 16/8-h light/dark cycle. All three reporters were expressed in
each of SAMs 2–6; SAM 1 expressed only pUBQ10::acyl-YFP and pPIN::PIN1-
GFP. Confocal z-stacks were acquired every 4 h for 3–3.5 d at a resolution of
0.22 × 0.22 × 0.26 μm3 per voxel using a 63×/1.0 N.A. water immersion ob-
jective; excitation wavelengths of 488 nm and 561 nm; the corresponding
dichroic filters; and a precalibrated spectral unmixing that enabled accurate
separation of the YFP, GFP, and RFP signals. The confocal scan speed was no
more than 9, and line averaging was set to 2. Each z-stack took ∼10 min to
acquire. At the end of each high-z-resolution z-stack acquisition, a second
low-z-resolution z-stack was rapidly acquired over ∼10 s with a z-step of
5–6 μm (to enable correction of a major artifact, a stretching in the z-direction
owing to growth/movement in the stem during image acquisition; SI Appen-
dix, Supplemental Materials and Methods). Data on cell size and growth ki-
netics were extracted by application of our 4D cellular quantification and
tracking pipeline using MARS/ALT software (60) (SI Appendix, Supplemental
Materials and Methods and Movies S5–S7).

Statistical Analysis, Modeling, and Simulations. Cellular quantification and
tracking data were analyzed with Python 2.7 scripts using the NumPy and
SciPy libraries and StatsModels package. Simulations were performed based
on a generalization of the models originally proposed (4, 37); simulations are
detailed in SI Appendix, Text S3.
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