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Immune heterogeneity in wild host populations indicates that
disease-mediated selection is common in nature. However, the
underlying dynamic feedbacks involving the ecology of disease
transmission, evolutionary processes, and their interaction with
environmental drivers have proven challenging to characterize.
Plague presents an optimal system for interrogating such cou-
plings: Yersinia pestis transmission exerts intense selective pres-
sure driving the local persistence of disease resistance among its
wildlife hosts in endemic areas. Investigations undertaken in co-
lonial India after the introduction of plague in 1896 suggest that,
only a decade after plague arrived, a heritable, plague-resistant
phenotype had become prevalent among commensal rats of cities
undergoing severe plague epidemics. To understand the possible
evolutionary basis of these observations, we developed a mathe-
matical model coupling environmentally forced plague dynamics
with evolutionary selection of rats, capitalizing on extensive archi-
val data from Indian Plague Commission investigations. Incorpo-
rating increased plague resistance among rats as a consequence of
intense natural selection permits the model to reproduce observed
changes in seasonal epidemic patterns in several cities and capture
experimentally observed associations between climate and flea
population dynamics in India. Our model results substantiate Vic-
torian era claims of host evolution based on experimental obser-
vations of plague resistance and reveal the buffering effect of such
evolution against environmental drivers of transmission. Our anal-
ysis shows that historical datasets can yield powerful insights into
the transmission dynamics of reemerging disease agents with
which we have limited contemporary experience to guide quanti-
tative modeling and inference.
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Innate resistance is critically advantageous to host species facing
virulent pathogens that represent endemic or epidemic disease

threats. However, the ability to mount strong immune defenses
can incur significant physiological costs. A central principle in
disease ecology, this evolutionary tradeoff implies that envi-
ronmental factors determining the exposure of hosts to path-
ogens concurrently drive the selection—or counterselection—
of disease resistance (1–3). Understanding how environment
impacts the coupled dynamics of transmission and evolution is
critically important amid global climatic and environmental
changes affecting the distribution, emergence, and reemergence of
pathogens (4, 5).
Numerous examples of immune heterogeneity in wild plant

and animal hosts document the existence of innate resistance in
the context of pathogen-mediated selection (6–11). That the
physiological basis of such resistance incurs a cost is predicted by
ecological theory (12–15), shown in laboratory measurements
(16–19), and exemplified by the natural selection of susceptibility
in resistant host populations that have been removed from
pathogen exposure (20, 21). Despite these direct findings re-
garding expansion of resistance in a host population, in few in-
stances has it been possible to provide insight into the coupled
trajectories of transmission, evolutionary dynamics, and their

environmental drivers (22). In a model system of the plankton
speciesDaphnia dentifera and its parasiteMetschnikowia bicuspidata,
environmental factors affecting transmission intermittently alter the
intensity of selection for resistance, in turn impacting the size and
timing of recurrent epidemics (23–25). In a rare example from
vertebrates, the intensity of seasonal myxomatosis epidemics in
Australia predicted year to year variation in the susceptibility of wild
rabbits (26) in a broader context of decades-long selection for
resistance (12).
For zoonotic disease agents, knowing how environment and

host evolution factor into transmission dynamics is of immediate
public health relevance. Responses of the black rat (Rattus rattus) to
the plague-causing bacterium Yersinia pestis present one of the most
important and best studied cases for understanding disease-medi-
ated selection of host immunity. R. rattus is encountered in sylvatic
and urban settings, serving as a both a wildlife plague reservoir and
the host that propagates bubonic plague epidemics affecting hu-
mans. In areas of Madagascar, where sylvatic R. rattus populations
function as the primary plague reservoir (27), variable innate sus-
ceptibility to Y. pestis infection is associated with resistance alleles
that have undergone intense selection over a century of plague
exposure (28–30). Historical human bubonic plague epidemics have
been associated with the introduction of Y. pestis to previously un-
exposed commensal rat populations. However, little is known re-
garding the dynamics and epidemiological impact of host evolution
among rats during such incursions (31, 32). From a public health
perspective, understanding plague ecology among commensal rats is
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important because of the contemporary reemergence (33) and un-
rivaled historical impact of plague: Y. pestis epidemics decimated
medieval Europe and Mediterranean classical civilization (34–36),
disrupted trade and geopolitics in the late Victorian British empire
(37), and may have driven major population movements and ad-
mixture throughout Bronze Age Eurasia (38, 39).
Endemic present day Y. pestis in most world regions radiated

from China in a late nineteenth century expansion known as the
third plague pandemic, which brought the disease to port cities
of every continent by 1901 via maritime trade networks (40, 41).
Historical investigations undertaken in the decade after the in-
troduction of plague to colonial India documented the expansion of
a heritable, plague-resistant phenotype among urban R. rattus: in
dose escalation studies of experimental plague infection carried out
across Indian cities, the prevalence of rats resisting plague infection
increased in association with the local severity of recent plague
epidemics (42, 43). Recognizing that “it would be an extraordinary
coincidence if plague had visited just those places where the rats
were naturally most immune to the disease and spared those with
the most susceptible rat populations,” Victorian era investigators
from the Indian Plague Commission suggested an evolutionary basis
for resistance patterns, reasoning that “the one per thousand or ten
thousand of the rat population . . . which lived through a severe
epidemic would quickly give rise to a highly resistant race” (42).
Datasets gathered by the Plague Commission provide an opportu-
nity to investigate this century-old hypothesis.
Distinct temporal epidemic patterns in several cities monitored

by the Plague Commission could afford insight into environmental
and ecological factors influencing the urban transmission cycle—
including the relation of host evolution to disease dynamics. Despite
an absence of effective interventions to control transmission in co-
lonial India (44, 45), seasonal epidemics gradually shifted from re-
crudescing in phase with cool temperatures to appearing later in the
year amid concomitant declines in plague mortality (46, 47). Stable
weather patterns in Indian cities did not comport with long-term
shifts in epidemic timing and severity. Plague incidence also did not
follow multiannual cycles associated with sea surface temperature
anomalies and other climatic phenomena. Acquired immunity in
individuals within the host population similarly does not provide a
good explanation for this observation, because the one-year inter-
epidemic period generally exceeds the lifespan of wild rats (48).
Dampened or delayed seasonal outbreaks of numerous in-

fectious diseases have previously been attributed to declining
host birth rates (49–52). Although similar reductions in the rat
populations of Indian cities were not observed (53–55), increases
in the resistance of the rat population as a consequence of pla-
gue-mediated selection effectively serve to reduce the recruit-
ment of susceptible hosts. To determine the underlying cause for
the shift of seasonal epidemics, we modeled the contributions of
host selection and climate to plague dynamics in Indian cities
based on analyses of historical experimental and epidemiological
data. We assessed whether the ascendance of a resistant rat
population amid intense natural selection buffered climati-
cally driven increases in transmission to susceptible hosts and
contributed to the lagging pattern of epidemics. Our findings
provide evidence to resolve the longstanding mystery surround-
ing the impacts of evolutionary selection on India’s plague epi-
demics and advance quantitative approaches that integrate
evolutionary and environmental factors in infectious disease
epidemiology.

Materials and Methods
Modeling Transmission and Evolutionary Dynamics. We explored the contri-
butions of climatically forced vector mortality and selection for host re-
sistance using a trait-based mathematical model coupling bubonic plague
transmission with phenotypic evolution of a rat host population. The model
was informed by previous models of rat and flea population dynamics
contributing to the transmission of the disease (56–58), but tailored to ad-
dress climatic determinants of transmission, to include explicit evolutionary
mechanisms, and to incorporate the fitness consequences (59) associated
with host selection (Fig. 1). Our model specifies a scaled population of uninfected

rats (U) with a parameter 0 ≤ ξ ≤ 1 that quantifies the susceptibility of a rat to
plague infection such that U=

R 1
0 fðξÞdξ, where f(ξ) is the density of un-

infected rats with susceptibility ξ. This susceptibility represents the condi-
tional probability of a rat becoming infected given the bite of an infectious
flea, and its quantitation as a continuous variable is motivated by historical
findings defining resistance in terms of an escalating inoculum Y. pestis dose
necessary to cause infection (42). The model then tracks the densities of rats
becoming infected and transitioning through exposed incubating (E) and
infectious (I) states at rates described by the coupled differential equations
E′= λ1

R 1
0 ξfðξÞdξ− ðd + σÞE and I′= σE − ðμ+dÞI.

The total scaled population of rats N = U + E + I and transition rates
among states are governed by data-driven estimates (Table 1). Natural
mortality occurs at the rate d. The force of infection λ1 quantifies the rate
that new infections occur among wholly susceptible rats (when ξ = 1). Rats
progress from an incubation period to become infectious to fleas at the rate
σ, and death by infection or other causes occurs at the total rate μ + d (Table
1). Historical observations showed that declines in the rat population during
India’s epidemics were associated with increased rates of pregnancy among
female rats (55). Therefore, we modeled births at the net rate b(1 – NK–1) to
allow reductions relative to the maximal rate b as the population ap-
proaches its carrying capacity (K = 1).

Because resistance to Y. pestis is likely governed by multiple loci (28–30), we
modeled phenotypic selection of the susceptibility trait. Given historical (42, 43,
63) and contemporary evidence (27, 28, 64) for counterselection of resistance in
the absence of plague, we also model a fecundity trait c(ξ) = 1 – ι(1 – ξ) that
quantifies the reproductive capacity of a rat as a life history tradeoff associated
with resistance. The value 1 – ι is then the relative fecundity of a wholly re-
sistant rat compared with a wholly susceptible rat. Changes in the density of
rats with susceptibility ξ follow

d
dt

fðξÞ=b
�
1−NK−1� Z1

0

cðξ0Þfðξ0Þg
�
ξ
��ξ0, e2�dξ0 − ðξλ1 +dÞfðξÞ, [1]

where ξ0 measures susceptibility in the parent generation. The function
g(ξjξ0,«2) describes the distribution of susceptibility among offspring of

A

B

C

D

Fig. 1. Schematic of compartmental transmission and susceptibility trait
model structure. (A) Compartmental model for plague transmission
among R. rattus. Uninfected rats (U) acquire infection at a rate determi-
ned by the applicable force of infection (λ1) and their susceptibility (ξ; B
and C ) and progress through exposed incubating (E ) and infectious (I)
states, shedding infected fleas (V ) in the latter state. From a total sus-
ceptible human population (P), individuals progress to an incubation and
disease stage (C ) before death (X ). Arrows indicate changes in epidemi-
ological status over time. (B) The probability of infection given exposure
is directly determined by the susceptibility trait ξ. (C ) The density of rats
with susceptibility ξ (here, an example distribution is plotted) is multiplied
by the susceptibility at each point to determine the transition rate to
exposed incubating (E ) and (D) subjected to Gaussian parent–offspring
dispersion, so that each parent rat with susceptibility ξ0 contributes to
new generations, with offspring susceptibility drawn from normal dis-
tributions with mean ξ0 and variance «2 to yield a new density of rats with
susceptibility ξ. In the evolutionary model, the total density of offspring
per member of the parent generation is scaled by the parent reproductive
fitness value c(ξ0).
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parents with susceptibility ξ0, which we model as Gaussian with variance «2

and mean ξ0 (65):

g
�
ξ
��ξ0, e2�= �2e2π�12   exp

�
−
1
2
ðξ− ξ0Þ2e−2

�
[2]

for 0 < ξ < 1. Because ξ = 0 and ξ = 1 are bounds that represent the extreme
cases where an exposed rat is guaranteed to resist or acquire infection, re-
spectively, we model g(0jξ0, «2) = Φ(ξjξ0, «2) and g(1jξ0, «2) = 1 – Φ(ξjξ0, «2),
respectively, for the Gaussian cumulative distribution function Φ. The fe-
cundity trait c(ξ) conveys a cost associated with resistance that prevents the
accumulation of fully resistant rats in the absence of transmission.

During illness, rats shed ϕ–1 infected fleas (V) daily before dying at a
seasonally forced rate ψ (t), such that V ′=ϕI−ψðtÞV. This seasonal forcing
reflects experimental evidence that the survival of infected fleas foraging
for new hosts is temperature-dependent (46, 66). We model intraannual
variation around the mean death rate as

ψðtÞ= ½1+ α  cos  ð2πt −ωÞ�ψ , [3]

with a characteristic amplitude α and phase ω, where t indexes time across
the calendar year. We model the population of infected humans (C) as
C′= λ2PðtÞ− νC, where P(t) is the total population of the city at a particular
time, and individuals experience incubation and illness over—on average—
ν–1 days. Human deaths (X), therefore, accumulate at the rate X̂′= νC. To
account for the human population at risk for plague, we interpolate the
populations of the cities between census estimates accounting for growth
and plague mortality in the intervening years. For each city and each time
interval tn to tn + 1, we model population growth as

P̂ðtn+1Þ= PðtnÞerðtn+1−tnÞ − ½Xðtn+1Þ−XðtnÞ�, [4]

where X(tn) supplies observed cumulative plague deaths to the relevant time
point. In common with previous models (56, 57) and empirical evidence (67),
we account for fleas’ host preference in modeling the rates that rats (λ1) and
humans (λ2) acquire infection. Defining h as a measure of the efficiency with
which fleas identify their preferred rat hosts, new infections occur in rats at
the rate λ1 = βð1− e−hNÞV, whereas the remaining fleas, having resorted to
feeding on humans, cause infections at the rate λ2 = e−hNV.

Historical Observations. Epidemiological, clinical, and scientific investigations
were undertaken by the Indian Plague Commission through the 1900s and
1910s (www.ncbi.nlm.nih.gov/pmc/journals/336/). We compiled historical
epidemiological, meteorological, and experimental datasets from these re-
ports to parameterize the model. The Indian Plague Commission aggregated
plague mortality data from vital statistics of colonial municipalities and
presidencies, providing time series of plague deaths, which we used to
evaluate disease dynamics within cities. We examined plague transmission in
three cities from geographically distinct regions of the subcontinent with
seasonal plague epidemics and extensive epidemiological data of plague

mortality. Mumbai (1891 population: 821,764) was India’s largest and first af-
fected city, experiencing 146,000 deaths over the 16 y after the introduction of
plague in 1896. The second largest city in India at this time, Kolkata (1901
population: 682,305) experienced cases beginning in 1899, with plague mortality
records over the years 1900–1909 indicating 53,856 deaths in that period (68).
The smaller city of Belagavi (1901 population: 26,237) experienced 11,725 deaths
between plague’s appearance in late 1897 and local extinction in 1906 (46, 69).

Two sets of experiments undertaken by the Plague Commission yielded
insights into the potential impacts of climatic and evolutionary factors on
transmission dynamics. One experiment monitored the survival of starved rat
fleas (Xenopsylla cheopis) exposed to differing ambient temperatures to
assess environmentally forced flea survival as a cause for the seasonal pat-
tern of plague epidemics in Indian cities. Fleas died more rapidly at higher
temperatures across the investigated range from 15 °C to 40 °C (66). Subsequent
experiments by plague investigators in Egypt reproduced these results (70). We
modeled this differential death rate as the principal environmental driver based
on the Commission’s findings that temperature did not impact flea fecundity or
hatching (66) or Y. pestis virulence and transmissibility (46). Ecological surveys
undertaken in numerous cities further reported that urban rats’ behavior and
abundance did not vary with respect to season or other environmental influ-
ences aside from plague incidence (46).

A second experiment conducted by the Indian Plague Commission (42)
examined susceptibility to plague in R. rattus and Rattus norvegicus cap-
tured across numerous Indian cities. Rats were inoculated s.c. with Y. pestis
harvested from spleens of infected rats and subsequently monitored for
illness and mortality. Experiments were repeated on roughly 100 rats from
each city, with the inoculum dose ranging from 10−2 to 2 mg spleen tissue.
For rats from cities where no plague cases had been observed and those
from Chennai (Madras), where transmission was not sustained after a single
epidemic, mortality was nearly 100% at the lowest challenge doses. In
contrast, certain rats from Mumbai, Pune, and other heavily plague-affected
cities experienced mortality only after high-dose Y. pestis exposures. Re-
sistance was inferred to be heritable, because progeny of rats that had
survived plague epidemics, bred in captivity and previously unexposed to
plague, likewise showed lower susceptibility to disease and mortality after
Y. pestis exposure (42, 43). More recent findings substantiate the genetic
basis of resistance in R. rattus (28–30). In a subsequent series of experiments
examining infection on the basis of Y. pestis isolation from rats’ blood, re-
sistance was shown to prevent the onset of infection rather than merely
reduce the severity of symptoms among infected rats (46). The existence of
such innate resistance has been confirmed more recently by experimental
assays in R. rattus from plague-endemic areas that do not experience in-
fection, disease, or seroconversion after Y. pestis exposure (27, 64, 71).

Datasets and Parameterization. We inferred model parameters in a Bayesian
framework. The posterior probability (P) is PðθjX,YÞ∝∏iL1ðXi jθiÞL2ðY jθiÞHðθiÞ,
where θi = {bi, βi, hi, αi, ωi, ι} is a vector of model parameters to be fitted for
each city I, and the fitness cost ι is conserved among rats across all cities. For
clarity, we have partitioned the likelihood function into two parts: L1 and L2.

Table 1. Estimated parameters by city

Parameter Definition Value* Source

ξ Probability of a rat acquiring plague from bite of infected flea 0–1 Scaling factor
1/σ Mean incubation period in rats 3 d Ref. 60
1/μ Mean time to plague-induced mortality 2.6 d Ref. 60
b Maximal rat birth rate (per rat, per day, log10) −1.532 to –1.325
1/d Mean rat lifespan without plague infection 180 d Refs. 55 and 61
K Rat population carrying capacity 1 Scaling factor
ι Fecundity reduction for a fully resistant rat (reference fully susceptible) 23.3–23.6% Estimated
« SD of offspring susceptibility (reference parent susceptibility) 0.001–0.1 Varied
ϕ Flea shedding rate from rats 1 Scaling factor
1/ψ Mean survival of foraging fleas under observed temperatures 1.9–2.8 d Estimated
α Mean to peak amplitude of seasonal variation in flea mortality 9.1–17.5% Estimated
ω Calendar day of longest flea lifespan Varies by city Estimated
1/ν Mean duration of incubation and illness in humans 10 d Ref. 62
h Flea searching efficiency (log10) −7.34 to –9.70 Estimated
β Flea–rat contact rate 0.233–0.288 Estimated

*Presented values from estimated parameters describe the range inferred across all three cities, from the lowest 2.5 percentile to the
highest 97.5 percentile of prediction intervals, for the model with host evolution. Posterior distributions are presented in Table S1, and
estimates for the model without evolution are in Table S2.
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L1 is a function of plague mortality time series data Xi and is obtained by
evaluating

L1ðXi jθiÞ=∏
j

λ
½Xi   ðτjÞ−Xiðτj−1Þ�
j e−λj�
Xi
�
τj
�
−Xi

�
τj−1

��
!
, [5]

where deaths between times τj – 1 and τj follow a Poisson distribution with
λj =

R τj
τj−1

X̂iðtÞdt for the state variable X̂i describing human deaths in city i. The
second component of the likelihood, L2, is a function of data from the ex-
perimental datasets showing the effect of temperature on flea survival and
composed of the Gaussian density function

L2ðY jθiÞ= 1

σ2δi ,W
ffiffiffiffiffiffi
2π

p exp

 
−
�
δE − δi,W

�2
2σ2δi,W

!
, [6]

with mean and variance parameters δi,W and σ2δi,W , respectively. Parameters δE
and δi,W describe the change in flea (X. cheopis) death rates associated with
increasing temperature in experimental data and the wild in each city i. We
obtained δE by regressing observed flea death rates (Y; log-transformed)
against exposure temperatures (log-transformed) from Plague Commission
experiments documenting the death rates of starved, foraging fleas in ex-
perimental enclosures kept at 60 °F, 70 °F, and 101 °F (16 °C, 21 °C, and
38 °C). Similarly, we obtain δi,W and its sampling variance σ2δi,W by regressing
the time series of model-predicted flea death rates ψ i(t) (Eq. 3) against the
time series of temperatures, Wi(t), observed within a city. Such data were
reported for Mumbai, Belagavi, and Kolkata at means of daily observations
aggregated at biweekly, weekly, and monthly intervals, respectively (46, 53,
55); for regression models measuring δi,W, the response variable was the
mean estimated death rate across corresponding time intervals.

The prior probability density for the parameters is H(θi). The component
prior probability densities for βi, hi, αi, ωi, and ι were flat, truncated at a
lower bound of zero for parameters representing or modifying rates (βi and
αi). For bi, the upper bound of the rat birth rate, we used an informative,
univariate prior distribution formulated to account for the maximal off-
spring produced per rat based on the incidence of pregnancy and number of
embryos per rat litter. Field investigations undertaken by the Plague Com-
mission (55) provided data on the prevalence of pregnancy in Mumbai rats
(χ), which we modeled as beta distributed with parameters α = 742 (the
number identified to be pregnant) and β = 1,235 (the number identified not
to be pregnant). Field observations supplied the mean (μ) and variance (σ2)
in the duration of pregnancy (κ) in rats (72), which we modeled as gamma
distributed with parameters α = μ2σ–2 = 484 and β = μσ–2 = 22. We used a
previously reported (73) empirical distribution of the number of embryos per
litter in rats (η) (Table S3). Obtaining 100,000 sampled values of the maximal
birth rate (χκ–1)η, where each parameter {χ, κ, η} was drawn from its re-
spective distribution independently, we constructed a continuous density
function via Gaussian smoothing kernels (74). We used this empirical distri-
bution to characterize the prior probability for proposals of bi during Markov
Chain Monte Carlo (MCMC) sampling. Values of the remaining parameters
(d, μ, σ, and ν) were specified as reported published studies and provided to
our model as best point estimates (Table 1).

Census observations supplied population data used to account for changes
in city populations. Data were available for the years 1891, 1901, 1906, and
1911 inMumbai; 1891, 1901, and 1911 in Kolkata; and 1891, 1901, and 1909 in
Belagavi (69, 75–78). Defining P(t0) and P(tF) as the starting and ending
populations over any interval, respectively, we solved for r over the in-
tervening years by minimizing the objective function ðP̂ðtF Þ− PðtF ÞÞ2, evalu-
ating P̂ðtFÞ via a least squares fit to the discretized exponential growth
represented in Eq. 4.

We applied MCMC sampling using the Metropolis–Hastings algorithm (79)
to evaluate likelihoods of parameter sets and provide posterior distributions.
Posterior distributions were accumulated over the course of proposing up-
dates to one parameter, chosen at random, and saving the state of the chain
at every 20th iteration to reduce autocorrelation.

Information Criterion. To assess support for the hypothesis that rodents un-
derwent selection for Y. pestis resistance, we compared the fit of the model
including resistant rodents with a special case of the same model where no
phenotypic variation occurred (« = 0, ξ = 1) based on the Widely Applicable
Information Criterion (WAIC), a Bayesian generalization of the Akaike In-
formation Criterion (80, 81). We compared information criterion-based weights
(82) of the null model (M0) and the model incorporating evolution (MA) as
wA = exp½− ðWAICA −WAIC0Þ=2�. We calculated WAIC = –2(m – pWAIC), where
m=

Pn
j=1logðS−1

PS
s=1PðθS

��X,YÞÞ, pWAIC =
Pn

j=1V
S
j log½PðθS

��X,YÞ�, j indexes
1 . . . n plague mortality observations, and s indexes 1 . . . S random draws
from the posterior distribution.

Simulation. To provide descriptions of the stochastic dynamic epidemics
predicted by our model under the constraint of the historical data, we ex-
ecuted the τ-leap algorithm, approximating exponentially distributed interevent
waiting times.

Sensitivity Analyses. Because the genetic basis of plague resistance in rats is
not precisely known, the value of «—the SD in offspring susceptibility rela-
tive to the parent phenotype—cannot be verified against empirical data. We
ascertained the robustness of our inferences by conducting sensitivity
analyses, wherein we fitted the model under values of « spanning three
orders of magnitude.

Results
Our model recapitulates the observed shifts in magnitude and
timing of epidemic peaks after Y. pestis introduction in each of
the three cities. Whereas plague deaths achieved their maximum
in Mumbai and Kolkata in February and April, respectively,
during the first years of transmission, the timing of the annual
peak shifted 2 mo later to April and June in the two cities, re-
spectively, over the ensuing decade (Figs. 2 and 3). These
changes in timing coincided with decreases in the size of seasonal
epidemics. The introduction of plague to Belagavi in 1897
prompted an aberrant pattern of peaks of incidence occurring in
closer succession, shifting from November to August to June
over the first 3 y of transmission (Fig. 4). These temporal shifts
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Fig. 2. Epidemic dynamics in Mumbai. (A) Model-predicted mean susceptibility in the population [purple band, 95% credible interval (CI)] undergoes seasonal
decreases along the course of the epidemic, and the SD of susceptibility in the population (green band, 95% CI) increases as the density of rats with susceptibility lower
than one increases. (B) Model-predicted (blue band, 95% CI) and observed (red line) plague mortality cycles seasonally, decreasing as the mean susceptibility in the
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rapidly aligned the initiating phases of the epidemics more closely
with decreases in temperature from their annual maximum in
April (Fig. 5); then, over subsequent years, epidemics decreased in
size and peaked in later months, as in Mumbai and Kolkata.
Our model addressed the impact of host evolution and climatic

forcing by incorporating phenotypic selection of a susceptibility
trait and temperature-associated seasonal variation in death
rates of the rat flea. Whereas resistance-associated fecundity
costs kept polymorphism in the susceptibility of rats to a mini-
mum before plague introduction, expansions of resistance in the
rat population impacted seasonal dynamics of plague after
the disease was introduced. Over successive years, epi-
demics triggered by seasonal increases in the availability of
fleas came to be limited by the declining susceptibility of a host
population undergoing plague-mediated selection. In this way, the
evolution of resistance buffered the nonlinear effect of increased
flea survival on epidemic propagation, resulting in slower spread
among susceptibles and in turn, later-peaking and smaller
seasonal epidemics.
The model also succeeded in replicating climatically driven

shifts observed over the years 1897–1900 in Belagavi and in the
epidemics of 1897 and 1898 in Mumbai (Figs. 2 and 4). During
warmer conditions, when fleas were expected to have their
shortest lifespan (Fig. 5) (66), estimated R0 values remained above
1.0 for all cities (Table S4), so that conditions were conducive to
transmission, regardless of the season when plague was intro-
duced. Whereas the initial epidemics in Belagavi and Mumbai
were thus expected to commence consequent to Y. pestis intro-
duction, temperature-associated forcing permitted our model to
reproduce shifts, bringing the recrudescence of plague in these
cities into phase with the cool season, when fleas were inferred to
survive longest (Fig. 5).
In our model, ecological competition among heterogeneously

susceptible rats was mediated in large part by transient dynamics
unfolding during and between seasonal plague epidemics. Sea-
sonally forced transmission prevented the population from sta-
bilizing at an equilibrium distribution of susceptibility after
plague introduction. The model instead predicted low-amplitude
cyclical variation in the susceptibility of the population (Figs. 2,
3, and 4), mirroring historical observations from rats in colonial
India (42). This behavior reflects the opposing evolutionary
pressures on parents and their offspring in the context of sea-
sonal plague epidemics: because the interepidemic period
exceeded the expected lifespan of wild rats, most offspring of

resistant rats that had survived an epidemic would receive no
direct benefit from their costly genetic inheritance. We estimated
that a fully resistant rat would produce, on average, 23.5% fewer
offspring than its fully susceptible counterpart, a moderate cost
that proved robust with estimated values of 22.9–37.6% in sen-
sitivity analyses, wherein the SD of susceptibility between off-
spring and parents ranged from 0.1 to 10% (Table S5).
Whereas seasonal plague epidemics continued well into the

20th century in Mumbai and Kolkata (63, 83), transmission
extinguished locally in Belagavi after the 1905–1906 epidemic
(69). Stochastic realizations of our model similarly show plague
persistence in Mumbai and Kolkata, while reproducing the ex-
tinction of plague from Belagavi by a median date of January 23,
1907. In contrast, a deterministic formulation of our model permits
transmission to continue indefinitely in all three cities with an an-
nual seasonal cycle. A smaller total rat population size in Belagavi,
compared with the two larger cities, increases the potential for
stochastic dynamics to bring about complete elimination.
Although our model incorporating the evolution of resistance

provided good fit to the timing and size of peak incidences, it was
unable to reproduce long-term observed trends in the timing and
size of epidemics when fitted without permitting evolution of
resistance (Fig. S1). Comparing model fit with and without
evolutionary forcing by WAIC, the model including evolutionary
forcing was favored over the null model by a factor greater than
1010 (Table S6). Accounting for host evolution also assisted the
model in adeptly capturing climatic forcing of vector survival
(Fig. 5 and Fig. S2). Fitted associations between modeled vari-
ation in flea survival and observed temperature closely repro-
duced experimental estimates of the impact of temperature on
survival of rat fleas (Fig. 5), supporting the historical hypothesis
that this mechanism was the primary driver of seasonal epidemic
dynamics (46, 66, 84). The model also captured transmission
heterogeneities across cities resulting from climatic differences.
Mumbai, which had the lowest-amplitude seasonal variation in
temperature among the cities, had correspondingly lower mean
to peak variation in flea death rates (9.1–9.3%) than Kolkata
(17.1–17.5%) and Belagavi (15.0–15.6%). Comparing models
based on the likelihood component L2(Yjθ), which conveyed the
impact of temperature on flea survival in India, the model
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Fig. 3. Epidemic dynamics in Kolkata. (A) Model-predicted mean suscepti-
bility in the population [purple band, 95% credible interval (CI)] undergoes
seasonal decreases along the course of the epidemic, and the SD of sus-
ceptibility in the population (green band, 95% CI) increases as the density of
rats with susceptibility lower than one increases. (B) Model-predicted (blue
band, 95% CI) and observed (red line) plague mortality cycles seasonally,
decreasing as the mean susceptibility in the population decreases. (C) Model-
predicted posterior probability density (blue violin plot) and observed (red
interval) timing of peak mortality. As a consequence of the evolution of
resistance, the timing of annual maxima in plague mortality shifts. Bands
and violin plots are part of the range across 2,000 stochastic simulations.
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Fig. 4. Epidemic dynamics in Belagavi. (A) Model-predicted mean suscep-
tibility in the population [purple band, 95% credible interval (CI)] undergoes
seasonal decreases along the course of the epidemic, and the SD of sus-
ceptibility in the population (green band, 95% CI) increases as the density of
rats with susceptibility lower than one increases. (B) Model-predicted (blue
band, 95% CI) and observed (red line) plague mortality cycles seasonally,
decreasing as the mean susceptibility in the population decreases. The
model-generated cumulative probability for plague extinction (brown line)
increases near the end of the epidemic. The last season of epidemic disease
in Belagavi was the 1905–1906 season. (C) Model-predicted posterior prob-
ability density (blue violin plot) and observed (red interval) timing of peak
mortality. The epidemic in Belagavi began out of phase and rapidly adjusted
to the season, a pattern the model recapitulates. Bands and violin plots
represent central tendencies of the range across 2,000 stochastic simulations,
discarding 968 simulations in which extinction occurred.
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accounting for host evolution also provided greater concordance
between inferred forcing and experimental data (Table S7).

Discussion
Our modeling substantiates the evolution of resistance among
commensal rats in the context of intense plague-mediated se-
lection as reported in historical investigations of the Indian
Plague Commission. In particular, we have shown that observed
seasonality in outbreaks can be explained by the sensitivity of flea
lifespan to temperature and that resulting variation in the pop-
ulation of fleas—coupled with the expansion of plague-resistant
R. rattus phenotypes—can explain otherwise unaccounted for
changes in seasonal epidemic dynamics seen across India’s cities.
Our results provide a mechanistic understanding of the ecolog-
ical buffering of climatic factors driving plague transmission.
In this regard, accurate inference of climatic drivers of seasonal
epidemics depends on incorporating reductions in the recruitment
of susceptible hosts as a consequence of plague-mediated selec-
tion. Our results show the degree to which ecological factors
mediating the spread of infectious diseases and environmental
drivers of transmission must be jointly understood to anticipate
the impact of either on disease dynamics. Accounting for the
empirically shown impact of temperature on flea survival per-
mitted us to distinguish the contribution of evolution to changes
in the temporal signature of epidemics in Indian cities, yielding
inferences about plague dynamics that could not be achieved
from analyses of the underlying experimental or epidemiological
datasets alone. Changes in the timing of epidemics—and the role
of temperature in triggering the onset of epidemics rather than
their peak—obscure direct correlations between climate and
incidence in India’s plague epidemics. Although numerous
studies have investigated such temporal associations between
human plague incidence and weather (85–89), a mechanistic
understanding of how environmental forcings are buffered
through ecological systems is critical for projecting how current or
future climatic conditions will impact local transmission intensity
or alter the latitudinal and altitudinal range where plague occurs.
Such determinations are of current priority for researchers and
policymakers amid concern about the impact of climate change on
the distribution of plague (90) and other vector-borne and zoo-
notic diseases (5).
In addition to the insights gained in understanding the climatic

drivers of plague, heterogeneities in host susceptibility have
implications for public health objectives surrounding disease
control. Existing animal-based plague surveillance programs
monitor die offs and seroprevalence in rodent populations for
early warning signs of the disease’s incursion (91, 92). However,
expansions of resistance among hosts during epizootics could
offset population declines and diminish the utility of serology as
a marker for local plague transmission (27, 64, 71, 93). The di-
verse mammal species that may serve as plague hosts further
complicate surveillance and control strategies. In the western
United States, prairie dogs show no resistance to plague, despite
longstanding prevalence of the disease and its devastating impact
on their populations (31, 94). Our modeling supports theoretical
insights (56–58) as well as historical (42) and contemporary ev-
idence (95) that disease-mediated selection rapidly alters the

distribution of susceptibility of rats, thereby impacting epidemic
dynamics. In addition to improving our understanding of the
mechanism of innate resistance, characterizing the genetic basis
of this trait may afford novel tools for animal-based plague
surveillance. Minute geographic and temporal variation in the
innate susceptibility of R. rattus to plague suggests that resistance
alleles may offer a sensitive and specific target for animal-based
surveillance, with the potential to elucidate spatiotemporal pat-
terns of plague transmission (27–30). Coupling such molecular
surveillance data with climatic determinants of transmission
would augment detection and forecasting ability, laying the
foundation for inferring the possible timing and extent of local
disease spread.
The empirical observation of host immune heterogeneity

across diverse taxa raises the question of what ecological cir-
cumstances allow polymorphisms to persist as opposed to driving
immune phenotypes to fixation (12). This uncertainty was noted
by scientists of the Indian Plague Commission, who—despite rec-
ognizing plague-mediated selection as a factor in the evolution of
resistance—could not account for the tendency for resistance to
persist within cities during nonepidemic seasons, while disappearing
from cities after the extinction of plague transmission (42). The
existence of physiological tradeoffs associated with the ability of an
organism to resist infection has since become a central principle in
disease ecology (3). In the context of such costs, numerous lines of
theoretical inquiry predict transmission to drive the persistence of
polymorphisms in innate resistance; other immune phenotypes,
such as the ability to tolerate infection or develop adaptive re-
sponses, are expected to achieve fixation (13, 96). These contrasting
trajectories are theorized to arise from distinct ecological contexts,
which favor innate resistance against pathogens that are virulent
and likely to be encountered at most once in a host’s lifetime (12–
15). Such conditions are met in the urban plague ecology of colonial
India and supported the persistence of polymorphisms in our model
in agreement with the findings of historical investigations (42).
More recently, field studies have shown similar local persistence of
resistance polymorphisms among R. rattus inhabiting plague foci in
Madagascar, Asia, and Hawaii (27, 31, 64, 71, 94).
Notwithstanding these lines of theoretical support, a limitation

to the interpretation of our analysis is that biological mechanisms
underlying innate Y. pestis resistance in R. rattus remain poorly
understood. We modeled resistance based on observations that
rats evading disease in India also lacked culturable Y. pestis in
their bloodstream, which would be necessary to infect fleas (46,
60). Such resistance in R. rattus has been called on to explain the
ability of individual rats to remain asymptomatic and seronega-
tive after Y. pestis exposure (64), in particular in Madagascar,
where R. rattus serves as the primary host of Y. pestis (27, 71).
Phylogenetic evidence for the recent colonization of Madagascar
by R. rattus from India suggests that determinants of Y. pestis
resistance among Madagascar rats may have been shared by rats
involved in the third plague pandemic in India (97). Tolerant
phenotypes that render Y. pestis infection asymptomatic or re-
duce the severity of plague have also been described in some
gerbils, marmots, voles, and other rodents and small mammals. In
contrast to a role of resistant hosts in reducing transmission rates,
tolerant host species might play a dominant role in transmission as
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reservoirs of latent infection (98, 99). The matching of lagged and
attenuated epidemics to our model would, accordingly, result from
a resistant phenotype reducing transmission. Our findings justify a
hypothesis of lower fecundity among resistant rats as a life history
tradeoff that prevents the persistence of high levels of resistance in
the absence of plague. Although reproductive function is among the
most studied fitness costs in the context of immunity, an organism’s
predisposition to reallocate reserves from anabolic processes to
acute-phase immune responses may be associated with additional
physiological compromises affecting metabolism, growth, and lon-
gevity (3). Such traits could also provide a mechanistic basis for
counterselection of resistance in our model.
Despite considerable attention to the evolutionary impact of

pathogens on hosts in ecology, longitudinal studies documenting
the inextricably linked dynamics of transmission and pathogen-
mediated evolutionary selection—and their environmental de-
pendence—have been constrained to a narrow set of systems
(22–26, 59). Aided by rich datasets describing epidemiological
dynamics, selection, and environmental drivers of transmission,
our modeling links Victorian era observations to the long-
standing mystery of what caused reductions in epidemic magni-
tude during the third plague pandemic in India. Our results
indicate that host evolution dampens and delays seasonal epi-
demics of plague in a manner similar to how vaccination and
declining birth rates—among other processes reducing the re-
cruitment of susceptible hosts—have impacted the timing, mag-
nitude, and frequency of seasonal epidemics of pediatric infections,
such as measles, pertussis, and rotavirus (49–52). The collection and
maintenance of longitudinal data on the incidence of such diseases
have been instrumental in showing the fundamental link between
host recruitment rates and transmission dynamics. These circum-
stances merit consideration in the context of zoonoses, such as
plague, for which modern surveillance data are, in some cases,
disseminated at prohibitively coarse spatiotemporal scales for sim-
ilar analyses (100).
To explain broad trends toward later and smaller epidemics in

Indian cities, we represented transmission using a simplified model
that does not account for all sources of regional and interannual
heterogeneity impacting the dynamics, timing, and size of plague
epidemics. For instance, our statistical framework addresses tem-
perature as a correlate of flea survival, although other associated
environmental factors may also have contributed to the longer

survival of rat fleas under cool experimental and field conditions
in India (46, 55, 66). Although data characterizing these factors
may further refine the modeled seasonal forcing, such extensions
would not alter the basic dynamics of our model, whereby
lengthened flea survival during the cool season triggers epidemic
recrudescence.
Our consideration of host resistance is motivated by cross-

sectional differences in the susceptibility of rats to plague across
Indian cities as well as subtler seasonal variation within cities.
Although historical investigations did not yield detailed longi-
tudinal data on the population dynamics of resistant and sus-
ceptible rats, a time series of infectious dose determinations
within cities would provide a direct basis for inference of how
resistance expanded. Remarkably, we find that a single, moder-
ate fitness cost is sufficient to explain complex plague dynamics
observed across the three cities. This finding also accounts for
the low historical prevalence of resistance among rats from cities
without plague, supporting the hypothesis that host selection was
a key determinant of changes in the timing and severity of epi-
demics across all cities.
The unparalleled historical human impact of Y. pestis, the in-

creasing epidemiological burden of plague and other rodent-
borne zoonoses throughout the developing world (33, 101, 102),
and lingering concerns over bioterrorist uses of plague (103)
invoke the importance of understanding the transmission dy-
namics of Y. pestis outside its typical sylvatic niche. The singularly
extensive epidemiological and experimental data gathered by the
Indian Plague Commission have provided a rare opportunity to
reveal the coupling of human, environmental, and ecological
factors that represent drivers of urban bubonic plague in one of
its most recent and severe episodes. The stark heterogeneity in
the susceptibility of rats to plague across Indian cities only one
decade after the initial incursion of disease in the subcontinent
(42, 43) underscores the potentially rapid impact of host evolu-
tion on disease dynamics. Primary datasets gathered during his-
torical outbreaks—like those gathered in current outbreaks—
play a key role in revealing the sometimes deadly ecology of
emerging and reemerging pathogens.
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