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Respondent-driven sampling (RDS) is a network-based form of
chain-referral sampling used to estimate attributes of populations
that are difficult to access using standard survey tools. Although
it has grown quickly in popularity since its introduction, the sta-
tistical properties of RDS estimates remain elusive. In particular,
the sampling variability of these estimates has been shown to
be much higher than previously acknowledged, and even meth-
ods designed to account for RDS result in misleadingly narrow
confidence intervals. In this paper, we introduce a tree bootstrap
method for estimating uncertainty in RDS estimates based on
resampling recruitment trees. We use simulations from known
social networks to show that the tree bootstrap method not only
outperforms existing methods but also captures the high vari-
ability of RDS, even in extreme cases with high design effects.
We also apply the method to data from injecting drug users in
Ukraine. Unlike other methods, the tree bootstrap depends only
on the structure of the sampled recruitment trees, not on the
attributes being measured on the respondents, so correlations
between attributes can be estimated as well as variability. Our
results suggest that it is possible to accurately assess the high
level of uncertainty inherent in RDS.
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Researchers are often interested in studying hidden or hard-
to-reach populations. These populations might be very small

relative to the general population, or inclusion in these popula-
tions might carry a social stigma or other privacy concerns that
make them hard to access. For example, HIV research often tar-
gets high-risk groups such as injecting drug users (IDUs), men
who have sex with men, and female sex workers. Unfortunately,
these groups are difficult to sample from because they lack a reli-
able sampling frame on which to base traditional sampling meth-
ods, and if a study restricts itself to only the most accessible mem-
bers of a population, biases are likely to result.

Respondent-driven sampling (RDS) combines a nonproba-
bilistic chain-referral or snowball design with a statistical model
that allows for estimation and inference of population parame-
ters (1–3). According to White et al. (4), RDS had been used
in over 460 studies in 69 countries as of 2015. The RDS pro-
cess begins with the initial selection of a first wave of partici-
pants called seeds, who may be selected nonrandomly from the
hidden population by convenience sampling. These participants
are given uniquely numbered recruitment coupons and tasked
with recruiting the next wave from people whom they know in
the target population, usually with financial incentives. When
this next wave of individuals returns with the coupons, they are
in turn tasked with recruiting an additional wave, and this pro-
cess continues until the desired sample size is met or no fur-
ther recruits appear. This process makes use of the social net-
work underlying the hidden population while reducing privacy
concerns that might result from asking respondents directly for
a list of contacts. Also, the use of numerous recruitment waves
reduces the dependence of the overall sample on the initial
convenience sample.

Several statistical approaches have been proposed to control
for the biases associated with chain-referral methods. In his orig-
inal papers on RDS, Heckathorn (1, 2, 5) described the sam-
pling process and used the principles of network homophily
and reciprocity between network connections to devise meth-
ods for estimating the prevalence of attributes in the popula-
tion. Using Markov chain theory, Salganik and Heckathorn (6)
showed that these RDS estimates were asymptotically unbiased
under assumptions about the sampling process and the under-
lying social network. Li and Rohe (7) recently extended these
limit-theorem results to include cases with multiple referrals. Sal-
ganik (8) also devised a bootstrap method for estimating the sam-
pling variance of these estimates based on the differing refer-
ral patterns of respondents with various attributes, and Yamanis
et al. (9) modified this method to respect the observed branch-
ing structure of the sample. Volz and Heckathorn developed a
Hansen–Hurwitz type estimator corresponding to RDS and used
the existing theory about those estimators to also estimate its
variability (3). Gile and coworkers (10, 11) proposed estimators
that either liken RDS to a probability proportional to size with-
out replacement-sampling design or attempt to leverage prop-
erties of a working network model, with both methods allowing
for bootstrap estimates of uncertainty. Crawford et al. (12) also
proposed a method that leverages properties of the underlying
graph but further included information from the order and tim-
ing of recruitment in their model.

Despite recent advances, quantifying the potentially large
uncertainty associated with the RDS process remains a largely
open problem. Goel and Salganik (13) performed simulations
on known network populations and showed that this variability
was much higher than previously thought, often 5–10 times or
more greater than the standard simple random-sampling process
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(13). As a result, naive use of statistical inference would result
in confidence intervals that are misleadingly narrow. The
researchers also found that even confidence intervals derived
from methods tailored to RDS failed to achieve coverage rates
close to the methods’ advertised values.

We introduce a tree bootstrap method for estimating the
uncertainty in the RDS process. We test the tree bootstrap
method against commonly used existing methods in two simu-
lation studies that mirror ones performed by Goel and Salganik
(13), and we apply our method to RDS data collected from hid-
den populations of IDUs in Ukraine.

Methods
The recruitment process underlying RDS involves complicated social dynam-
ics that would be difficult to model. Therefore, much of the literature on the
properties of RDS estimators relies on a set of simplifying assumptions. We
will assume here that (i) the social network is finite and connected; (ii) net-
work connections are reciprocal, not directed; (iii) recruits accurately report
their network degree; (iv) recruitment coupons are distributed uniformly at
random to neighbors in the network; and (v) individuals may be recruited
into the sample more than once (3, 5, 6). In practice, not all of these assump-
tions are realistic. Specifically, RDS is usually performed without replace-
ment, disallowing the same individual from being recruited more than once.
See Results for a discussion of how this violation affects estimation from an
RDS sample.

Under these assumptions, RDS is equivalent to a random walk on the
underlying social network. Hence, RDS can be modeled by a first-order
Markov chain on the space of network nodes, having a stationary distri-
bution proportional to the degrees of the nodes (6). That is, the probability
that an individual is recruited into the sample is proportional to the number
of connections that individual has within the network. From this, it follows
that the Volz–Heckathorn estimator for the mean µ of an attribute x in the
population can be developed by weighting sampled individuals inversely
proportional to their degree. Thus, we have

µ̂VH =

∑n
i=1

xi
di∑n

i=1
1
di

, [1]

where xi is the value of the attribute in individual i and di is the network
degree of individual i (3). When the xi take on binary 0-1 values indicating
the presence or absence of an attribute, then µ̂VH estimates the prevalence
of the attribute in the population. An additional assumption that the ini-
tial recruits, or seeds, were selected with probability proportional to their
degree is often included to ensure that the Markov chain begins at its sta-
tionary distribution (6). With this assumption, the estimator is unbiased, but
even without this assumption, it is still asymptotically unbiased (3).

Because RDS produces samples that are not independent, estimating the
variance of and constructing confidence intervals for the Volz–Heckathorn
estimator µ̂VH is not straightforward. Furthermore, the nature of the depen-
dence within samples is defined by the underlying social network, most
of which is unobserved. A number of methods for estimating the uncer-
tainty of RDS estimates have been developed. Volz and Heckathorn sug-
gested a variance estimator for µ̂VH that invokes the standard theory of
Hansen–Hurwitz estimators (3). Salganik (8) proposed a bootstrap proce-
dure that splits the sample into groups based upon the attribute value of
their recruiter and iteratively resamples from these groups accordingly. Both
of these methods attempt to leverage the Markovian properties of the RDS
recruitment process. However, the methods both assume that these prop-
erties hold even when the individuals are grouped by their attribute val-
ues, which is not ensured by the theory. Gile (10) treated RDS similarly to a
probability proportional to size without replacement design and developed
an alternative to the Volz–Heckathorn estimator with weights that are no
longer simply proportional to network degree.

The method of uncertainty estimation for RDS that we introduce is both
simple to implement and outperforms other methods in simulation stud-
ies. The major difference between the methods mentioned above and the
one we propose is that previous methods focus heavily on the status of the
observed attribute. Instead, we suggest ignoring the attribute status and
focusing solely on the structure of the RDS recruitment trees, which allows
us to take advantage of the primary source of the dependence within sam-
ples, namely the underlying social network.

Tree Bootstrap. Our method is essentially a multilevel bootstrap procedure
applied within the hierarchical framework of the RDS recruitment trees. To

draw a bootstrap sample from a set of observed trees, the initial step is to
resample with replacement from the seeds of the trees. Next, from each
of those seeds, we resample with replacement from their recruits, creating
the second level of the bootstrap sample trees. From each of these new
recruits, we then resample with replacement from their recruits to create
a third level. This process continues iteratively until no further recruits are
available. From the resulting bootstrap sample trees, any statistic of inter-
est, such as the Volz–Heckathorn estimator, can be computed. By taking
multiple bootstrap samples, the sampling distribution of the statistic can
then be estimated from the observed RDS trees in a way that respects the
dependence within the sample (14, 15). This is similar to what happens with
other well-known techniques for resampling from correlated data, such as
the block bootstrap methods for time series or spatial data, except that in
our case, the structure of the dependence comes from the RDS recruitment
process instead of proximity in time or space (16, 17). We note that due
to the asymmetries of the observed RDS trees, the tree bootstrap produces
resamples that vary in size. To alleviate any bias that may result from this
variation, any inference based upon the bootstrap distribution of a statistic
should be weighted by the effective relative sample sizes (e.g.,

∑
i 1/di for

the Volz–Heckathorn estimator).
Fig. 1B shows an example of a bootstrap sample drawn from the observed

trees in Fig. 1A. Note that seed 2 was selected twice in the initial resampling
step, whereas seed 3 was not selected, but the resampled trees resulting
from the two copies of seed 2 are quite different due to the further recruits
that were selected in later steps. Also note that although the individuals
are shaded according to their attribute value, these values do not affect the
resampling procedure. However, variability in the sampling distribution of
statistics involving the attribute values will be represented in the changing
structure of the resampled bootstrap trees. In fact, we can see from this
example that the substantial attribute homophily observed in Fig. 1A will
result in a higher degree of variability in attribute statistics when using the
tree bootstrap method than we would expect if we used a standard boot-
strap method.

Data.
Project 90. Our first dataset comes from the Colorado Springs Project 90
study, which was funded by the Centers for Disease Control and Prevention
to investigate the affect of network structure on HIV transmission among a
population of high-risk heterosexuals. From 1988 to 1992, researchers con-
ducted interviews with 595 sex workers, paying and nonpaying partners of
sex workers, IDUs, and sexual partners of drug users, and a network was
constructed based upon a complete enumeration of participants’ social, sex-
ual, and/or drug contacts (18–20). There was a total of 5,492 individuals in
the network, but we will focus only on the largest connected component,
consisting of 4,430 individuals and 18,407 edges. For each individual, 13 dif-
ferent attributes were measured, including demographic factors and other
factors of interest such as whether the individual is a sex worker, pimp, or
sex worker client.

We used the Project 90 data to develop a simulation study by simulat-
ing RDS recruitment trees from the network using the following process:

1 2 3

4 5 6 7 8

9 10 11 12 13

14 15 16 17 18 19 20 21 22 23

1 2 2

5 5 6 6 7 7

9 10 10 9

14 14 16 17 17 15 16 14

A

B

Fig. 1. (A) Example of an RDS recruitment tree. (B) Resample taken from
the RDS recruitment tree by the tree bootstrap method. Individuals are
shaded according to their attribute value.
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(i) 10 seeds are selected at random from the network with probability pro-
portional to their degree; (ii) with probabilities 1/3, 1/6, 1/6, or 1/3, respec-
tively, each recruit successively selects 0, 1, 2, or 3 new recruits uniformly at
random from their neighbors in the network; and (iii) recruitment contin-
ues until the RDS contains 500 individuals. For our initial simulation study,
all sampling was done with replacement, so the standard RDS assumptions
hold. This process mimics that found in Goel and Salganik’s assessment of
RDS using the same Project 90 data (13). However, to account for how RDS
is usually implemented in practice, we also conducted a second simulation
study in which sampling was performed without replacement. It should be
noted that although these are simulation studies from a network, the net-
work itself was not simulated. Instead, only the RDS recruitment process was
simulated from a preexisting network.
Add Health. Our second dataset is from the National Longitudinal Study
of Adolescent Health (Add Health), a nationally representative longitudi-
nal study of adolescents in grades 7–12 to investigate the effect of social
environments and behaviors in adolescence on health and achievement out-
comes in young adulthood. We used only the initial wave of sampling from
the 1994 to 1995 school year in which researchers administered in-school
questionnaires to 90,118 students attending 84 pairs of middle and high
schools chosen to be representative of US schools with respect to region of
the country, urbanism, school type, ethnicity, and school size (21, 22). Social
networks were mapped based upon nominations of up to five male and five
female friends from each respondent’s school pair. The largest connected
components of these school networks consist of a total of 72,262 individu-
als and 258,688 edges and range in size from 25 to 2,539 students, with a
median of 753. For each individual, 46 different attributes were measured,
including demographic factors, family status factors such as whether their
mother or father live at home, and involvement in various school activities
including sports teams and clubs. Our simulation study using the Add Health
data were performed for each of the 84 school pairs in the same manner as
described above for the Project 90 data.
Ukraine IDU. These data were collected in 2011 from IDUs in major
Ukrainian cities. Rates of HIV in Ukraine were among the highest in East-
ern Europe at the time, and the epidemic had continued to grow despite
comprehensive efforts to slow transmission of the disease, especially among
IDUs (23). In an effort to track trends in HIV prevalence and understand
behavioral patterns that affect the spread of the disease, sentinel surveil-
lance of IDUs was conducted through the administration of behavioral sur-

Fig. 2. Estimating population proportions via RDS with the Project 90 data. Coverage probabilities and widths of 95% confidence intervals estimated
by the following methods: (i) the naive proportion variance estimator; (ii) the Volz–Heckathorn variance estimator; (iii) the Salganik bootstrap; (iv) the
Yamanis bootstrap; (v) the Gile successive-sampling bootstrap; and (vi) the tree bootstrap. For the coverage probabilities and widths in A and C, sampling
was performed with replacement, and for the coverage probabilities in B, sampling was performed without replacement. Attributes are in decreasing order
of prevalence in the network. The dashed vertical black lines in A and B are at 0.95, so that for a perfectly calibrated method, the symbol would lie on the
line. The short black lines in C are the expected 95% interval widths based on 10,000 simulated samples.

veys using RDS methodology. In each of 26 targeted cities, between 2 and
6 seed respondents were selected nonrandomly based on prespecified cri-
teria. Each respondent then recruited up to 3 additional respondents until
between 200 and 500 total IDUs were surveyed, with the target sample size
being higher in cities with higher HIV prevalence (24). We will focus on four
attributes measured by the behavioral survey in each city: (i) hospitalization
to state drug treatment in-patient clinics during 2010; (ii) participation in
the state substitution maintenance therapy (SMT) program; (iii) registration
at nongovernmental organizations (NGO) that provide HIV prevention ser-
vices; and (iv) use of HIV rapid tests distributed by NGOs that provide HIV
prevention services. All our analyses are secondary data analyses of data col-
lected by other organizations. The data we obtained included no personal
identifiers of any kind.

Results
Project 90. From each of 1,000 simulated respondent-driven sam-
ples from the Project 90 data, we used multiple existing methods
to infer the population proportions for each of the 13 attributes
using confidence intervals. Because these true population pro-
portions are known from the data, we can use these inferences
to compare the coverage probabilities of the confidence inter-
vals derived from the different methods. If we estimate 95%
confidence intervals from the simulated samples, then for each
attribute, we would expect these confidence intervals to cover the
true population proportion in approximately 95% of the samples.

Fig. 2A shows the resulting coverage probabilities of the
95% confidence intervals as estimated by the following meth-
ods: (i) the naive proportion variance estimator; (ii) the Volz–
Heckathorn variance estimator; (iii) the Salganik bootstrap; (iv)
the Yamanis bootstrap; (v) the Gile successive-sampling boot-
strap; and (vi) the tree bootstrap. Bootstrap confidence intervals
were computed using the percentile method. For each attribute,
the tree bootstrap method hewed much closer to the expected
95% coverage probability than any of the alternative methods,
which rarely achieved more than 70% coverage. The tree boot-
strap provided well-calibrated inference for attributes with very
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Fig. 3. Estimating population proportions via RDS with the Add Health data. Mean coverage probabilities of 95% confidence intervals across the 84 school
pairs estimated by the following methods: (i) the naive proportion variance estimator; (ii) the Volz–Heckathorn variance estimator; (iii) the Salganik boot-
strap; (iv) the Gile successive-sampling bootstrap; and (v) the tree bootstrap. Sampling was performed with replacement, and attributes are in decreasing
order of mean prevalence over the 84 networks. The dashed vertical black lines are at 0.95, so that for a perfectly calibrated method, the symbol would lie
on the line.

high design effects, such as whether an individual was nonwhite
or a sex worker client. The estimated design effects for these
attributes are about 60 and 30, respectively (13), where the
design effect is defined as the ratio of the variance of the RDS
estimator to that of the estimator from a simple random sample.
Thus, if the design effect is 10, then the precision of an estimate
from an RDS of size 500 is equivalent to that of a simple random
sample of size 50.

Fig. 2C shows the mean widths of these 95% confidence inter-
vals for each attribute (80% intervals are shown in SI Appendix,
Fig. S1). To form a basis of comparison, we generated 9,000
additional samples and then calculated the expected widths of
the intervals using the 2.5th and 97.5th percentiles of the sam-
pling distribution across all 10,000 simulated samples. The aver-
age widths of the tree bootstrap confidence intervals were much
closer to the expected values than those from the other meth-
ods. Even when estimating the proportions of nonwhites and sex
worker clients, the tree bootstrap method inferred confidence
intervals wide enough on average to accommodate their high
design effects.

In contrast to the assumptions underlying the statistical mod-
els commonly used for RDS, RDS is usually carried out by sam-
pling without replacement. In practice, respondents are gener-
ally not allowed to recruit individuals who have already been
included in the sample. This can affect the sampling process
because the underlying social network is reduced by the removal
of nodes as the sampling continues, and it has been observed
that the resulting RDS estimates can be biased (10, 25). As
a result, we repeated the simulation study under the assump-
tion that sampling was performed without replacement. Fig. 2B
shows the coverage probabilities of these 95% confidence inter-
vals as estimated by the same methods as before. The tree boot-
strap method still had coverage at least equal to the nominal
95% in almost all cases, and indeed its coverage was better
(i.e., closer to the nominal level) than when sampling was with
replacement. The other methods still had coverage substantially
below the nominal level in most cases. As when sampling with

replacement, only the tree bootstrap captured the large variabil-
ity inherent in these samples when estimating attributes with high
design effects, such as the proportions of nonwhites or sex worker
clients.

Add Health. We inferred population proportions using confi-
dence intervals for each of the 84 school pairs and 46 attributes
in the Add Health data in each of 1,000 simulated respondent-
driven samples. Fig. 3 shows the resulting mean coverage prob-
abilities across the school pairs of 95% confidence intervals as
estimated by the following methods: (i) the naive proportion
variance estimator; (ii) the Volz–Heckathorn variance estima-
tor; (iii) the Salganik bootstrap; (iv) the Gile successive-sampling
bootstrap; and (v) the tree bootstrap. The Salganik and Gile suc-
cessive bootstrap methods had much longer computation times
than the other methods due to the presence of 46 attributes. This
result illustrates a benefit of the tree bootstrap method not being
attribute-based: inference about any number of attributes can be
carried out from a single bootstrap sample.

As with the Project 90 simulation study, the tree bootstrap
method provided intervals with coverage probabilities closer to
the nominal 95% than the alternatives, which usually achieved
around 60–80% coverage (80% intervals in SI Appendix, Fig. S2).
Again, the tree bootstrap provided reasonably well-calibrated
inference regardless of the magnitudes of the design effects for
the attributes. The results when sampling is without replacement
are shown in SI Appendix, Figs. S3 and S4.

Ukraine IDU. We applied the tree bootstrap method to the RDS
data collected from IDUs in 26 Ukrainian cities. Fig. 4 A–D
shows the resulting 80 and 95% confidence intervals obtained
from this method, along with various others. The results for two
selected cities are shown in Fig. 4; the remaining results are in SI
Appendix, Tables S1–S4.

Fig. 4 A and B give estimates for the proportion of IDUs hos-
pitalized to state drug treatment in-patient clinics during 2010
and the proportion who participated in the state SMT program,
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Fig. 4. Ukrainian IDU data: estimates of the proportion of IDUs hospitalized to state drug treatment in-patient clinics during 2010 (A), the proportion of
IDUs who participated in the state SMT program (B), the proportion of IDUs registered at NGOs that provide HIV prevention services (C), and the average
number of HIV rapid tests distributed by NGOs that are used by each registered IDU (D). The figures show 80% (dark) and 95% (light) confidence intervals
obtained from the naive proportion variance estimator, the Volz–Heckathorn variance estimator, and the tree bootstrap for two Ukrainian cities, Simferopol
and Bila Tserkva.

respectively. As expected from the simulation study, the interval
estimates from the tree bootstrap methods were generally wider
than those from the alternative methods. For example, the upper
limits of the 95% interval estimates from Bila Tserkva in Fig. 4A
were 5.2 and 4.7% when using Salganik’s and Gile’s methods but
9.7% when using the tree bootstrap, nearly twice as high. Given
previous results in this paper and related literature, we expect
that the tree bootstrap more closely represented the true vari-
ability of the RDS estimators.

Fig. 4C gives estimates for the proportion of IDUs registered
at NGOs that provide HIV prevention services, and Fig. 4D gives
estimates for the average number of HIV rapid tests distributed
by these NGOs that are used by each registered IDU. Again, we
see that the tree bootstrap provided wider interval estimates that
are more likely to cover the true values than the other methods.
The interval estimates from Simferopol in Fig. 4C are around
three times wider for the tree bootstrap method than for the oth-
ers, with the 95% interval stretching from 22 to 70%.

Fig. 4D shows estimated means of the average number of HIV
rapid tests distributed by NGOs that are used by each registered
IDU. Our tree bootstrap method requires no additional modifi-
cations to handle cases where the object of inference is a count.
Other currently available methods have not been adapted to dis-
crete counts or continuous outcomes, which would be difficult
because most methods rely on transitions from a finite number
of discrete states.

Discussion
Previous work has indicated that although the Volz–Heckathorn
estimator can correct for much of the bias introduced by the RDS
process, estimating the process’s variance is much harder (13).
Previous statistical inferences from RDS can be misleading when
design effects often reduce effective sample sizes by a factor of 10
or more. We have shown here that existing methods for variance
estimation such as the Volz–Heckathorn variance estimator, the
Salganik bootstrap, and the Gile successive-sampling bootstrap
can fail to fully capture the variability in RDS estimates.

Our tree bootstrap method can produce interval estimates that
are able to account for the high variability of the RDS process,
even when the design effects are very large. The tree bootstrap
intervals tend to be slightly conservative, but we have shown
that their widths are not excessive compared with what should
be expected from RDS. In many applications, this slight con-
servatism may be preferable to the overly narrow intervals that
other methods provide. In some cases, the tree bootstrap yields
interval estimates that are too wide for practical use, but this
probably indicates a very large design effect and low effective

sample size, suggesting that the RDS data are not of much value
in these cases. Thus, our methods may also help diagnose situa-
tions where RDS is not of much use.

In the tree bootstrap, the resampling is performed with respect
only to the structure of the RDS recruitment tree and not to the
attributes measured on the respondents. Thus, estimates from
any number of attributes can be derived from a single bootstrap
sample. This is not the case for the other methods we exam-
ined, each of which requires an independent analysis for each
attribute of interest. This makes the tree bootstrap more effi-
cient computationally and also means that we can estimate not
only the variances of the estimates of each attribute but also
the covariances between these estimates. This could be useful
in a capture–recapture design in which multiple capture sources
are compared with a single RDS recapture sample because, in
this case, good population size estimation would rely on esti-
mating the dependence between the capture sources within the
recapture sample.

The tree bootstrap is based on resampling through the tree
structure while ignoring the attributes, and this may be what
drives the method’s success. Previous methods, including the
Volz–Heckathorn variance estimator and the Salganik bootstrap,
effectively model RDS as a first-order Markov process on the
set of attribute states. Although it is true that RDS is a first-
order Markov process on the nodes in the underlying social net-
work, this characteristic no longer holds when the nodes are
aggregated by attribute status, which leads to bias in the esti-
mation of sampling variance (26). On the other hand, the tree
bootstrap method can be viewed as a resampling of paths down
the observed RDS tree. Because entire paths from root to leaf
are resampled together, transitions of length greater than one
are considered, and we are able to escape the first-order Markov
approximation. Further study of the theoretical properties of the
tree bootstrap would be worthwhile.

Conclusion
We have introduced the tree bootstrap method for estimating
uncertainty in samples derived from RDS. Unlike previous meth-
ods, the tree bootstrap can capture the large variability inherent
in the RDS process, even in extreme cases. This method allows
us to construct calibrated interval estimates, avoiding the overly
narrow intervals that existing methods provide. We hope that this
method removes one of the major obstacles facing the practical
application of RDS to the study of hidden and hard to reach
populations. An R package to implement the method called
RDStreeboot is publicly available from CRAN, at https://CRAN.
R-project.org/package=RDStreeboot.
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