
CO
LL

O
Q

U
IU

M
PA

PE
R

EC
O

LO
G

Y
SU

ST
A

IN
A

BI
LI

TY
SC

IE
N

CE

Estimating enhanced prevaccination measles
transmission hotspots in the context of
cross-scale dynamics
Alexander D. Beckera,1, Ruthie B. Birgera, Aude Teillanta, Paul A. Gastanaduyb, Gregory S. Wallaceb,
and Bryan T. Grenfella,c,d

aDepartment of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544; bDivision of Viral Disease, National Center for Immunization
and Respiratory Diseases, Centers for Disease Control, Atlanta, GA 30329; cWoodrow Wilson School of Public and International Affairs, Princeton University,
Princeton, NJ 08544; and dFogarty International Center, National Institutes of Health, Bethesda, MD 20892

Edited by Burton H. Singer, University of Florida, Gainesville, FL, and approved October 7, 2016 (received for review June 9, 2016)

A key question in clarifying human–environment interactions is
how dynamic complexity develops across integrative scales from
molecular to population and global levels. Apart from its public
health importance, measles is an excellent test bed for such an
analysis. Simple mechanistic models have successfully illuminated
measles dynamics at the city and country levels, revealing sea-
sonal forcing of transmission as a major driver of long-term epi-
demic behavior. Seasonal forcing ties closely to patterns of school
aggregation at the individual and community levels, but there
are few explicit estimates of school transmission due to the rel-
ative lack of epidemic data at this scale. Here, we use data from a
1904 measles outbreak in schools in Woolwich, London, coupled
with a stochastic Susceptible-Infected-Recovered model to ana-
lyze measles incidence data. Our results indicate that transmission
within schools and age classes is higher than previous population-
level serological data would suggest. This analysis sheds quantita-
tive light on the role of school-aged children in measles cross-scale
dynamics, as we illustrate with references to the contemporary
vaccination landscape.

cross-scale dynamics | measles | mathematical model | childhood infection |
vaccine refusal

The dynamics of measles are a paradigm for the emergence
of algorithmically simple (albeit often dynamically complex)

host–natural enemy cycles (1). At the most predictable scales,
the Susceptible-Infected-Recovered (SIR) family of models has
been used to analyze measles dynamics in city and country
metapopulations (1–4), as well as in allowing for heterogeneities
in space (5, 6), age (7, 8), and population sizes (9, 10). As a
badge of simplicity, SIR models successfully assume well-mixed
mass action in city populations (i.e., that the number of individu-
als who will become infected is proportional to the total number
currently infected as well as those currently susceptible). Mass-
action assumptions can use a simple constant contact rate or use
a complex time-varying contact function to capture seasonality.

The time dependency (or lack thereof) of the contact rate is
determined by the temporal scale of the data. For example, pre-
vaccination measles is characterized by strong multiennial (1)
epidemics (Fig. 1A; reported case counts from London) that
were driven by the increased seasonal contact rate between chil-
dren during the school term (7, 11, 12). The contact rate is in
the numerator of expressions for the basic reproductive ratio R0,
which measures the number of secondary cases per infected indi-
vidual in a fully susceptible population. This measure informs
various quantities important for public health such as timing of
epidemic peaks and what proportion of the population must be
vaccinated to prevent an outbreak (13). R0 estimates for measles
are frequently reported as being between 7 and 18 (13, 14), con-
sistent with an average age at first infection of 4 to 10 y. However,
because serology is generally reported in broad age bands, it may
smooth out the sharpness of school epidemics, as reflected in

ref. 15. Recent studies have argued that higher values (R0 = 30
to 57) inferred from time-series data reflect transmission within
schools rather than the actual population-level average (4, 14,
16), underscoring the importance of school-age children in a
population-level outbreak.

The cross-scale dynamics of measles are summarized schemat-
ically in Fig. 1. We see more complexities, and often violent
“superspreader” dynamics, emerge at the underlying micro
scales of schools and families (e.g., Fig. 1 C and D). Fig. 1C
(data from Woolwich, London analyzed in this paper) shows out-
breaks from three schools (colored lines), which combine into a
highly stochastic school-level time series (dashed black). Fig. 1D
schematically illustrates family-to-family transmission, which
can connect school epidemics. These micro outbreaks can be
explored using both mass-action and network models (17). The
school and family outbreaks scale up to local community level
(Fig. 1B); these outbreaks have traditionally been studied with
network models (17). However, few studies have examined the
transmission hotspots that add up to the “emergent simplicity”
of the population-level dynamics.

One notable exception is the exquisitely detailed dataset from
an 1861 measles outbreak in Hagelloch, Germany, during which
all 188 susceptible children in the village became infected. With
fine-grain information such as family units, house location, and
which classroom each child was in recorded, the Hagelloch out-
break has been extensively studied using network models, and
R0 has been estimated to be in the range of 6 to 19 (17–19).
However, 1861 Hagelloch was a small population, bearing little
resemblance to a city such as London. It is therefore difficult
to extrapolate the Hagelloch transmission in the context of
school outbreaks in a large city. Additionally, there were only
two school epidemics in Hagelloch, so there are no estimates of
R0 variability (20).

Schools act as measles transmission hotspots, and such devi-
ations from the average are especially important, as noted
in the work of Lloyd-Smith et al. (20) on superspreading.
Unfortunately, measles outbreaks in schools are not a relic of
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Fig. 1. This figure shows a schematic of the chain of cross-scale transmis-
sion dynamics of measles as well as the methods used to analyze them
(mass action or network models). (A) The city-level data of a large city (Lon-
don), where the dynamics are smooth and regular. (B) Possible community-
level dynamics (simulated data) where spatial coupling between schools and
households is important. (C) Three school-level outbreaks (pink, blue, and
green; data from Woolwich) as well the aggregate (black), demonstrating
the more violent underside of the population and community-level out-
breaks. (D) A potential family network model where the blue dot indicates
susceptible individuals and the red indicates infected.

the prevaccination era (21). Although vaccine coverage in most
US schools is high, vaccine refusal and personal belief exemp-
tions trends are increasing (22, 23), leading to considerable vari-
ability in vaccination rates (21, 24), and measles susceptibility
rates in some US kindergartens are below the critical coverage
(25). In this paper, we aim to illuminate the dynamics of school-
based measles transmission by analyzing detailed data from
a 1904 measles outbreak across several schools in Woolwich,
London. First, we present the data and difficulties associated
with fitting school-level incidence data for measles. We then fit
a stochastic SIR model to the data to estimate transmission in
schools and age classes. We then discuss the role of school chil-
dren in city-level R0 estimates. Finally, we investigate the impli-
cations of our findings for recently reported heterogeneities in
California school vaccination rates as an example of the transmis-
sibility that could be observed in schools in other states with vari-
able vaccination coverage. We conclude by discussing the general
implication of these results for cross-scale dynamics in epidemi-
ology and ecology.

Results
Measles in 1904. For the school-level data we estimate an average
R0 = 27 with range (12, 42), an average reporting ratio ρ = 70%
with range (17%, 95%), and an average dispersion of the nega-
tive binomial ψ = 0.92 with range (0.83, 0.99). The age-class data
show similar, although reduced, transmission variability, with an
average R0 = 40 and a range of (8, 93). The average estimated
reporting rate is ρ = 72% with a range of (37%, 91%) and the
average dispersion of the negative binomial ψ was estimated
to be 0.83 with range (0.70, 0.94). These results are shown in
Fig. 2 B–D). The number of time series used for the school level
was n = 6, and n = 12 for the age level. For both datasets the
high dispersion estimates indicate a high degree of variability in
the reporting rates.

For R0, ρ, and ψ we run t tests to determine how different the
estimates for the school versus the age groups are based on the
means. No t test results came out statistically significant except

for the ψ estimates (P = 0.02581). We did not detect a significant
difference in the means of the R0 and ρ estimates for schools ver-
sus age classes. However, differences in the dispersion parameter
ψ indicate there may be variability in underreporting in schools
and age classes.

Resimulating the model using the estimated parameters yields
generally close fits (using R2 as a simple estimate) to the data,
as seen in Figs. 3 and 4. For the school data, the adjusted
R2 range is 0.3 to 0.87, with all P values statistically signifi-
cant with the exception of Vicarage Road. For the age data,
the adjusted R2 range is 0.076 to 0.94, with all P values statis-
tically significant with the exception of Maryon Park, age 3. If
that exception is removed, the adjusted R2 range increases to
0.37 to 0.94. There was no clear trend between R0 estimates and
school size or age class. These results can be seen in Supporting
Information.

Measles in 2016. Our results and R0 estimates showcase the
potential effects of a lowered vaccine coverage. Fig. 5 shows
the range of potential outbreak final sizes for varying vacci-
nation coverage levels using R0 values consistent with those
found in this study. The lowest R0 value, 5, is used to take into
account potential control measures. Predicted outbreak sizes are
in the range of 10 to over 50 cases for a school size of 77,
reflecting an average across over 7,000 kindergartens in Cal-
ifornia (25). Many individual schools in California have been
below the critical vaccination threshold for measles, indicating
a large risk (21, 24, 25). Mean up-to-date coverage in 2015–
2016 in California kindergartens was 93% with a 5 to 95 per-
centile range of 73 to 100% and minimum and maximum cov-
erage levels of 5 to 100% (25). The shaded region in Fig. 5
indicates this 5 to 95 percentile range, although it does not
include the over 300 schools whose coverage is below the fifth
percentile, and whose average coverage level is just over 55%
(25). Here we assume 100% vaccine efficacy. These results
indicate the possibility of very large outbreaks building in the
postvaccine era.

A B

C D

Fig. 2. Differences in the school and age data and results. (A) Overall sus-
ceptibility at the school level and age level for the datasets we perform
inference on. (B) Overall estimated reproductive ratio R0. (C) Overall esti-
mated reporting rate ρ. (D) Overall estimated dispersion rate ψ.
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Fig. 3. Inputting the inferred parameters back into the stochastic SIR model yields relatively close fits (gray) to the data (black) for the school level. Here
we show 10 randomly chosen simulations against the data. Note that the vertical scales are different and names have been slightly abbreviated.

Discussion
Understanding the processes that underlie large-scale dynamics
of a complex, multilevel system can lend valuable insight into
the transition of complexity across scales (27). Here, this tran-
sition refers to how large-scale aggregation of incidence data can
produce relatively predictable patterns. Seasonal forcing deter-
mined by the school calendar is known to be an important driver
of measles dynamics. Here, we underpin this phenomenon with
direct analysis of school-level data, demonstrating very high pre-
vaccination transmission within schools and age classes. Our
results highlight differences in age-specific transmission, thus
demonstrating the importance of school transmission hotspots
(15). Recalling that traditional population-level estimates of R0

values are between 7 and 18 (13, 14), we confirm hypotheses that
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Fig. 4. Fig. 4 is equivalent to Fig. 3 but for the age-class data.

higher estimates based on time-series data are effectively picking
up transmission within the schools. On the low end of the school
and age estimates, our R0 values are similar to those from the
Hagelloch dataset. However, the Hagelloch R0 was derived from
the community-level data, whereas the Hagelloch classroom data
show a much faster spread of infection, which would support a
higher R0, in line with the results presented in this paper.

Although an R0 of 93 is extremely high, written accounts of
these outbreaks may support even higher values. In a 1905
measles report on the Education Committee of the London
County Council, Dr. Kerr reports an incident in which a
Woolwich child of 5 y “in spite of prompt and energetic mea-
sures, may be said to have caused at least 207 known cases in
four schools” (28). However, it is not completely clear whether
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Fig. 5. A simulation showing the variation in outbreak final size for a range of R0 values over increasing proportion susceptible/decreasing proportion
vaccinated. The shaded region indicates a 95% range of MMR (measles, mumps, and rubella) vaccination coverage in schools in California, demonstrating
that the risk of outbreaks is still present in the postvaccination era (26).

this account refers to direct transmission or the child’s trans-
mission tree (28). Furthermore, this is in line with the famous
1951 Greenland epidemic in which one person infected over 200
others (29). The Greenland epidemic was used in Lloyd-Smith
et al.’s (20) important study of epidemic superspreaders. Look-
ing at transmission variability, Lloyd-Smith et al. (20) estimated
the negative binomial dispersion for R0 variability parameter, k,
as <0.1 for measles. In this context, a small k indicates a high
degree of transmission variability where superspreaders drive the
majority of the outbreak. Using the distribution of the 18 inferred
R0, we calculate k = 1.3 via a moment estimate, indicating less
transmission variability than the Lloyd-Smith et al. (20) estimate.
However, here we are fitting the upper tail of transmission of the
epidemic size range, so our results are likely to underestimate
overdispersion. Our estimated reporting rates are slightly higher
than previous estimates such as 51% in ref. 1 and 13–78% in
ref. 4, which may be due to the attention given to documenting
the 1904 outbreaks.

Applying the low end of the school transmission to the cur-
rent vaccine landscape in California schools yields an unsettling
implication for outbreaks (Fig. 5). In some cases, vaccination
coverage may be underestimated, because children with non-
medical vaccine exemptions often do not have their true vacci-
nation status assessed (30). Individual school vaccination cover-
age levels may be slightly higher than reports indicate; ref. 30
estimates that 10–50% of children with personal belief exemp-
tions (PBEs) may actually have received a full MMR vaccination
course, so Fig. 5 may be conservatively pessimistic. Nonetheless,
even if 50% of children with PBEs are covered, coverage in many
schools would still be well below the herd immunity threshold

for measles. If a measles outbreak were to occur in just one or
a few of the low-coverage schools, the resulting epidemic final
sizes could approach annual numbers of measles cases reported
in the United States (ranging from ∼50 to ∼700 between 2010
and 2015) (31). Effectively, herd immunity for measles really is a
measure of whether measles can be kept out of the school, and
limitation of establishment of endemicity. Once measles is in a
school, it will find and infect susceptible individuals with great
efficiency.

Our study, and the data themselves, have a number of lim-
itations. First, within our school population we assume homo-
geneous mixing, although some studies have suggested that
even within school-age children contact is not constant (32).
Second, in our model we do not account for time-dependent
imported infections, which may account for a number of school-
level outbreaks. In a similar vein, we do not consider the role
of family and siblings in our study. In the same Education
Committee of the London County Council report, Dr. Kerr
states that infection may have been spread between age classes
because older children often walked younger students home
(28). Additionally, these import infections may help to explain
the appearance of noise in our datasets that rendered a sig-
nificant number of the time series unusable under our well-
mixed assumption—indicating that perhaps a network or spa-
tial compartmental model could be of use in future analysis
of this dataset. We also assume that contemporary California
schools resemble early 20th-century London schools in ways
that are important for measles transmission (i.e., class sizes and
homogeneous transmission within the age classes and schools).
Additionally, we only applied the low end of the London R0 esti-
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mates to modern California, even using R0 = 5 to account for
control measures. However, even with these limitations in mind,
our study yields valuable insight into past and current measles
dynamics in a previously understudied subpopulation.

In summary, we have provided the most detailed R0 and
reporting rate ρ estimates for within school and age classes
based on time-series outbreak data. These estimates confirm
beliefs that high city-level R0 estimates are driven by school-aged
children. Applying these results to the postvaccine landscape
demonstrates the need for increased vaccine uptake in school-
aged children in certain California schools.

Broader Implications and Future Work
Our results underpin a number of implications for cross-scale
dynamics in human–environment interactions. First, we have
demonstrated major hotspots of infection at the school level,
even despite still relatively smooth “predator–prey” oscilla-
tions at the city level (1). This implies “emergent simplicity,”
despite many complexities at finer scales (Fig. 1). To dissect
this contradiction, we need to construct network models and the
associated approximations spanning the underlying family-
school-population level (Fig. 1). However, to take this analy-
sis further, the key need here (as in all cross-scale dynamics) is
acquiring data that record dynamics at the relevant intermediate
scales. This paper is a first step for schools. An important area
of future development includes the construction and analysis of
community-wide network models that may further reconcile the
coarse- with the fine-grain dynamics.

Materials and Methods
The Dataset and Inclusion Criteria. To obtain prevaccination era school data
we searched the Wellcome Library online archives collection “London’s
Pulse: Medical Officer of Health Reports 1848–1972” (33). We found two
records of interest. First, the “Annual Report of the Medical Officer of
Health for Woolwich, 1904” provides an appendix (ref. 34, appendix I,
p. 129) on the incidence of measles in classes, Christmas to May 1904, in
18 elementary schools of the borough of Woolwich, London. Second, the
“Report of the Medical Officer of Health for London County Council, 1904”
gives an appendix (ref. 35, p. 46) with detailed accounts of outbreaks of
measles in 15 elementary schools of the borough of Woolwich in 1904 that
partially overlaps with the Woolwich report. This report provides qualita-
tive information on the mode of transmission between children in school
versus out of school. Additionally, the documentation provides informa-
tion on transmission during classes and holiday, as well as the efficiency of
measures taken by school teachers to stop the spread of the measles. Both
datasets reported that no students died of measles. Although daily data are
reported, we use weekly incidence for our analysis because weekends serve
as a natural weekly clock. In our study we break our data into two sets: (i)
school-level data and (ii) epidemics disaggregated by school age class.

Because our time series contain multiple peaks as well as large variability
in the number of reported cases, we devise selection criteria to determine
which time series are suitable for statistical inference. We use two criteria:
(i) the total number of cases must be greater than eight and (ii) the time
series must pass the Ljung–Box test; this is a portmanteau test that looks at
the overall randomness based on a set number of lags in the data. Because
we assume a Markov process, we take the number of lags to be a single
time step ∆t = 1 week. The Ljung–Box test assumes the null hypothesis
that the data are independently distributed, thus any observed correlation
is from random sampling, and the alternative hypothesis is that the data
are not independently distributed (36). To reject the null hypothesis, we
adopt a P value less than 0.05. In Fig. 6 we show our selection criteria for
the schools dataset as well as an example of a dataset we select (Bloom-
field Road), which resembles the behavior of a simple, closed SIR model,
and a dataset we reject (Union Street) due to minimal cases and a more
complicated epidemic pattern. Many time series have a number of zeros
before the outbreak begins, so we take our start time, t0, for inference to
be the first week in which we have nonzero cases, and then set our ini-
tial condition I0 = C(t0), where C is the observed cases. Additionally, the
Vicarage Road School time series is characterized by two outbreaks with
14 wk between them, indicating two completely separate events. Because
the SIR with constant contact assumes a single outbreak, we only use the
second outbreak to infer parameters. The first outbreak has a peak size
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Fig. 6. Selection criteria of the school outbreak data. (A) Each of the 18
schools is plotted based on its P value from the Ljung–Box white noise test
and the total number of cases. The gray shading represents the time series
that we estimate parameters on corresponding to P value≤ 0.05 and at least
eight reported cases. The figure for age-class data is similar using the same
selection criteria. (B) A dataset we use for inference (Bloomfield Road) and
one we reject (Union Street). Bloomfield Road has an extremely low Ljung–
Box P value and resembles typical SIR mass-action behavior, whereas Union
Street fails the Ljung–Box test and has fewer than eight reported cases.

of 9, and the second 21. We note that in Fig. 6 we have two relative
outliers, Purrett Road and Eglinton Road, which we address in Supporting
Information.

The school sizes range between 403 and 1,631 students aged 3 to 8 y.
Additionally, we have record card data for each school and class that allow
us to estimate how many students previously had measles and were thus
immune. Because these only represent a sample of each class size, we
linearly interpolate these susceptible and recovered ratios to the whole
school or class to use as our initial conditions. At the school level, aver-
age susceptibility is 45%, whereas average by age susceptibility is 53%.
These percentages are calculated using an average of the time series that
pass our selection criteria. The difference between these two is likely
attributed to a number of the older classes, ages 7 and 8 y, having
zero cases and lower susceptibility. A box plot of this difference is seen
in Fig. 2A.

To obtain recent school vaccination rates we used and summarized
reports of MMR vaccine and exemption status in California kindergartens
reported by California Department of Public Health (2015–2016) (25).
Although there is some evidence that vaccine status may be underesti-
mated (30), the current vaccine landscape still falls below the critical vac-
cination threshold in particular locales. All datasets are freely available
online (25, 33–35). Additionally, the school data used have been archived
(https://github.com/adbecker/1904WoolwichMeasles).

Epidemic Models and Inference. Within the school year, we assume a simple
mass-action epidemic (4) with no recruitment into the susceptible class. In
this setting, the assumptions of frequency and density dependence give rise
to similar dynamics given the small group size and high transmission rate
(37). We use a continuous time model under the assumption that the epi-
demic is a partially observed Markov process. Using a stochastic SIR model
with constant contact during the school term, the probability of success-
fully observing an infection is modeled as a dispersed negative binomial to
allow for underreporting, ρ, and measurement error, ψ per ref. 38. Math-
ematically this is equivalent to C ∼ NB(ρ × Incidence, ψ2). The parameter
ψ can be seen as the shape parameter for an overdispersed Poisson distri-
bution (38). We choose an SIR model over an SEIR (susceptible, exposed,
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infected, and resistant) model due to the reduction in required parameter,
initial condition, and state fitting, as well as minimal qualitative difference
between the two models (39, 40). Given school or age-class data, we esti-
mate parameters using the iterated filtering algorithm. A full discussion
of the development, algorithm, and convergence criteria can be found in
refs. 41 and 42. We estimate the basic reproductive ratio R0 (= β

γ ), report-
ing rate ρ, and dispersion rate ψ. R0 is exponentially transformed and ρ

and ψ are expit-transformed to reflect the assumption that both are posi-
tive and reporting is bounded between 0 and 100%. Inference is performed
using the POMP R package (43, 44) in the R programming language (45)
[plots are produced using the ggplot2 R package (46)]. We fix the infectious
period to be 13 d due to identifiability issues (16), which may be due to
varying population sizes (4). As a test of the inference method in a school
setting, we simulated partially observed short epidemics over a range of
transmission rates and successfully recovered the assumed values of R0 (a
fit showing an estimated R0 = 13 versus an input R0 = 12 is in Supporting
Information) (44). Finally, these results are applied to the current school vac-
cine rates in California via a hypothetical school of 77 students with varying
rates of vaccination/susceptibility. Using the final size equation as described
by refs. 47–49,

R(∞) = N − S(∞) [1]

or, when the initial population is not all susceptible,

Repidemic(∞) = S(0)− S(∞) [2]

where

S(∞) = I(0) + S(0) +
N

R0
ln

S(∞)

S(0)
[3]

we calculate the final sizes that correspond to a range of estimates of
R0 (= 5, 10, and 50) that have been shown to be realistic in a school set-
ting. Note the low R0 estimate of 5 is used to account for the potential
enactment of control measures.
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