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The dynamics, control, and evolution of communicable and vector-
borne diseases are intimately connected to the joint dynamics
of epidemiological, behavioral, and mobility processes that oper-
ate across multiple spatial, temporal, and organizational scales.
The identification of a theoretical explanatory framework that
accounts for the pattern regularity exhibited by a large number of
host–parasite systems, including those sustained by host–vector
epidemiological dynamics, is but one of the challenges facing the
coevolving fields of computational, evolutionary, and theoretical
epidemiology. Host–parasite epidemiological patterns, including
epidemic outbreaks and endemic recurrent dynamics, are charac-
teristic to well-identified regions of the world; the result of pro-
cesses and constraints such as strain competition, host and vector
mobility, and population structure operating over multiple scales
in response to recurrent disturbances (like El Niño) and climato-
logical and environmental perturbations over thousands of years.
It is therefore important to identify and quantify the processes
responsible for observed epidemiological macroscopic patterns:
the result of individual interactions in changing social and eco-
logical landscapes. In this perspective, we touch on some of the
issues calling for the identification of an encompassing theoreti-
cal explanatory framework by identifying some of the limitations
of existing theory, in the context of particular epidemiological
systems. Fostering the reenergizing of research that aims at dis-
entangling the role of epidemiological and socioeconomic forces
on disease dynamics, better understood as complex adaptive
systems, is a key aim of this perspective.
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Lessons learned from the HIV pandemic, 2003 severe acute
respiratory syndrome (SARS) epidemic, the 2009 H1N1

influenza pandemic, the 2014 Ebola outbreak in West Africa,
and the ongoing Zika outbreaks in the Americas can be framed
under a public health policy model that responds after the fact,
most often via the reallocation of resources from one disease
control effort to the new pressing one. The operating models of
preparedness and response are ill-equipped to prevent or ame-
liorate disease emergence or reemergence, at global scales (1).
Epidemiological challenges that are a threat to the economic sta-
bility of many regions of the world, particularly those depending
on travel and trade (2), remain at the forefront of the Global
Commons. Consequently, efforts to quantify the impact of mobil-
ity and trade on disease dynamics have long dominated the
interests of theoreticians (3, 4). Our experience with an H1N1
influenza pandemic crisscrossing the world in the months dur-
ing 2009 to 2010; the 2014 Ebola outbreaks, limited to regions
of West Africa lacking appropriate medical facilities, health
infrastructure, and sufficient levels of preparedness and educa-
tion; and the expanding Zika outbreaks, moving expeditiously
across suitable habitats to Aedes aegypti, provide opportunities to
quantify the impact of disease emergence or reemergence on the
decisions that individuals take in response to real or perceived

disease risks (5–7). The case of SARS 2003 (8), the efforts to
reduce the burden of H1N1 influenza cases in 2009 (5, 7, 9, 10),
and the challenges faced in reducing the number of Ebola cases
in 2014 (1, 11) are but three recent scenarios that required a
timely global response. Studies addressing the impact of central-
ized sources of information (12), the impact of information along
social connections (9, 13, 14), or the role of past disease outbreak
experiences (15, 16) on the risk-aversion decisions that individu-
als undertake may help identify and quantify the role of human
responses to disease dynamics while recognizing the importance
of assessing the timing of disease emergence and reemergence;
the coevolving human responses to disease dynamics are proto-
typical of the feedbacks that define complex adaptive systems. In
short, we live in a socioepisphere being reshaped by ecoepidemi-
ology in the “Era of Information.”

The Global Commons are continuously reshaped by the abil-
ity of an increasing proportion of the human population to
live, move, or trade nearly anywhere. Therefore, understanding
the patterns of interactions between humans, between humans
and vectors, and the patterns of individuals’ movement, partic-
ularly those of the highly mobile, is critical in guiding public
health responses to disease spread. In today’s world, hosts’ risk
knowledge or diffuse information about risk, when combined
with the ability of public health officials to measure and prop-
erly communicate, in a timely manner, real or perceived infor-
mation on disease risks, limits our ability to derail the spread
of emergent and reemergent diseases, at scales that make a
difference.

Simon Levin showed that the key to understanding scale-
dependent phenomena was tied to knowing how information is
carried across scales. He put it all together in a seminal paper
that integrated a series of joint contributions focusing on the
development of techniques and models used to establish the
relationships between processes operating at different scales,
highlighting how macroscopic features arise from microscopic
processes (17). The theory of metapopulations (18, 19) was used,
for example, to establish the role that localized disturbances
have had in maintaining biodiversity (20, 21). In a review arti-
cle, Kareiva et al. observe that, “Models that deal with dispersal
and spatially distributed populations are extraordinarily varied,
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partly because they employ three distinct characterizations of
space: as ‘islands’ (or ‘metapopulations’), as ‘stepping-stones’,
or as a continuum” (22). We choose to deal with mobility
using a metapopulation approach (7, 10, 18), that is, popu-
lations exist on discrete “patches” defined by some charac-
teristic(s) (i.e., location, disease risk, water availability, etc.).
Patches are connected by their ability to transfer relevant infor-
mation between one another, which, in the context of disease
dynamics, is modeled by the ability of individuals to move
between patches. Patches may be constructed (defined) by
species (human and mosquito) with movement explicitly mod-
eled via patch-specific residence times and under a framework
that sees disease dynamics as the result of location-dependent
interactions (23, 24).

The movement/behavior of individuals within and between
these patches may be driven by real or perceived personal
economic risk and accompanying social dynamics. Embedding
behavioral-driven decisions within epidemiological models has
shed new perspectives on the modeling of disease dynamics
(25), expanding the options available to manage infectious dis-
eases (5, 26). Economic epidemiological modeling (EEM) has
previously addressed the role of individuals’ behavior when fac-
ing the risk of disease, albeit it has often failed to incorpo-
rate within host–pathogen feedback mechanisms (27–33). The
focus on EEMs that account for host–pathogen feedback mech-
anisms has propelled their study of the ways that contact
decisions impact disease emergence or alter “expected” infec-
tious disease-transmission dynamics. The class of decisions
involved may include the determination to engage in trade along
particular routes (34–37), or to travel to particular places (5, 38–
40), or to make contact with or to avoid particular types of peo-
ple (25, 41, 42). EEMs advance the view that the emergence
of novel zoonotic diseases, such as SARS or the Nipah virus,
depend on the choices that bring people into contact with other
species (43, 44). EEMs are typically built under the assump-
tion that associated disease risks are among the factors that
individuals must consider when making decisions. Therefore,
individual decision-making process, within epidemic outbreaks,
may require the incorporation of humans’ cost–benefit-driven
adaptive responses to risk.

A Lagrangian Approach of Modeling Mobility and Infectious
Disease Dynamics
Differences in disease risk exist between countries as a function
of localized poverty, sanitary/phytosanitary conditions, access to
healthcare, levels of education, cultural practices, and norms
with travel and trade overcoming the natural boundaries pro-
vided by these factors in limiting the spread of pests and
pathogens. The negative impact of the use of cordons san-
itaires to limit the spread of Ebola in West Africa high-
light the importance of developing and implementing novel
approaches aimed at ameliorating the impact of disease out-
breaks in areas of the world that cannot respond in a timely
manner to novel disease outbreaks. Therefore, the identification
of a theoretical explanatory framework that systematically dis-
entangles the role of epidemiological and socioeconomic per-
spectives on disease dynamics becomes not only evident but
necessary.

Classical mathematical epidemiology uses per capita contact
rates (who mixes with whom or who interacts with whom) as
the social dynamics currency responsible for the transmission
dynamics of communicable diseases. We envision disease trans-
mission as the result of the “collisions” between individuals or
as a consequence of the movement/relocation of individuals,
never identified by placed of residence, from patch to patch.
This approach has had great practical and theoretical successes;
the scholarly and extensive review in ref. 45 addresses this view
within homogenous and (heterogeneous mixing) age-structure

populations (see also ref. 46). Recent studies have also addressed
the issue of homogeneity of contacts in epidemiology through
network-based analyses that identify host contact patterns and
clusters (refs. 47–49 and references therein). An extensive rela-
tively recent review paper is ref. 50. This approach by focusing
on how each individual is connected within the population has
been able to address the effects of host behavioral response on
disease prevalence (see refs. 51, 57, and 58 for a review). Other
approaches included the effect behavioral changes triggered
by “fear” and/or awareness of disease (52–54, 56). Although
this stress-induced behavior may be of benefit to public health
efforts in some cases, it can also cause somewhat unpredictable
outcomes (55).

However, the fact remains that our ability to determine (hence
define) what an effective contact is in the context of communica-
ble diseases, that is, our ability to measure the average number
of contacts that a typical patch resident has per unit of time and
where, has been hampered by high levels of uncertainty. There-
fore, when we ask, what is the average number of contacts that an
individual has while riding a packed subway in Japan or Mexico
City, or what is the average number of contacts that an individual
has at a religious event involving hundreds of thousands of peo-
ple, including pilgrimages, one quickly arrives at the conclusion
that different observers are extremely likely to arrive at a highly
distinct understanding and quantification of the frequency,
intensity, and levels of heterogeneity involved. In short, this per-
spective puts emphasis on the use of a different currency (res-
idency times) because measuring contacts at the places where
the risk of infection is the highest, pilgrimages, massive religious
ceremonies, “Woodstock time events,” packed subways, and
other forms of mass gathering or transportation have not been
done to the satisfaction of most researchers. The risk of acquir-
ing an infectious disease within a flight can be measured at least
in principle as a function of the time that each individual of
x-type spends flying, the number of passengers, and the likeli-
hood that an infectious individual is on board. For example, mea-
suring the risk of acquiring tuberculosis, an airborne disease that
may spread by air circulation in a flight, may be more a func-
tion of the duration of the flight and the seating arrangement
than the average number contacts per passenger within the flight
(see ref. 59 and references therein). Furthermore, replication
studies that measure risk of infection in a given environment may
indeed be possible under a residency times model. In short, the
risks of acquiring an infection can be quantified as a function
of the time spent (residency time) within each particular envi-
ronment. The Lagrangian modeling approach builds (epidemi-
ological) models by tracking individuals’ patch-residence times
or by budgeting their contacts according to the time spent on
each environment (60). The value of these models increase when
we have the ability to assess risk as a patch-specific characteris-
tic. In short, the lack of preference on the use of contacts is not
tied to their proven intellectual value or the use of a Lagrangian
modeling perspective but rather to the difficulties that must be
faced when the goal is to measure the average number of contacts
per type-x individual in the environments that facilitate transmis-
sion the most.

The Lagrangian approach is highlighted here via the formu-
lation of a disease model involving the joint dynamics of an
n-patch geographically structured population with individuals
moving back and forth from their place of residence to other
patches. Each of these patches (or environments) is defined by its
associated risk of residency-time infection. Patch risk measure-
ments account for environmental, health, and socioeconomic
conditions. The Lagrangian approach (61–63) keeps track of the
identity of the host regardless of their geographical/spatial posi-
tion. The use of Lagrangian modeling in living systems was, to
the best of our knowledge, pioneered and popularized by Okubo
and Levin (62, 63) in the context of animal aggregation. Recently,
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Lagrangian approaches have also been used to model human
crowd movement and behavior (64–67) and in the context of
bioterrorism (59).

Here host-residence status and mobility across patches is mon-
itored with the help of a residence times matrix P = (pij )1≤i,j≤n ,
where pij is the proportion of time residents of Patch i spend in
Patch j . Letting Ni denote the population of Patch i predisper-
sal, that is, when patches are isolated, we conclude that effec-
tive population size in Patch i , at time t , is given by

∑n
j=1 pijNj .

That is, the effective population within each patch must account
for the residents and visitors to Patch i at time t . A typi-
cal susceptible-infected-susceptible (SIS) model captures this
Lagrangian approach in an n Patch setting via the following sys-
tem of nonlinear differential equations:{
Ṡi= bi − diSi + γiIi −

∑n
j=1(Si infected in Patch j )

İi =
∑n

j=1(Si infected in Patch j )− γiIi − diIi ,
[1]

where bi , di , and γi denote the constant recruitment, the
per capita natural death, and recovery rates, respectively, in
Patch i . The effective population

∑n
j=1 pijNj in each Patch

i , i = 1, . . . ,n includes
∑n

j=1 pij Ij infected individuals. There-
fore, the infection term is modeled as follows:

[Si infected in Patch j ] = βj︸︷︷︸
the risk of infection in Patch j

× pijSi︸ ︷︷ ︸
Susceptible from Patch i who are currently in Patch j

×
∑n

k=1 pkj Ik∑n
k=1 pkjNk︸ ︷︷ ︸

Proportion of infected in Patch j

.

The likelihood of infection in each patch is tied in to the
environmental risks, defined by the “transmission/risk” vector
B = (β1, β2, . . . , βn)t and the proportion of time spent in partic-

ular area. Letting I = (I1, I2, . . . , In)t , N̄ =
(

b1
d1
, b2
d2
, . . . , bn

dn

)t
,

Ñ = Pt N̄ , d = (d1, d2, . . . , dn)t , and γ = (γ1, γ2, . . . , γn)t

allows to rewrite System 1 in the following single vectorial form

İ = diag(N̄ − I )Pdiag(B)diag(Ñ )
−1PtI − diag(d + γ)I . [2]

The dynamics of the disease in all of the patches depends
on the patch connectivity structure. Therefore, if the residence
time matrix P is irreducible, patches are strongly connected, then
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Fig. 1. Dynamics of the disease in Patch 1 for three special cases. The symmetric residence times (p12 = p21 =σ12 =σ21 = 0.5) are described by the solid
and dashed black curves. The blue curves represent the case where there is no movement between patches, that is, p12 = p21 =σ12 =σ21 = 0. The red curves
represent the high-mobility case for which p12 = p21 =σ21 =σ21 = 1. If there is no movement between the patches (blue curves), the disease dies out in the
low risk Patch 1 in both approaches with R1

0 =
β1

d1+γ1
= 0.7636. The vertical axis represents the prevalence of the disease in Patch 1. Figure courtesy of ref. 24.

System 2 supports a sharp threshold property. That is, the dis-
ease dies out or persists (in all patches) whenever the basic repro-
duction number R0 is less than or greater than unity (24). R0 is
given by

R0 = ρ(diag(N̄ )Pdiag(B)diag(Ñ )
−1PtV−1),

where ρ denotes the spectral radius and V = −diag(d + γ). The
dynamics of the system when the matrix P is not irreducible can
be characterized using the following patch-specific basic repro-
duction numbers:

Ri
0(P) =

βi
γi + di

×
n∑

j=1

(
βj
βi

)
pij


(
pij

bi
di

)
∑n

k=1 pkj
bk
dk

.
The disease persists in Patch i whenever Ri

0(P)> 1, whereas
the disease dies out in Patch i if pkj = 0 for all k = 1, ..,n, and
k 6= i , provided pij > 0 and Ri

0(P)< 1. Patch-specific disease
persistence can be established using the average Lyapunov
theorem (68) (see ref. 24 for more details).

In Model 2, human behavior is crudely incorporated through
the use of a constant mobility matrix P. The role that adaptive
human behavior may play in response to disease dynamics is
captured, also rather crudely, via a phenomenological approach
that assumes that individuals avoid or spend less time in areas
of high prevalence. This effect is captured by placing natural
restrictions on the entries of P. The inequalities pij (Ii ,Ij )

∂Ij
≤ 0 and

pij (Ii ,Ij )

∂Ii
≥ 0, for (i , j )∈{1, 2}, guarantee the expected behav-

ioral response. An example of such dependency could be cap-
tured by the following functions: pii(Ii , Ij ) =

σii+σii Ii+Ij
1+Ii+Ij

and

pij (I1, Ij ) = σij
1+Ii

1+Ii+Ij
, for (i , j )∈{1, 2} and σij = pij (0, 0),

are such that
∑2

j=1 σij = 1. The simulation below shows how a
crude, density-dependent modeling mobility approach can alter
the expected disease dynamics from those generated under con-
stant P (Figs. 1 and 2). In the special case, where there is no
movement between patches (p12 = p21 = σ12 = σ21 = 0),
that is, there is no behavioral change, the two populations sup-
port, as expected, the same dynamics (see the blue curves in
Figs. 1 and 2).

The speed at which the vector-borne Zika virus disease has
spread throughout Latin America, Central America, and the
Caribbean (now hitting Mexico and the United States) is strongly
linked to human mobility patterns. Travelers transport the dis-
ease and infect native mosquitoes. Here, it is assumed that vector
mobility is negligible and proceeds to incorporate the life history
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Fig. 2. Dynamics of the disease in Patch 2. In the high-mobility case p12 = p21 = σ12 = σ21 = 1 (and then p11 = p22 = σ11 = σ22 = 0), the disease dies out
(solid red curve) for P constant, with R̃2

0 =
β1

γ2+d2
= 0.8571. For the constant residence times matrix, the system is strangely decoupled because individuals

of Patch 1 spend all their time in Patch 2, whereas individuals of Patch 2 spend all their time in Patch 1. Hence, Patch 2 individuals (d2 and µ2) are subject
exclusively to the environmental conditions that define Patch 1 (β1), and so the basic reproduction of the “isolated” Patch 1 is R̃2

0 =
β1

γ2+d2
and the disease

dies out because R̃2
0 = 0.8571. The disease persists if P state-dependent (dashed red curve) as p12(I1, I2) = 1+I1

1+I1+I2
, p21(I1, I2) = 1+I2

1+I1+I2
, p11(I1, I2) = I2

1+I1+I2

and p22(I1, I2) = I1
1+I1+I2

. Figure courtesy of ref. 24.

and epidemiology of mosquitoes (69–74), which can be effec-
tively captured by decoupling host–vector mobility (71, 75). Fig. 3
and System 3 illustrate the approach. A Lagrangian model based
on residence times has been proposed recently for vector-borne
diseases like Dengue, malaria, and Zika (23). The appropriate-
ness of the Lagrangian approach for the study of the dynamics of
vector-borne diseases lies also in its assessment of the life-history
specifics of the vector involved (75).

Lagrangian approaches have been used to model vector-borne
diseases (refs. 76–80 and other references contained therein),
albeit these researchers have not considered the impact that the
residency–time matrix P may have on patch effective popula-
tion size. Specifically, in refs. 76 and 78, the effects of move-
ment on patch population size at time t are ignored, namely,
the population size in each patch j is fixed at Nj . In ref. 77, it is
assumed that human mobility across patches does not produce
any “net” change on the patch population size. On the other
hand, in Model 3 the relationship between each patch population
and mobility are dynamic and explicitly formulated. Moreover,
the limited (vector mobility is ignored) Lagrangian approach
used here to model the dynamics of vector borne diseases cap-
tures some unique features because the “spatial” structure of
mosquitoes is not the same as that of humans. Mosquitoes are
stratified into m patches (that may represent, for example, ovipo-
sition or breeding sites or forests) with infection taking place still
within each patch j , characterized by its particular risk βvhaj
for j = 1, . . . ,m . Here, βvh represents the infectiousness of
human to mosquitoes bite with aj denoting the per capita bit-
ing rate in Patch j . Hosts, on the other hand, are structured by
social groups or age classes (n). This residency habitat division
can be particularly useful in the study of the impact of target
control strategies.

The model in ref. 23 describes the interactions of n host groups
in m patches via System 3, where Ih = [Ih,1, Ih,2, . . ., Ih,n ]t ,
Iv = [Iv,1, Iv,2, . . ., Iv,m ]t , Nh = [Nh,1,Nh,2, . . .,Nh,n ]t , N̄v =

[N̄v,1, N̄v,2, . . ., N̄v,m ]
t , δ= [δ1, δ2, . . ., δm ]t , a = [a1, a2, . . ., am ]t ,

and µ= [µ1, µ2, . . ., µn ]t . The infected hosts are denoted by the
vector Ih and the host population by Nh . The infected vectors are
denoted by Iv and the mosquito population by Nv . The parame-
ters ai , δi , and µv denote the biting, death rate of control, and
natural death rate of mosquitoes in Patch j , for j = 1, . . .,m .
The infectiousness of human to mosquitoes is βvh , whereas the
infectiousness of mosquitoes to humans is given by βhv . The host

recovery and natural mortality rates are given, respectively, by
γ and µ. Finally, the matrix P represents the proportion of time
host of Group i , i = 1, . . .,n , spend in Patch j , j = 1, . . .,m .
The basic reproduction number of Model 3, with m patches and
n groups, is given byR2

0(m,n) = ρ(MvhMhv ), where

Mhv = βhvdiag(a)diag(PtNh)
−1

diag(Nv )Ptdiag(µ+ γ)−1

and

Mvh = βvhdiag(Nh)Pdiag(PtNh)
−1

diag(a)diag(µv + δ)−1.

If the host–vector network configuration is irreducible, then
System 3 is cooperative and strongly concave with an irreducible
Jacobian, and so the theory of monotone systems, particularly
Smith’s results (81), guarantee the existence of a sharp thresh-
old. That is, the disease-free equilibrium is globally asymptoti-
cally stable if R2

0(m,n) is less than unity and a unique globally
asymptotic stable interior endemic equilibrium exists otherwise.
The effects of various forms of heterogeneity on the basic repro-
duction number has been explored in ref. 23, and we have found,
for example, that the irreducibility of the residence time matrix
P is no longer sufficient to ensure a sharp threshold property,
albeit the irreducibility of the host–vector network configuration
is necessary for such property (23).
İh = βvhdiag(Nh − Ih )Pdiag(a)diag(PtNh )

−1
Iv − diag(µ+ γ)Ih

İv = βhvdiag(a)diag(Nv − Iv )diag(PtNh )
−1Pt Ih − diag(µv + δ)Iv

.

[3]

The Lagrangian approach of disease modeling can use con-
tacts (60) or residency times or both as its currency. Here, we
choose time–spatial-dependent risk, that is, we choose to han-
dle social heterogeneity by keeping track of individuals’ social
or geographical membership. In this context, it is possible to
include adaptive responses, for example, via the inclusion of
prevalence-dependent dispersal coefficients. In this setting, the
underlying hypothesis is that host behavioral responses to dis-
ease are automatic: either constant or following a predefined
function. The average residence time P incorporates the aver-
age behavior of all hosts in each patch. This assumption is rather
crude because it implicitly assumes that hosts have accurate
information on health status and patch prevalence and respond
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Fig. 3. Flow diagram of a Lagrangian model in which the host structure is
decoupled from the vectors’ structure. Figure courtesy of ref. 23.

to risk of infection accordingly. The incorporation of the role
that human decisions, as a function of what individuals value and
the cost that individuals place on these choices and tradeoffs,
within systems that account for the overall population disease
dynamics has been recently addressed (2, 25) and is discussed
in Economic Epidemiology.

Economic Epidemiology
Simple EEMs are built on classical compartmental epidemio-
logical models that account for the orderly transition of indi-
viduals facing a communicable disease, through the susceptible,
infected, and recovered disease stages: the result of social and
environmental interactions. EEMs assume that the amount of
activity one participates in, with whom, and where may all
be envisioned as the solutions to an individual decision prob-
lem. It is further assumed that individual decision problems are
generated by rational-value formulations based on (driven by)
personal, real or perceived, cost of disease and disease avoid-
ance: decisions constrained by underlying population-level dis-
ease dynamics. Thus, finding effective ways of modeling rational
values’ connections to individualized cost–benefit analyses of dis-
ease risk is central to the building of potentially useful EEMs and
is quite challenging.

EEM approaches have precursors in the epidemiological liter-
ature (82–84). EEM construction has been strongly influenced
by past and ongoing work on the exploitation of species (85–
87), a literature that addresses optimal harvesting questions in
the context of wild species, or the control of invasive pests, or
the management of forestry system. The methodology for mod-
eling behavior within an EEM rests on a proper specification of
behavioral costs and a description of the payoffs linked to such
behaviors; the stipulation of an appropriate objective function,
congruent with the decision-makers’ goals; the coupling to the
dynamics of the natural resource and/or infectious human capi-
tal; and the mechanisms available for a decision-maker to alter
his or her behavior and the behaviors of those around him or

her. Although all motivations for mitigation against infection are
not monetary in nature, we continue to call them economic, in
keeping with previous published literature.

Modeling whether or not an individual undertakes infection
causing behavior provides a classic starting point, because it is
connected to the rate of generation of secondary cases of infec-
tion per unit of time, the so-called incidence rate. A simple inci-
dence function that captures the instantaneous expectation of
the number of new infections at a given time is given by

S(t)cPSI (t)ρ,

where S(t) is the number of individuals susceptible to the dis-
ease, c is the average amount of activity they engage in, PSI (t)
is the probability that a unit of such activity takes the susceptible
individual in contact with infectious individuals/material, and ρ is
the probability that such contact successfully infects.

A decision to reduce the volume of activity one engages in
(lowering c) has been shown in many cases to be phenomeno-
logically identical to reducing one’s chances of coming in contact
with infection (lowering PSI (t)) by altering where the activity
takes place and with whom one engages or by substituting a par-
ticular behavior for a riskier one (5, 88). The modeling assumes
that individuals derive benefits from making contacts but may
incur costs associated with an infection. Hence, the modeling
assumes that activity volume or contacts are chosen to maximize
expected utility (rudimentarily, benefit less cost), balancing the
marginal value of a contact against the increased risk of infec-
tion. The utility function is assumed to depend on the health sta-
tus of the individual and the contacts that they make, that is, the
utility of a representative individual of health status h is given,
for example, by the function

U h = U (h,C h). [4]

The utility function is assumed to be concave, decreasing in ill-
ness and increasing in contacts. If the probability of transitioning
from susceptible to infected health status depends on the num-
ber of contacts, the optimal choice of contacts is the solution to
a dynamic programing problem:

Vt (h) = max
C s

{
Ut

(
ht ,C

h
t

)
+ r

∑
j

ρhjVt+1 (j )

}
, [5]

where r is the discount rate and ρhj is the probability of transition
from health state h to health state j . This probability depends
on the current state of the system, {S(t), I (t),R(t)}, the behav-
ior of individuals in other health classes, C−h , and the behav-
ior of individuals in the decision-makers’ own health class, C̄ h .
In short, we have a complex adaptive system where individu-
als within the model, in this example, impact disease outcomes
(through changes in the incidence). Eqs. 4 and 5 are both opti-
mized from an individual perspective. Within this individual con-
text, EEMs have shown that individual distancing, conditional
on health status, plays an important role in the spread of infec-
tious disease. However, it has also been shown that the provi-
sion of incentives for infectious individuals to self-quarantine
is likely to be welfare-enhancing (25, 26, 89, 90). Thus, under-
standing how the individual responds to relative costs of disease
and disease prevention is critical to the design of public policy
that affects those costs. Indeed, the role of recovered individu-
als in protecting susceptible individuals has been generally over-
looked in public health interventions, and yet it is known that
their behavior is, in fact, critical to disease management due to
the positive externality the individuals’ contacts generate once
in an immune, non–disease-transmitting state (41). The benefits
of herd immunity include the positive externality associated with
acquired immunity but may, in turn, be nullified by nontargeted
social-distancing policies that induce such immune individuals
to reduce contacts. By incentivizing the maintenance of contacts
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by recovered individuals policy may lower the probability of sus-
ceptible individuals contacting infected individuals and/or allow
susceptible and infected individuals to individually increase con-
tacts without changing the probability of infection.

Lagrangian and EEMs
Theoretical epidemiology aims to disentangle the role of epi-
demiological and socioeconomic forces on disease dynamics.
However, the role of behavior and individual decisions in
response to a changing epidemic landscape has not been tackled
systematically. In this rather succinct and biased perspective,
we expand on alternative ways for modeling disease transmis-
sion that can use contacts as its currency or residency times
or both. Despite the overwhelming use of contacts as the most
common currency of transmission and its undeniable theoreti-
cal value, it seems evident to these researchers that contacts, in
the context of influenza, Ebola, tuberculosis, or other commu-
nicable diseases (as opposed to sexually transmitted diseases),
cannot be measured effectively in settings where the risk of
acquiring such infections is the highest. In fact, when contact-
based models are fitted to data, it has become clear that con-
tact rates play primarily the role of fitting parameters; in other
words, if the goal is connecting models to data that include
transmission mechanisms, then the use of contacts has serious
shortcomings. Therefore, if we are to advance the role of the-
ory, we need models that are informed by data, and the need
to reinvest efforts to bring forth alternative modes of model-
ing becomes pressing (Lagrangian approaches that extends the
functionality of classical models while requiring only “functional
contacts” whenever infection takes place). Modeling approaches
that require parameters like residence times and average time
to infection for a given environment (risk), that is, parame-
ters that can be measured, should be further investigated and
their analyses contrasted to those that involve contacts. We
believe that the use of Lagrangian models parametrized in this
fashion are likely to increase the give and take necessary for
theory and data to modify, expand, or even reinvent the way
that we look and think about the dynamics and evolution of
infectious diseases.

The SARS, influenza, and Ebola epidemics have shown the
dramatic role that individual decisions play on the dynamics of
infectious diseases. We have revisited recent work that equates
behavior with cost-benefit decisions, which, in turn, are linked,

within our framework, to health status and population-level
dynamics, the components of a complex adaptive system. Con-
necting the Lagrangian movement-modeling approach with what
we have described here as EEMs seems promising, albeit com-
putationally and mathematically challenging. However, as dis-
cussed in ref. 91, the perception that the benefits of disease
control are limited by the capacity of the weakest link in the chain
to respond effectively is not a basic result of EEM models, which
actually show that it may not be in within the individual in a poor
community/country to do actually more risk mitigation. In fact,
the need for richer communities or nations to find ways to incen-
tivize greater levels of disease-risk mitigation in poor countries
may be, in fact, the best approach.

Simon Levin, in his address as the 2004 recipient of the
Heineken award, placed our narrow perspective in a broader
powerful context:

A great challenge before us is thus to understand the dynamics of
social norms, how they arise, how they spread, how they are sus-
tained and how they change. Models of these dynamics have many
of the same features as models of epidemic spread, no great sur-
prise, since many aspects of culture have the characteristics of being
social diseases. 1998 Heineken award winner Paul Ehrlich and I have
been directing our collective energies to this problem, convinced that
it is as important to understand the dynamics of the social systems
in which we live as it is to understand the ecological systems them-
selves. Understanding the links between individual behavior and soci-
etal consequences, and characterizing the networks of interaction and
influence, create the potential to change the reward structures so
that the social costs of individual actions are brought down to the
level of individual payoffs. It is a daunting task, both because of the
amount we still must learn, and because of the ethical dilemmas that
are implicit in any form of social engineering. But it is a task from
which we cannot shrink, lest we squander the last of our diminishing
resources.

ACKNOWLEDGMENTS. This work was supported by NIH National Institute
of General Medical Sciences (NIGMS) Grant 1R01GM100471-01. This study
was partly supported by a United States–United Kingdom collaborative
grant between the joint National Science Foundation–NIH–US Department
of Agriculture Ecology and Evolution of Infectious Diseases Program (Grant
DEB-1414374) and the UK Biotechnology and Biological Sciences Research
Council (Grant BB-M008894-1). The contents of this article are solely the
responsibility of the authors and do not necessarily represent the official
views of NIGMS.

1. Castillo-Chavez C, et al. (2015) Beyond Ebola: Lessons to mitigate future pandemics.
Lancet Glob Health 3(7):e354–e355.

2. Perrings C, et al. (2014) Merging economics and epidemiology to improve the predic-
tion and management of infectious disease. Ecohealth 11(4):464–475.

3. Baroyan OV, et al. (1971) Computer modelling of influenza epidemics for the whole
country (USSR). Adv Appl Probab 3(2):224–226.

4. Rvachev LA, Longini IM (1985) A mathematical model for the global spread of
influenza. Math Biosci 75(1):3–22.

5. Fenichel EP, Kuminoff NV, Chowell G (2013) Skip the trip: Air travelers’ behavioral
responses to pandemic influenza. PLoS One 8(3):e58249.

6. Bajardi P, et al. (2011) Human mobility networks, travel restrictions, and the global
spread of 2009 H1N1 pandemic. PLoS One 6(1):e16591.

7. Khan K, et al. (2009) Spread of a novel influenza a (H1N1) virus via global airline
transportation. N Engl J Med 361(2):212–214.

8. Chowell G, Fenimore PW, Castillo-Garsow MA, Castillo-Chavez C (2003) SARS out-
breaks in Ontario, Hong Kong and Singapore: The role of diagnosis and isolation
as a control mechanism. J Theor Biol 224(1):1–8.

9. Cauchemez S, et al. (2011) Role of social networks in shaping disease transmission
during a community outbreak of 2009 H1N1 pandemic influenza. Proc Natl Acad Sci
USA 108(7):2825–2830.

10. Herrera-Valdez MA, Cruz-Aponte M, Castillo-Chavez C (2011) Multiple outbreaks for
the same pandemic: Local transportation and social distancing explain the differ-
ent “waves” of A-H1N1pdm cases observed in Mexico during 2009. Math Biosci Eng
8(1):21–48.

11. Castillo-Chavez C, et al. (2016) Modeling Ebola at the Mathematical and Theoretical
Biology Institute (MTBI). Not Am Math Soc 63(4):366–371.

12. Towers S, et al. (2015) Mass media and the contagion of fear: The case of Ebola in
America. PLoS One 10(6):e0129179.

13. Chew C, Eysenbach G (2010) Pandemics in the age of Twitter: Content analysis of
Tweets during the 2009 H1N1 outbreak. PLoS One 5(11):e14118.

14. Chowell G, Hyman JM, Eubank S, Castillo-Chavez C (2003) Scaling laws for the move-
ment of people between locations in a large city. Phys Rev E Stat Nonlin Soft Matter
Phys 68(6 Pt 2):066102.

15. Pennings JME, Wansink B, Meulenberg MTG (2002) A note on modeling consumer
reactions to a crisis: The case of the mad cow disease. Int J Res Market 19(1):
91–100.

16. Levinthal DA, March JG (1993) The myopia of learning. Strat Manag J 14(S2):95–112.
17. Levin SA (1992) The problem of pattern and scale in ecology: The Robert H. MacArthur

Award lecture. Ecology 73(6):1943–1967.
18. Levins R (1969) Some demographic and genetic consequences of environmental het-

erogeneity for biological control. Bull Entomol Soc Am 15(3):237–240.
19. Wilson EO (1973) Group selection and its significance for ecology. Bioscience

23(11):631–638.
20. Levin SA, Paine RT (1974) Disturbance, patch formation, and community structure.

Proc Natl Acad Sci USA 71(7):2744–2747.
21. Paine RT, Levin SA (1981) Intertidal landscapes: Disturbance and the dynamics of pat-

tern. Ecol Monogr 51(2):145–178.
22. Kareiva P, Mullen A, Southwood R (1990) Population dynamics in spatially complex

environments: Theory and data [and discussion]. Philos Trans R Soc Lond B Biol Sci
330(1257):175–190.

23. Bichara D, Castillo-Chavez C (2016) Vector-borne diseases models with residence
times-A Lagrangian perspective. Math Biosci 281:128–138.

24. Bichara D, Kang Y, Castillo-Chavez C, Horan R, Perrings C (2015) SIS and SIR epidemic
models under virtual dispersal. Bull Math Biol 77(11):2004–2034.

25. Fenichel EP, et al. (2011) Adaptive human behavior in epidemiological models. Proc
Natl Acad Sci USA 108(15):6306–6311.

Castillo-Chavez et al. PNAS | December 20, 2016 | vol. 113 | no. 51 | 14587



26. Chowell G, Viboud C, Wang X, Bertozzi SM, Miller MA (2009) Adaptive vaccina-
tion strategies to mitigate pandemic influenza: Mexico as a case study. PLoS One
4(12):e8164.

27. Chen FH (2004) Rational behavioral response and the transmission of STDs. Theor
Popul Biol 66(4):307–316.

28. Del Valle S, Hethcote H, Hyman J, Castillo-Chavez C (2005) Effects of behavioral
changes in a smallpox attack model. Math Biosci 195(2):228–251.

29. Klein E, Laxminarayan R, Smith DL, Gilligan CA (2007) Economic incentives and math-
ematical models of disease. Environ Dev Econ 12(5):707–732.

30. Chen FH (2009) Modeling the effect of information quality on risk behav-
ior change and the transmission of infectious diseases. Math Biosci 217(2):125–
133.

31. Reluga TC (2010) Game theory of social distancing in response to an epidemic. PLoS
Comput Biol 6(5):e1000793.

32. Chen F, Jiang M, Rabidoux S, Robinson S (2011) Public avoidance and epidemics:
Insights from an economic model. J Theor Biol 278(1):107–119.

33. Gersovitz M (2011) The economics of infection control. Annu Rev Resour Economics
3(1):277–296.

34. Karesh WB, Cook RA, Bennett EL, Newcomb J (2005) Wildlife trade and global disease
emergence. Emerg Infect Dis 11(7):1000–1002.

35. Kilpatrick AM, Chmura AA, Gibbons DW, Fleischer RC, Marra PP, Daszak P (2006)
Predicting the global spread of H5N1 avian influenza. Proc Natl Acad Sci USA
103(51):19368–19373.

36. Kimball AM (2012) Risky Trade: Infectious Disease in the Era of Global Trade (Ashgate
Publishing, New York).

37. Pavlin BI, Schloegel LM, Daszak P, et al. (2009) Risk of importing zoonotic diseases
through wildlife trade, United States. Emerg Infect Dis 15(11):1721–1726.

38. Tatem AJ (2009) The worldwide airline network and the dispersal of exotic species:
2007–2010. Ecography (Cop.) 32(1):94–102.

39. Tatem AJ, Hay SI, Rogers DJ (2006) Global traffic and disease vector dispersal. Proc
Natl Acad Sci USA 103(16):6242–6247.

40. Tatem AJ, Rogers DJ, Hay SI (2006) Global transport networks and infectious disease
spread. Adv Parasitol 62:293–343.

41. Fenichel EP, Wang X (2013) The mechanism and phenomena of adaptive human
behavior during an epidemic and the role of information. Modeling the Interplay
Between Human Behavior and the Spread of Infectious Diseases (Springer, New York),
pp 153–168.

42. Morin BR, Fenichel EP, Castillo-Chavez C (2013) SIR dynamics with economically driven
contact rates. Nat Resour Model 26(4):505–525.

43. Daszak P, et al. (2006) The emergence of Nipah and Hendra virus: Pathogen dynamics
across a wildlife-livestock-human continuum. Disease Ecology: Community Structure
and Pathogen Dynamics (Oxford Univ Press, New York), pp 186–201.

44. Daszak P, Tabor GM, Kilpatrick AM, Epstein J, Plowright R (2004) Conservation
medicine and a new agenda for emerging diseases. Ann N Y Acad Sci 1026(1):1–11.

45. Hethcote HW, Yi L, Zhujun J (1999) Hopf bifurcation in models for pertussis epidemi-
ology. Math Comput Model 30(11-12):29–45.

46. Castillo-Chavez C, Hethcote HW, Andreasen V, Levin SA, Liu WM (1989) Epidemiologi-
cal models with age structure, proportionate mixing, and cross-immunity. J Math Biol
27(3):233–258.

47. Bansal S, Grenfell BT, Meyers LA (2007) When individual behaviour matters:
Homogeneous and network models in epidemiology. J R Soc Interface 4(16):
879–891.

48. Newman MEJ (2002) Spread of epidemic disease on networks. Phys Rev E Stat Nonlin
Soft Matter Phys 66(1 Pt 2):016128.

49. Pastor-Satorras R, Vespignani A (2001) Epidemic dynamics and endemic states in com-
plex networks. Phys Rev E Stat Nonlin Soft Matter Phys 63(6):066117.

50. Newman MEJ (2003) The structure and function of complex networks. SIAM Rev
45(2):167–256.

51. Funk S, Gilad E, Watkins C, Jansen VAA (2009) The spread of awareness and its impact
on epidemic outbreaks. Proc Natl Acad Sci USA 106(16):6872–6877.

52. Epstein JM, Parker J, Cummings D, Hammond RA (2008) Coupled contagion dynam-
ics of fear and disease: Mathematical and computational explorations. PLoS One
3(12):e3955.

53. Funk S, Gilada E, Jansen VAA (2010) Endemic disease, awareness, and local
behavioural response. J Theor Biol 264(2) 501–509.

54. Perra N, Balcan D, Gonçalves B, Vespignani A (2011) Towards a characterization of
behavior-disease models. PLoS One 6(8):e23084.

55. Hadeler KP, Castillo-Chavez C (1995) A core group model for disease transmission.
Math Biosci 128(1):41–55.

56. Preisser EL, Bolnick DI (2008) The many faces of fear: Comparing the pathways
and impacts of nonconsumptive predator effects on prey populations. PLoS One
3(6):e2465.

57. Meloni S, et al. (2011) Modeling human mobility responses to the large-scale spread-
ing of infectious diseases. Sci Rep 1:62.
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