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Assessment of causal influences is a ubiquitous and important
subject across diverse research fields. Drawn from conscious-
ness studies, integrated information is a measure that defines
integration as the degree of causal influences among elements.
Whereas pairwise causal influences between elements can be
quantified with existing methods, quantifying multiple influences
among many elements poses two major mathematical difficulties.
First, overestimation occurs due to interdependence among influ-
ences if each influence is separately quantified in a part-based
manner and then simply summed over. Second, it is difficult to
isolate causal influences while avoiding noncausal confounding
influences. To resolve these difficulties, we propose a theoreti-
cal framework based on information geometry for the quantifi-
cation of multiple causal influences with a holistic approach. We
derive a measure of integrated information, which is geometri-
cally interpreted as the divergence between the actual probability
distribution of a system and an approximated probability distri-
bution where causal influences among elements are statistically
disconnected. This framework provides intuitive geometric inter-
pretations harmonizing various information theoretic measures in
a unified manner, including mutual information, transfer entropy,
stochastic interaction, and integrated information, each of which
is characterized by how causal influences are disconnected. In
addition to the mathematical assessment of consciousness, our
framework should help to analyze causal relationships in complex
systems in a complete and hierarchical manner.

integrated information | mutual information | transfer entropy |
information geometry | consciousness

Quantitative assessment of causal influences among elements
in a complex system is a fundamental problem in many

fields of science, including physics (1), economics (2), gene
networks (3), social networks (4), ecosystems (5), and neuro-
science (6). There have been many previous attempts to quantify
causal influences between elements in stochastic systems. Infor-
mation theory has played a pivotal role in these endeavors, lead-
ing to various measures, including predictive information (7),
transfer entropy (8), and stochastic interaction (9). Drawn from
consciousness studies involving measurement of integration of
neural activity (10, 11), the mathematical concept of integrated
information is also useful as a framework for analyzing causal
relationships in complex systems with multiple elements.

Recent research suggests that the brain loses the ability to inte-
grate information when consciousness is lost during dreamless
sleep (12), general anesthesia (13), or vegetative states (14), sug-
gesting that quantifying integration of information can serve as
a neurophysiological marker of consciousness (10, 11, 15). The
integrated information theory (IIT) of consciousness (16, 17)
proposes a measure of integration called integrated information
that quantifies multiple causal influences among elements of a
system. Integrated information is theoretically motivated by the
holistic property of consciousness experienced as a unified whole
that is irreducible into separate parts or experiences. Whereas
the original motivation for integrated information is intended to

elucidate the neural substrate of consciousness, it can in principle
be applied to many research fields.

Despite its broad potential impact, the application of inte-
grated information (16, 18) to experimental data is severely lim-
ited (19, 20) due to the original measure’s derivation under
restricted conditions, wherein the probability distribution of past
states in a system is assumed to be uniform, variable discrete (18).
In an effort to broaden the applicability, several measures have
been proposed under general conditions (9, 19, 21). However,
these proposed measures are limited by mathematical problems.
Quantification of a pairwise causal influence from one element
to another can be achieved with existing measures, but to quan-
tify multiple causal influences among many parts poses the prob-
lems of overestimation and confounding noncausal influences.
To overcome these problems, we propose a unified framework
for quantifying causal influences based on information geome-
try (22). The measure we propose, called “geometric integrated
information” ΦG , overcomes the described difficulties, provides
geometric interpretations of existing measures, and elucidates
the relationships among the measures in a hierarchical manner.
The mathematical solution we derive should have broad utility in
elucidating complex systems.

Three Postulates on Strength of Influences
We propose a unified theoretical framework for quantify-
ing the strength of spatiotemporal influences based on three
postulates. Let us consider a stochastic dynamical system in
which the past and present states of the system are given by
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X = {x1, x2, · · · , xN } and Y = {y1, y2, · · · , yN }, respectively,
where N is the number of elements in the system. Information
about X is integrated by influences among elements and trans-
mitted to Y . The spatiotemporal influences of the system are
fully characterized by the joint probability distribution p(X ,Y ).
We call p(X ,Y ) a “full model”. In a dynamical system charac-
terized by p(X ,Y ), there are three different types of influences.
Influences between elements at the same time (called equal-time
influences) can be quantified by analyzing only the marginal dis-
tributions p(X ) or p(Y ). Influences across different time points
(called across-time influences) can be further divided into those
among different units (cross-influences) and those within the
same unit (self-influences). The across-time influences can be
quantified from the conditional probability distribution p(Y |X ).
They are also known as causal influences (2, 8), in the sense of
causality that is statistically inferred from conditional probability
distributions although it does not necessarily mean actual physi-
cal causality (23). Here, we use the term causality in this context
and focus on quantifying causal influences.

For quantifying causal influences (both self- and cross-
influences) among elements of X and Y , consider approximat-
ing the probability distribution p(X ,Y ) by another probability
distribution q(X ,Y ) in which the influences of interest are sta-
tistically disconnected. We call q(X ,Y ) a “disconnected model.”
The strength of influences can be quantified by to what extent the
corresponding disconnected model q(X ,Y ) can approximate
the full model p(X ,Y ). The goodness of the approximation can
be evaluated by the difference between the two probability distri-
butions p(X ,Y ) and q(X ,Y ). Minimizing a difference between
p(X ,Y ) and q(X ,Y ) corresponds to finding the best approxi-
mation of p(X ,Y ) by a disconnected model q(X ,Y ). From this
reasoning, we propose the first postulate as follows.

Postulate 1. Strength of influences is quantified by a minimized dif-
ference between the full model and a disconnected model.

The second postulate is used to define a disconnected model.
Consider partitioning the elements of a system into m parts,
X = {X1,X2, · · · ,Xm} and Y = {Y1,Y2, · · · ,Ym}, where
Xi and Yi contain the same elements in a system. To avoid the
confounds of noncausal influences, we should minimally discon-
nect only the influences of interest without affecting the rest.
To define such a minimal operation of statistically disconnect-
ing influences from Xi to Yj , we propose the second postulate as
follows.

Postulate 2. A disconnected model, where influences from Xi to Yj

are disconnected, satisfies the Markov condition Xi → X̃i → Yj ,
where X̃i is the complement of Xi in X ; that is, X̃i = X −Xi .

The Markov condition Xi → X̃i → Yj means that Xi and Yj

are conditionally independent given X̃i ,

q(Xi ,Yj |X̃i) = q(Xi |X̃i)q(Yj |X̃i). [1]

Under the Markov condition, there is no direct influence from
Xi on Yj given the states of the other elements X̃i being fixed.

The third postulate defines the measure of a difference
between the full model and a disconnected model, which is
denoted by D [p : q ]. There are many possible ways to quan-
tify the difference between two probability distributions (22, 24).
We consider several theoretical requirements that the measure
of difference should satisfy to have desirable mathematical prop-
erties (details in Supporting Information): (i) D [p : q ] should be
nonnegative and becomes 0 if and only if p = q , (ii) D [p : q ]
should be invariant under invertible transformations of random
variables, (iii) D [p : q ] should be decomposable, and (iv) D [p : q ]
should be flat. We can prove that the only measure that satisfies
all of the theoretical requirements is the well-known Kullback–

Leibler (KL) divergence (22). Thus, we propose the third postu-
late as follows.
Postulate 3. A difference between the full model and a disconnected
model is measured by KL divergence.

Taken together, the strength of causal influences from Xi to
Yj , ci [Xi → Yj ], is quantified by the minimized KL divergence,

ci [Xi → Yj ] = min
q(X ,Y )

DKL[p(X ,Y )||q(X ,Y )], [2]

under the constraint of the Markov condition given by Eq. 1.

A Unified Derivation of Existing Measures
In this section, we derive existing measures from the unified
framework and provide the interpretations of them.

Total Causal Influences: Mutual Information. First, consider quanti-
fying the total strength of causal influences between the past and
present states. From the operation of disconnections given by Eq.
1, the influences from all elements X to Y are disconnected by
forcing X and Y to be independent,

q(X ,Y ) = q(X )q(Y ). [3]

The disconnected model is graphically represented in Fig. 1A.
To introduce the perspective of information geometry, consider
a manifold of probability distributions MF , where each point
in the manifold represents a probability distribution p(X ,Y ) (a
full model). Consider also a manifold MI where X and Y are
independent, which means that there are no causal influences
between X and Y . A probability distribution q(X ,Y ) (a dis-
connected model) is represented as a point in the manifoldMI .
In general, the actual probability distribution p(X ,Y ) is repre-
sented as a point outside the submanifoldMI (Fig. 2). The dif-
ference between the two probability distributions is quantified by
KL divergence,

DKL[p(X ,Y )||q(X ,Y )] =
∑
X ,Y

p(X ,Y ) log
p(X ,Y )

q(X ,Y )
. [4]

We consider finding the closest point q∗ to p within the
submanifold MI , which minimizes the KL divergence between
p(X ,Y ) and q(X ,Y ) ∈ MI (Fig. 2). This corresponds to
finding the best approximation of p(X ,Y ). The minimizer
of KL divergence is derived by orthogonally projecting the
point p(X ,Y ) to the manifoldMI according to the projection
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Fig. 1. (A–D) Minimizing the Kullback–Leibler (KL) divergence between
the full and the disconnected model leads to various information theoretic
quantities: (A) mutual information, (B) transfer entropy, (C) integrated infor-
mation, and (D) stochastic interaction. Constraints imposed on the discon-
nected model are graphically shown.
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Fig. 2. Information geometric picture for minimizing the KL divergence
between the full model p(X, Y), which resides in the manifold MF , and the
disconnected model q(X, Y), which resides in the manifold MI. q∗(X, Y) is
the point in MI that is closest to p(X, Y).

theorem in information geometry (22) (Supporting Information).
In the present case, p, the closest point q∗, and any point q inMI

form an orthogonal triangle. Thus, the following Pythagorean
relation holds: D(p||q) = D(p||q∗) + D(q∗||q). From the
Pythagorean relation, we can find that the KL divergence is min-
imized when the marginal distributions of q∗(X ,Y ) over X and
Y are both equal to those of the actual distribution p(X ,Y ); i.e.,
q∗(X ) = p(X ) and q∗(Y ) = p(Y ). The minimized KL diver-
gence is given by

min
q

DKL[p||q ] = H (Y )−H (Y |X ), [5]

= I (X ;Y ) [6]

where H (Y ) is the entropy of Y , H (Y |X ) is the conditional
entropy of Y given X , and I (X ;Y ) is the mutual information
between X and Y . From the derivation, we can interpret the
mutual information between X and Y as the total causal influ-
ences between X and Y . The mutual information between the
present and past states can be also interpreted as the degree of
predictability of the present states given the past states and has
been termed as predictive information (7).

Partial Causal Influences: Conditional Transfer Entropy. Next, con-
sider quantifying a partial causal influence from one element to
another in the system. From the operation of disconnections in
Eq. 1, a partial causal influence from xi to yj is disconnected by
q , satisfying

q(xi , yj |x̃i) = q(xi |x̃i)q(yj |x̃i), [7]

where x̃i is the past states of all of the variables other than
xi . Under the constraint, the KL divergence is minimized when
q(X ) = p(X ), q(yj |X ) = p(yj |x̃i), and q(ỹj |X , yj ) = p(ỹj |X , yj )
(Supporting Information). The minimized KL divergence is found
to be equal to the conditional transfer entropy,

min
q

DKL[p||q ] = H (yj |x̃i)−H (yj |X ), [8]

= TE(xi → yj |x̃i), [9]

where TE(xi → yj |x̃i) is the conditional transfer entropy from
xi to yj given x̃i . Thus, we can interpret the conditional transfer

entropy as the strength of the partial causal influence from xi
to yj .

A Measure of Integrated Information
Integrated information is defined as a measure to quantify the
strength of all causal influences among parts of the system. In the
case of two units, integrated information should quantify both of
the causal influences from x1 to y2 and from x2 to y1. It aims to
quantify the extent to which the whole system exerts synergistic
influences on its future more than the parts of a system inde-
pendently do and, thus, irreducibility of the whole system into
independent parts (16). Accordingly, integrated information is
theoretically required that it should be nonnegative and upper
bounded by the total causal influences in the whole system, which
is the mutual information between the past and present states
I (X ;Y ) in our framework as shown above (20). Based on Postu-
lates 1–3, we uniquely derive a measure of integrated information
by imposing the corresponding constraints, which naturally satis-
fies the theoretical requirement.

Consider again partitioning a system into m parts. By applying
the operation in Eq. 1 for all pairs of i and j (6=i), we can find
that all causal influences among the parts are disconnected by
the condition

q(Yi |X ) = q(Yi |Xi) (∀i). [10]

To quantify integrated information, we consider a manifold
MG constrained by Eq. 10. Note that within MG , the present
states in a part Yi directly depend only on the past states of itself,
Xi , and thus the transfer entropies from one part Xi to all of the
other parts Yj (j 6= i) are 0. Now we propose a measure of inte-
grated information, called geometric integrated information ΦG ,
as the minimized KL divergence between the actual distribution
p(X ,Y ) and the disconnected distribution q(X ,Y ) withinMG :

ΦG = min
q∈MG

DKL[p||q ]. [11]

The manifold MG formed by the constraints for integrated
information (Eq. 10) includes the manifold MI formed by the
constraints for mutual information (Eq. 3); i.e., MI ⊂MG .
Because minimizing the KL divergence in a larger space always
leads to a smaller value, ΦG is always smaller than or equal to
the mutual information I (X ;Y ):

0 ≤ ΦG ≤ I (X ;Y ). [12]

Thus, ΦG , uniquely derived from Postulates 1–3, naturally sat-
isfies the theoretical requirements as integrated information.

Comparisons with Other Measures
The Sum of Transfer Entropies. For simplicity, consider a system
consisting of two variables (Fig. 1). Conceptually, a measure
of integrated information should be designed to quantify the
strength of two causal influences from x1 to y2 and from x2 to
y1 (Fig. 1C). Because each causal influence is quantified by the
transfer entropy, TE(x1 → y2|x2) or TE(x2 → y1|x1), one may
naively think that the sum of transfer entropies can be used as
a valid measure of integrated information and may be the same
as ΦG . In contrast with this naive intuition, the sum of transfer
entropies is not equal to ΦG and moreover, it can exceed the
mutual information between X and Y , which violates the impor-
tant theoretical requirement as a measure of integrated informa-
tion (Eq. 12). When there is strong dependence between y1 and
y2, simply taking the sum of transfer entropies leads to overesti-
mation of the total strength of causal influences. An extreme case
where such overestimation occurs is when y1 and y2 are copies
of each other.

As a simple example, consider a system consisting of two
binary units, each of which takes one of the two states, 0 or
1. Assume that the probability distribution of the past states of
x1 and x2 is a uniform distribution; i.e., p(x1, x2) = 1/4. The
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present state of unit 1, y1, is determined by the AND operation
of the past state x1 and x2, that is, y1 becomes 1 if both x1 and x2

are 1, and it becomes 0 otherwise. On the other hand, y2 is deter-
mined by a “noisy” AND operation where the state of y2 flips
with certain probability r ; i.e., p(y2 = 1) = 1−r if (x1, x2) = (1, 1)
and p(y2 = 1) = r if (x1, x2) = (0, 0), (0, 1), (1, 0), where r deter-
mines the noise level. As the noise level of the noisy AND opera-
tion decreases, the dependence between y1 and y2 gets stronger.
When there is no noise, i.e., r = 0, y1 and y2 are completely
equal. We varied the strength of dependence by changing the
noise level and calculated transfer entropies and ΦG (see Sup-
porting Information for the computation of ΦG in the binary
case) (Fig. 3). As the noise level decreases, the transfer entropy
from x1 to y2 increases but the mutual information stays the
same because y2, which is a noisy AND gate, does not add any
additional information about the input X above the information
already provided by y1, which is the perfect AND gate. When
the noise level is low and thus the dependence between y1 and
y2 is strong, the sum of transfer entropies exceeds the amount of
mutual information.

On the other hand, ΦG never exceeds the amount of mutual
information (Fig. 3). ΦG avoids the overestimation by simulta-
neously evaluating the strength of multiple influences. In con-
trast, the sum of transfer entropies separately quantifies causal
influences by considering only parts of the system. For example,
when the transfer entropy from x1 to y2 is quantified, y1 is not
taken into consideration, which leads to the overestimation. To
accurately evaluate the total strength of multiple influences, we
need to take a holistic approach as we proposed to do with ΦG .
The flaw of the simple sum of transfer entropies illuminates the
limitation of the part-based approach and the advantage of the
holistic approach.

A related quantity with the sum of transfer entropies has been
proposed as causal density (21). Originally, causal density was
proposed as the normalized sum of the conditional Granger
causality from one element to another (21). Because transfer
entropy is equivalent to Granger causality for Gaussian variables

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

MI
ΦG

Sum of TEs
TE(x1 -> y2)
TE(x2 -> y1)

Noise level
Fig. 3. Comparison between integrated information and the sum of trans-
fer entropies (TE). A system consists of two binary units whose states are
determined by an AND gate and a noisy AND gate. When the noise level of
the noisy AND gate is low and thus the dependence between the units is
strong, the sum of transfer entropies (green line) exceeds the mutual infor-
mation (black line) whereas integrated information ΦG (red line) is always
less than the mutual information. Each transfer entropy (blue solid and dot-
ted lines) is always less than or equal to ΦG.

(25), the normalized sum of the conditional transfer entropies
can be considered as a generalization of causal density. Although
a simple sum of Granger causality or transfer entropies is easy to
evaluate and would be useful for approximately evaluating the
total strength of causal influences, we need to be careful about
the problem of overestimation.

Stochastic Interaction. Another measure, called stochastic inter-
action (9), was proposed as a different measure of integrated
information (19). In the derivation of stochastic interaction, Ay
(9) considered a manifoldMS where the conditional probability
distribution of Y given X is decomposed into the product of the
conditional probability distributions of each part (Fig. 1D):

q(Y |X ) =

m∏
i=1

q(Yi |Xi). [13]

This constraint satisfies the constraint for the integrated infor-
mation (Eq. 10). Thus, MS ⊂ MG . In addition to that,
this constraint further satisfies conditional independence among
the present states of parts given the past states in the whole
system X :

q(Y |X ) =

m∏
i=1

q(Yi |X ). [14]

This constraint corresponds to disconnecting equal-time influ-
ences among the present states of the parts given the past states
of the whole in addition to across-time influences (Fig. 1D). On
the other hand, the constraint in Eq. 10 corresponds to discon-
necting only across-time influences (Fig. 1C).

The KL divergence is minimized when q(X ) = p(X ) and
q(Yi |Xi) = p(Yi |Xi) (9). The minimized KL divergence is equal
to stochastic interaction SI (X ;Y ):

min
q

DKL[p||q ] =
∑
i

H (Yi |Xi)−H (Y |X ), [15]

= SI (X ;Y ). [16]

In contrast to the manifoldMG considered for ΦG , the mani-
foldMS formed by the constraints for stochastic interaction (Eq.
13) does not include the manifoldMI formed by the constraints
for the mutual information between X and Y (Eq. 3). This is
because not only causal influences but also equal-time influences
are disconnected in MS (Fig. 1D). Stochastic interaction can
therefore exceed the total strength of causal influences in the
whole system, which violates the theoretical requirement as a
measure of integrated information (Eq. 12). Notably, stochastic
interaction can be nonzero even when there are no causal influ-
ences, i.e., when the mutual information is 0 (20). To summarize,
stochastic interaction does not purely quantify causal influences
but rather quantifies the mixture of causal influences and simul-
taneous influences.

Analytical Calculation for Gaussian Variables
Although we cannot derive a simple analytical expression for ΦG

in general, it is possible to derive it for Gaussian variables. In this
section, we analytically compute ΦG when the probability distri-
bution of a system p(X ,Y ) is Gaussian. We also show a close
relationship between the proposed measure of integrated infor-
mation ΦG and multivariate Granger causality. Consider the fol-
lowing multivariate autoregressive model,

Y = AX + E , [17]

where X and Y are the past and present states of a system, A
is the connectivity matrix, and E is Gaussian random variables
with mean 0 and covariance matrix Σ(E), which are uncorrelated
over time. The multivariate autoregressive model is the gener-
ative model of a multivariate Gaussian distribution. Regarding
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Fig. 4. Relationships between manifolds for mutual information MI (gray
line), stochastic interaction MS (orange line), and integrated information
MG (green plane) in the Gaussian case. MI is the line where A = 0, MS

is the line where Σ(E)12 and A12, A21 are 0, and MG is the plane where
A12, A21 are 0.

Eq. 17 as a full model, we consider the following as a discon-
nected model:

Y = A′X + E ′. [18]

The constraints for ΦG (Eq. 10) correspond to setting the off-
diagonal elements of A′ to 0:

A′ij = 0 (i 6= j ). [19]

It is instructive to compare this with the constraints for the
other information theoretic quantities introduced above: the
constraints for mutual information (Fig. 1A), transfer entropy
from x1 to y2 (Fig. 1B), and stochastic interaction (Fig. 1D).
They correspond to A′ = 0, A′21 = 0, and the off-diagonal
elements of A′ and Σ(E)′ being 0, respectively. Fig. 4 shows the
relationship between the manifolds formed by the constraints for
mutual information MI , stochastic interaction MS , and inte-
grated information MG . We can see that MI and MS are
included inMG . Thus, ΦG is smaller than I (X ;Y ) or SI (X ;Y ).
On the other hand, there is no inclusion relation between MI

andMS .
By differentiating the KL divergence between the full model

p(X ,Y ) and a disconnected model q(X ,Y ) with respect to
Σ(X )′

−1, A′, and Σ(E)′
−1, we can find the minimum of the KL

divergence, using the following equations (details in Supporting
Information):

Σ(X )′ = Σ(X ), [20]

(Σ(X )(A−A′)Σ(E)′−1)ii = 0, [21]

Σ(E)′ = Σ(E) + (A−A′)Σ(X )(A−A′)
T
. [22]

By substituting Eqs. 20–22 into the KL divergence, we obtain

ΦG =
1

2
log
|Σ(E)′|
|Σ(E)| . [23]

|Σ(E)| is called the generalized variance, which is used as a mea-
sure of goodness of fit, i.e., the degree of prediction error, in
multivariate Granger causality analysis (26, 27). In the Gaussian
case, ΦG can be interpreted as the difference in the prediction
error on comparison of the full and the disconnected model, in
which the off-diagonal elements of A′ are set to 0. Thus, ΦG is
consistent with multivariate Granger causality based on the gen-
eralized variance. ΦG can be rewritten as the difference between

the conditional entropy in the full model and that in the discon-
nected model,

ΦG = H (q(Y |X ))−H (p(Y |X )). [24]

For comparison, mutual information, transfer entropy, and
stochastic interaction are given as I (X ;Y ) = 1

2
log |Σ(X )|

|Σ(E)| ,

TE(xi → yj |xj ) = 1
2

log
Σ(E)∗jj
Σ(E)jj

, SI (X ;Y ) = 1
2

log
Σ(E)∗11Σ(E)∗22
|Σ(E)| ,

where Σ(E)∗jj (j = 1, 2) is the covariance of the conditional
probability distribution p(yj |xj ).

Hierarchical Structure
We can construct a hierarchical structure of the disconnected
models and then use it to systematically quantify all possible
combinations of causal influences (28). For example, in a system
consisting of two elements, there are four across-time influences,
x1 → y1, x1 → y2, x2 → y1, and x2 → y2, which are denoted
by T11, T12, T21, and T22, respectively. Although we consider
only the cross-influences, T12 and T21 for transfer entropy and
integrated information, we can also quantify self-influences T11

and T22 by imposing the corresponding constraints, such as
q(y1|x1, x2) = q(y1|x2) and q(y2|x1, x2) = q(y2|x1), respec-
tively. A set of all possible disconnected models forms a partially
ordered set with respect to KL divergence between the full and
the disconnected models (Fig. 5). If a given disconnected model
is related to another one with a removal or an inclusion of an
influence, the two models are connected by a line in Fig. 5. From
Bottom to Top in Fig. 5, information loss increases as more influ-
ences are disconnected. Note that there is no ordering relation-
ship between the disconnected models at the same level of the
hierarchy. In Fig. 5, Top, all four influences are disconnected,
and thus information loss is maximized, which corresponds to
the mutual information I (X ;Y ). The hierarchical structure gen-
eralizes related measures mentioned in this article and pro-
vides a clear perspective on the relationship among different
measures.

Discussion
In this paper, we proposed a unified framework based on infor-
mation geometry, which enables us to quantify multiple influ-
ences without overestimation and confounds of noncausal influ-
ences. With the framework, we uniquely derived the measure of
integrated information, ΦG . Moreover, our framework enables
the complete description of causal relationships within a sys-
tem by quantifying any combination of causal influences in a

{T11 ,T22} {T11,T12} 

{T11 ,T12,T21} {T11,T12,T22}

{T11,T21} {T12 ,T21}

{T11 ,T21,T22}

{T12 ,T22} {T21 ,T22}

{T11} {T12} {T21} {T22}

{T11 ,T12,T21,T22}

{T12 ,T21,T22}

Fig. 5. A hierarchical structure of the disconnected models where across-
time influences are broken in a system consisting of two units. All pos-
sible combinations of influences retained in the disconnected model are
displayed. If two models are related with the addition or removal of one
influence, they are connected by a line. The KL divergence between the full
and the disconnected model increases from Bottom to Top.

Oizumi et al. PNAS | December 20, 2016 | vol. 113 | no. 51 | 14821

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1603583113/-/DCSupplemental/pnas.201603583SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1603583113/-/DCSupplemental/pnas.201603583SI.pdf?targetid=nameddest=STXT


hierarchical manner as shown in Fig. 5. We expect that our
framework can be used in diverse research fields, including neu-
roscience (29, 30), where network connectivity analysis has been
an active research topic (31), and in particular consciousness
researchers (32–34) because information integration is consid-
ered to be a key prerequisite of conscious information processing
in the brain (10, 11).

To apply the measure of integrated information in real data,
we need to resolve several practical difficulties. First, the compu-
tational costs increase exponentially with the system size. Thus,
some way of approximating data is necessary. As we showed in
this paper, the Gaussian approximation enables us to analyti-
cally compute integrated information, allowing us to compute
integrated information in a large system (Eqs. 20–23). How-
ever, in real world systems, including brains, nonlinearity can
be often significant and the Gaussian approximation may poorly
fit to data. In such cases, transforming time series data into a
sequence of discrete symbols can result in more accurate approx-
imation (34, 35). Our measure of integrated information can be
computed in such discrete distributions as shown in Supporting
Information. Second, we need to find an appropriate partition
of a system, which is an important problem in IIT (16). The
computational costs for finding the optimal partition also expo-
nentially increase. To overcome this difficulty, some effective

optimization method needs to be used, possibly methods from
discrete mathematics.

From a theoretical perspective, we could consider replac-
ing Postulates 2 and 3 with different ones as interesting future
research. As for Postulate 2, which defines the operation of dis-
connecting causal influences, we can use the interventional for-
malism (23, 36), which quantifies causal influences based on
mechanisms of a system rather than observation of the system.
As for Postulate 3, which defines the difference between the full
model and a disconnected model, we can replace the KL diver-
gence with other measures (24), such as the optimal transport
distance, a.k.a, earth mover’s distance, which is considered to be
important in IIT (17) and also has been shown to be useful in sta-
tistical machine learning (37). Our framework based on informa-
tion geometry can be generally used for deriving different mea-
sures of causal influences from such different postulates and for
analyzing the different geometric structures induced by them.
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