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The need to assess subtle, potentially exploitable changes in serial
structure is paramount in the analysis of financial data. Herein, we
demonstrate the utility of approximate entropy (ApEn), a model-
independent measure of sequential irregularity, toward this goal, by
several distinct applications. We consider both empirical data and
models, including composite indices (Standard and Poor’s 500 and
Hang Seng), individual stock prices, the random-walk hypothesis, and
the Black–Scholes and fractional Brownian motion models. Notably,
ApEn appears to be a potentially useful marker of system stability,
with rapid increases possibly foreshadowing significant changes in a
financial variable.

approximate entropy � stock market � instability � random walk

Series of sequential data are pivotal to much of financial
analysis. Enhanced capabilities of quantifying differences

among such series would be extremely valuable. Although ana-
lysts typically track shifts in mean levels and in (several notions
of) variability, in many instances, the persistence of certain
patterns or shifts in an ‘‘ensemble amount of randomness’’ may
provide critical information as to asset or market status. Despite
this recognition, formulas to directly quantify an ‘‘extent of
randomness’’ have not been utilized in market analyses, primarily
because, even within mathematics itself, such a quantification
technology was lacking until recently. Thus, except for settings
in which egregious (changes in) sequential features or patterns
presented themselves, subtler changes in serial structure would
largely remain undetected.

Recently, a mathematical approach and formula, approximate
entropy (ApEn), was introduced to quantify serial irregularity,
motivated by both application needs (1) and by fundamental
questions within mathematics (2, 3). ApEn grades a continuum
that ranges from totally ordered to maximally irregular ‘‘com-
pletely random.’’ The purpose of this article is to demonstrate
several applications of ApEn to the evaluation of financial data.

One property of ApEn that is of paramount importance in the
present context is that its calculation is model-independent, i.e.,
prejudice-free. It is determined by joint-frequency distributions.
For many assets and market indices, the development of a model
that is sufficiently detailed to produce accurate forecasts of future
price movements, especially sudden considerable jumps or drops, is
typically very difficult (discussed below). The advantage of a
model-independent measure is that it can distinguish classes of
systems for a wide variety of data, applications, and models. In
applying ApEn, we emphasize that, in many implementations, we
are decidedly not testing for a particular (econometric) model form;
we are attempting to distinguish data sets on the basis of regularity.
Even if we cannot construct a relatively accurate model of the data,
we can still quantify the irregularity of data, and changes thereto,
straightforwardly. Of course, subsequent modeling remains of
interest, although the point is that this task is quite distinct from the
application of effective discriminatory tools. This perspective seems
especially important given the empirical, nonexperimental nature
of financial time series.

In addition, the widely used term volatility enters the picture as
follows. Volatility, and implicitly risk, are generally equated with the
magnitude of asset price fluctuations, with large swings denoted as

highly volatile and, in common parlance, as highly unpredictable.
However, two fundamentally distinct means exist in which series
deviate from constancy: (i) they exhibit high standard deviation,
and (ii) they appear highly irregular or unpredictable. These two
forms are quite distinct and nonredundant, with important conse-
quences. As we see below, standard deviation (SD) (or nonpara-
metric variants) will remain the appropriate tool to grade the extent
of deviation from centrality, whereas ApEn will prove to be the
appropriate tool to grade the extent of irregularity. The point is that
the extent of variation is generally not feared; rather, unpredict-
ability is the concern. Recast, if an investor were assured that future
prices would follow a precise sinusoidal pattern, even with large
amplitude, this perfectly smooth roller coaster ride would not be
frightening, because future prices and resultant strategies could be
planned. Thus, a quantification technology to separate the concepts
of classical variability and irregularity should be of interest.

The following observations are particularly germane to the
discussions below.

1. ApEn applies to single sequences of both (even very short)
finite and infinite length, filling voids unaddressed by axiom-
atic probability theory (2–5).

2. ApEn is useful not only to evaluate whether sequential data
are consistent with a specified (e.g., ‘‘random’’) process but,
more pointedly, also to grade subtle shades of highly irregular
sequences and to distinguish among them. This utility fills a
critical need, because, for sequences with ApEn values �80%
of maximal irregularity, classical statistics (e.g., spectra and
correlation) oftentimes fail to clearly discriminate such se-
quences either from one another or from being random. This
is highlighted below.

3. ApEn thus refines chartism, in that it does not require clear
pattern formations to exist to detect insidious changes in
serial structure.

4. Although ApEn is applicable entirely outside a model setting,
it also fits naturally into a classical probability and statistics
(model-based) framework. Accordingly, ApEn can be applied
to evaluate and either validate or reject econometric models,
e.g., random walk, Black–Scholes (B-S) diffusion, ARMA,
GARCH, and fractional Brownian motion (FBM), from a
perspective orthogonal to that in current practice.

5. ApEn can be applied as a marker of system stability; signif-
icantly increased ApEn values may foreshadow pronounced
state (index) changes, both empirically and in model-based
contexts.

ApEn. ApEn (1) assigns a nonnegative number to a sequence or
time series, with larger values corresponding to greater apparent
serial randomness or irregularity and smaller values correspond-
ing to more instances of recognizable features in the data. Two
input parameters, a block or run length m and a tolerance
window r, must be specified to compute ApEn. In brief, ApEn

Abbreviations: ApEn, approximate entropy; i.i.d., independent and identically distributed;
B-S, Black–Scholes; FBM, fractional Brownian motion.
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measures the logarithmic frequency that runs of patterns that are
close (within r) for m contiguous observations remain close
(within the same tolerance width r) on the next incremental
comparison. The precise formulation is given in ref. 1.

ApEn(m,r) is a family of parameters; comparisons are in-
tended with fixed m and r. For the studies below, we calculate
ApEn values for all data sets applying widely used and validated
parameter values m � 1 or m � 2 and r � 20% of the SD of the
specified time series. Normalizing r to each time series SD gives
ApEn a translation and scale invariance (6), ensuring a comple-
mentarity of variability (SD) and irregularity (ApEn), in that
ApEn remains unchanged under uniform process magnification.

ApEn is relative frequency-based and provides a finite-
sequence formulation of randomness, by proximity to maximal
irregularity and equidistribution (2, 3, 7). Conversely, ApEn
applies to a classical probability framework by consideration of
almost sure realizations of discrete time processes, with analytic
expressions to evaluate ApEn given, for example, in ref. 1,
equations 14 and 15.

Previous evaluations including both broad-based theoretical
analysis (1, 8, 9) and numerous diverse applications (6, 10–13)
demonstrate that the input parameters indicated above produce
good reproducibility for ApEn for time series of the lengths
considered below. In particular, the SD of ApEn is �0.05 for
virtually all processes analyzed for the data lengths studied
herein (1, 9).

In ref. 12, we provide a theoretical basis for understanding why
ApEn provides a substantially more general or robust measure of
feature persistence than do linear correlation and the power
spectrum. Descriptively, correlation and spectral measures assess
the degree of matching or recurring features (characteristic sub-
blocks) at fixed spectral frequencies, whereas the ApEn formulation
implicitly relaxes the fixed-frequency mandate in evaluating recur-
rent feature matching. Thus, the ApEn formalism both provides a
sharper measure of equidistribution (3, 7) and also identifies many
subtle yet persistent pattern recurrences in both data and models
that the aforementioned alternatives fail to do.

Representative Applications. Because most financial analyses and
modeling center on price increments or returns, rather than on
prices, we do so below. Given a series of prices {si}, we consider the
incremental series ui � si�1 � si; the returns series ri � (si�1�si) �
1; and the log-ratio series Li � log(si�1�si). These series are
prominent in evaluating ‘‘random walk’’-type hypotheses. We apply
these series to a variety of assets and indices to illustrate a breadth
of this application mode. We note that in general theoretical and
empirical settings (approximate mean stationarity), ApEn values of
these series are quite similar (e.g., Fig. 1).

Nonetheless, because ApEn can discern shifts in serial charac-
teristics, apart from the consideration of randomness hypotheses,
we expect that application of ApEn to price series {si} directly will
prove useful in clarifying additional changes. Indeed, most empir-
ical applications of ApEn have been to raw time series.

Subtle Asset Variation. Analysis of Dow Jones Industrial Average
prices, taken at 10-min trading intervals from February 11, 2000 to
August 18, 2000 (Tick Data), illustrates the ApEn quantification.
Fig. 1A shows running ApEn(1, 20% SD, N � 200) values, applied
to both incremental and log-ratio series. Because these two ApEn
applications yield very similar results, we focus on increment
analysis. We observe highly significant variation in ApEn over time
from a maximal ApEn(1, 20% SD, N � 200) level of 1.949. Yet
empirical ApEn values remain above 80% maximal ApEn, making
it difficult to discern obvious pattern-based changes during this
period.

Incremental series for two 200-point segments, denoted se-
quences 1 and 2, are shown in Fig. 1 C and D. ApEn(1, 20% SD)
indicates significant differences in regularity between the time

series underlying Fig. 1C (ApEn � 1.600) and Fig. 1D (ApEn �
1.778) and, additionally, between each time series and maximal-
ity. Notably, in contrast, neither autocorrelation nor the power
spectrum (Fig. 1 E and F) distinguish either segment from
‘‘random.’’ Only 1 of 25 (sequence 1) and 2 of 25 (sequence 2)
lagged autocorrelation coefficients exceed 95% confidence lim-
its of approximately �2��200 for significance (14), each just
outside the limits, and at arbitrary lags. Similarly, for the spectra
F, neither segment had a maximal peak that differed from a
white noise process at 95% significance (14).

To understand the ApEn calculation arithmetically, consider
sequence 1, with r � 20% SD � 7. Look at the joint relative
frequency that (A) 7 � ui � 21 and (B) �7 � ui�1 � 7 (i.e., ui �
[r,3r] and ui�1 � [�r,r]) for {ui,ui�1} contiguous points in
sequence 1. (A) occurred 37 times and (B) occurred 51 times,
with frequencies of 0.186 and 0.256 respectively. If (A) and (B)
were independent, they would jointly occur with a relative
frequency of �0.047; thus, we would expect nine pairs {ui,ui�1}
satisfying A and B. Yet sequence 1 contains 16 such pairs
(frequency � 0.080) exhibiting this modest rise followed by
virtually no change. Taken alone, this single discrepancy be-
tween the product of univariate frequencies and the observed
joint frequency is marginally significant. Rather, it is a steady

Fig. 1. Analysis of subtle asset variation. (A) Dow Jones running ApEn(1, 20%
SD, N � 200) values, applied to both incremental and ‘‘log-ratio’’ 10-min price
series. (B) Concomitant Dow Jones Industrial Average (DJIA) index values,
from February 11, 2000, to August 18, 2000. (C and D) Incremental series (Seq.
#1 and #2) for periods April 4–10, ApEn � 1.600 (C) and July 18–24, ApEn �
1.778 (D). (E) Autocorrelograms (and 95% confidence intervals) for Seq. #1 and
#2. (F) Power spectra for Seq. #1 and #2. Observe highly significant ApEn
variation over time; also note that ApEn indicates significant differences in
regularity between the time series underlying C and D, and, moreover, be-
tween each series and a maximal ApEn level of 1.949. In contrast, neither
autocorrelation nor the power spectrum distinguish either segment shown in
C and D from random.
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accumulation of such modest discrepancies that in ensemble is
inconsistent with a hypothesis of independent increments.

From a separate perspective, we calculated ApEn for 100
‘‘randomly shuffled’’ permutations of sequence 1; each of these
ApEn values was larger than the measured ApEn value of 1.600.
Thus, we reject that an underlying model for sequence 1 is
independent and identically distributed (i.i.d) or exchangeable
with empirical significance probability P � 0.01 (8), independent
of whether the one-dimensional marginal density is normal or
otherwise.

B-S Model. The Black–Scholes (B-S) model of option pricing by
the stochastic heat equation (15) requires special mention, given
its widespread use. This model implies that security prices {si}
obey a geometric Brownian motion with drift. Thus, for {si}
equally spaced in time, the log-ratio series {Li} is i.i.d. and
normally distributed. ApEn of the {Li} will then be nearly
maximal for any data length; e.g., mean ApEn(1, 20% SD, N �
200){Li} � 1.949. Asymptotically, the parameter ApEn(m,r %
SD) {Li} can be calculated by applying equation 15 from ref. 1,
with f the normal distribution. Furthermore, by scale invariance,
these normalized ApEn values are invariant under volatility
change (�); i.e., ApEn remains unchanged at any constant level
of magnification or reduction in volatility or SD, for both data
and model-based constructs. This observation reaffirms that
volatility and irregularity are complementary, indeed, orthogo-
nal notions. Importantly, substantial deviation from a nearly
maximal ApEn{Li} value, e.g., as often seen in the data analysis
presented above in Subtle Asset Variation, strongly suggests that
data violate the B-S model.

Market ‘‘Crashes.’’ One potential application of ApEn is to
forecast dramatic market change. The relatively recent economic
crises in Southeast Asia provide a good test, because many Asian
economies showed extraordinary growth from 1988 to 1997,
despite a lack of associated rapid growth in hard assets. In late
1997–1998, many of these nations suffered market crashes,
leading to currency devaluations. We applied ApEn to a prom-
inent Asian market, Hong Kong’s Hang Seng index, from 1992
to 1998. ApEn(2, 20% SD) was applied to running 120-point
incremental time series {ui}, with {si} daily closing prices (Dow
Jones Interactive). Fig. 2 shows the running ApEn values and
concomitant index values; note the rapid increase in ApEn to its
highest observed value immediately before the November 1997
crash, our primary inference.

Furthermore, the coarseness in data sampling (daily) was

made simply to accommodate ready availability. It is interesting
that any inferences of qualitative economic consequence are
present, given this crudeness; we anticipate that finer sampling
would provide subtler inferences.

Also, ApEn was previously applied to show that the Standard
and Poor’s 500 (S&P 500) behaved quite differently from a
log-normal random walk during 1987–1988 (16). Data were
analyzed from 22 distinct 1000-point segments during this pe-
riod, sampled at 10-min intervals (Tick Data); ApEn(2, 20% SD)
was applied to the log-ratio series. In 21 of these 22 25-day
segments, the ApEn value was at least 0.3 (i.e., 6 ApEn SDs) less
than the expected ApEn value, assuming the null random-walk
hypothesis, establishing consistent serial structure. Notably, the
one segment where the random-walk assumption and calculated
ApEn values nearly agreed was October 1, 1987, to November 5,
1987, the period covering the stock market crash.

Of course, the rejection of the log-normal random-walk hypoth-
esis has been noted elsewhere in a variety of contexts, based on, e.g.,
skewness, excess kurtosis, and time-varying volatilities (17, 18). The
novel points, for both the Hang Seng and S&P 500 analyses, are (i)
the consistency and the degree to which ApEn remains well below
maximality during economically stable epochs and (ii) the fore-
shadowing of a potential crisis that a rapid rise to nearly maximal
ApEn value may provide.

Finally, some caution is essential. Although we have more
supporting evidence to suggest that a rapid (ApEn) rise to a very
high level before a crash appears to be a broadly held pattern, we
hardly expect it to be universally valid without restrictions.
Ultimately, a taxonomy based on diverse contexts should clarify
those settings for which this predictive capability is most con-
sistently realized.

Persistence, and a FBM Model. If an asset value increases today, is
it more likely to do so tomorrow? A direct test for this
persistence, and changes to its extent, would appear to have
broad utility. We indicate a straightforward technique that
uses ApEn to assess this. We also illustrate its potential utility
by application to a fractional Brownian motion (FBM) model,
thus affirming theory from a novel perspective.

The technique is as follows. Given an asset or index time series
{di}, define the coarse-grained binary incremental series BinInci :�
�1, if di�1 � di � 0, �1 otherwise. Then calculate ApEn (1){Bin-
Inci}. [In this binary version, r � 1 is out of play (2, 3), because ApEn
detects precise pattern matches.] We thus directly evaluate the
proximity to equidistribution of the four {up, up}, {up, down},
{down, up}, {down, down} pairs, with ‘‘random’’ variation yielding
�25% occurrence of each pair, and a nearly maximal ApEn value
of approximately log 2 (ref. 2, p. 2086). Positive persistence will
produce �25% occurrences of both (�1, �1) and (�1, �1),
resulting in lower than maximal ApEn values. The model indepen-
dence and statistical power here derive from the property that
virtually all processes have extremely small ApEn error bars for
BinInc, e.g., in the FBM model below, for N � 1000, SD of ApEn
�0.002 for the Hurst index H � 0.5. Most importantly, this ApEn
evaluation does not assume or require that the underlying data are
Markovian or indeed that we know any data or model character-
istics beyond stationarity. [If the data satisfy a Markov first-order
model, then ApEn (1) � ApEn (2), allowing yet further analytical
inferences.]

FBM provides a prominent model of persistence (19). It dates
from the 1960s, when Mandelbrot modeled phenomena that
exhibited both long-range dependence, in which time series
retain unusually high persistence far apart in time, and heavy-
tailed distributions. It has also led to new statistical applications,
e.g., of Hurst’s range over SD (rescaled range, R�S statistic) (ref.
20, pp. 62–64). FBM was first applied to financial data in 1971
(21); asset data sometimes exhibit long-range dependence and,
more typically, have heavy tails. Mandelbrot has pointed out

Fig. 2. Hang Seng (Hong Kong) running ApEn(2, 20% SD) values, applied to
a 120-point incremental daily closing price series, and concomitant index
values, 1992–1998. Note the rapid increase in ApEn to its highest observed
value immediately before the November 1997 crash.
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serious limitations in spectral and autocorrelative methods in the
analysis of such data, also discussed in refs. 20 and 22.

The FBM BH(t), specified by 0 � H �1, is a random process
with Gaussian increments that satisfies the following diffusion
rule: for all t and T, (i) E[BH(t � T) � BH(t)] � 0 and (ii) E[BH(t
� T) � BH(t)]2 � T2H. For H � 1�2, BH(t) is classical Brownian
motion; for H � 1�2, BH(t) exhibits positive persistence, and, for
H �1�2, it exhibits antipersistence.

For each of 50 values of H equally spaced between 0 and 1,
ApEn(1){BinInci}BH(t) was estimated from 50 Monte Carlo real-
izations (23) of BH(t). We illustrate the results in terms of def1 :�
log 2 � ApEn(1); def1 quantifies the extent to which ApEn(1) is not
maximal (2). Series that do not exhibit persistence have a nearly
maximal ApEn value, i.e., def1 � 0. In Fig. 3, we show def1 of FBM
as a function of H, for series length N � 1000 (	t � 1), along with
incremental time series for representative realizations of B0.7(t) and
B0.9(t). In Fig. 3C, our primary observation is the monotonicity of
def1 up from 0 as H increases away from 1�2, in either direction, i.e.,
greater regularity with increasing H away from 0.5. (The asymmetry
in def1 about H � 1�2 is anticipated from an asymmetry of the
covariance structure of BH.)

To illustrate this arithmetically, for a representative realiza-
tion of B0.7(t), BinInc � �1 occurred 517 times, and �1 occurred
482 times (nearly equal ups and downs). Yet the contiguous pair
{�1, �1} occurred 324 times, whereas {�1, �1} occurred only
193 times; i.e., 63% of rises were followed by a second rise.
Similarly, the pair {�1, �1} occurred 289 times, whereas {�1,
�1} occurred 193 times; i.e., 60% of falls were followed by a
second fall (ApEn � 0.665, def1 � 0.027).

The B0.9 case is even more pronounced. For a typical realiza-
tion 72% of rises were followed by a second rise, and 74% of falls
were followed by a second fall (ApEn � 0.579, def1 � 0.113).
ApEn characterizes the antipersistent case as well: for H � 0.1,
for a typical realization, only 36% of rises were followed by a
second rise, and 36% of falls were followed by a second fall; i.e.,

rises were more commonly followed by falls, and conversely
(ApEn � 0.651, def1 � 0.041).

Critically, once the realizations were generated, we deduced
underlying structural changes without doing model-based pa-
rameter estimation. In particular, although the distribution
functions of the BH(t) realizations are readily seen as heavy-
tailed, we do not need to first choose between FBM and, e.g.,
contrasting heavy-tailed yet short-term dependent GARCH
models oftentimes favored by econometricians, or otherwise, to
infer structural changes.

General ‘‘Random’’ Models. ApEn provides an efficient indicator of
the validity of the i.i.d. assumption altogether, whether the
random variables be normally distributed, log-normal, or oth-
erwise. Assume that an underlying process is i.i.d. of unknown
distribution. If the {ui} are i.i.d. random variables, we can
analytically compute the parameter ApEn(m,r). This is given by
theorem 2 in ref. 1:

Theorem. For an i.i.d. process with density function f(x), with
probability 1, for any m,

ApEn
m ,r� � �� f
y� log� �
z�y�r

z�y�r

f
z� dz� dy . [1]

In particular, note from Eq. 1 that ApEn(m,r) is independent of
m for all r. Therefore, for all r, ApEn(1,r) � ApEn(2,r). So
compare ApEn(1,r,N) and ApEn(2,r,N) values; if these disagree
by a significant amount for some r in a statistically stable range
of r, it is unlikely that the underlying process is i.i.d.

Historical Perspective: Classical Economics Approaches and Some
Limitations. To better understand the utility of ApEn as applied
herein, we consider the extant approaches to financial time series
analysis. Historically, two primary schools of evaluating assets
have existed: the ‘‘firm-foundation’’ and ‘‘castle-in-the-air’’ the-
ories. The firm-foundation theory holds that intrinsic properties
of an asset, such as price�earnings (P�E) ratios, dividend
payouts, risk, and interest rates are primary determinants of a
stock’s value. Assessment and forecast of these properties (fun-
damental analysis) largely dictate financial decisions by this
school. The contrasting castle-in-the-air theory holds that psy-
chological and irrational forces and perceptual cues primarily
drive the market, rather than intrinsic values. Advocates of this
theory oftentimes use ‘‘technical analysis’’ or chartism as the
essential analytical approach (24), looking for graphical trends
or predictable patterns in historical records. Much has been
written, won, and lost on behalf of each view; notably, castle-
in-the-air advocates include Keynes (25) and Morgenstern (26),
whose books and views had significant impact on policy at
highest levels. However, despite numerous claims to the con-
trary, upon close examination, both technical and fundamental
analyses have generally failed to yield benefits over the long haul,
i.e., to outperform a simple ‘‘buy�hold’’ strategy (27). Moreover,
a large fraction of significant market moves are difficult to
explain on the basis of fundamental values alone (28).

Mathematical modeling and statistical analysis of price move-
ments has become a field of its own, econometrics. The first
formal mathematical model of financial asset prices was devel-
oped by Bachelier (29) in 1900 to price warrants traded on the
Paris Bourse as a Brownian motion. More recently, Samuelson
(30) and Arrow (31) developed highly mathematical approaches,
although the resulting theory had some practical deficiencies.
This was followed by the B-S model of option pricing (15), based
on economic rationale and depending only on observable vari-
ables. The B-S equation and variants have become the theoret-
ical workhorse of the financial industry and have been applied to

Fig. 3. Increments for representative realizations of fractional Brownian
model (H). (A) H � 0.7. (B) H � 0.9. (C) Deficit from maximal irregularity def1

of binary incremental time series BinInci of FBM(H), for series length N � 1000.
Observe the monotonicity of def1 up from 0 as H increases away from 1�2, in
either direction, i.e., greater regularity with increasing H away from 0.5.

13712 � www.pnas.org�cgi�doi�10.1073�pnas.0405168101 Pincus and Kalman



numerous other derivatives (e.g., futures and swaps), insurance
policies, and, indeed, asset prices directly. In addition to and
contrasting with such structural models, the application of
statistical ARMA-type models, which do not explicitly use
economic theory and instead model forecast errors as simply
random events, has been widespread. This application has led to
a marriage of linear regression methodology and finance, with an
influential history during the past 30 years. Further models
incorporate long-range dependence, and more recently, dynam-
ical systems theory and neural networks. A comprehensive
treatment of econometric modeling is given in ref. 20.

However, despite all the modeling efforts, a variety of issues
compromise the models’ utility, in particular during periods of
market instabilities, when predictive techniques are most needed.
First, many models, based on retrospective studies, have lacked
corroborative follow-up studies. Even for those models that persist,
the accuracy of model-to-data fit often changes with evolving
market conditions, undermining the effectiveness of estimated
parameters to mark market evolution. Second, no a priori reason
exists why future price movements need be independent of past
movements for a given financial instrument; any number of viola-
tions of the random-walk hypothesis (e.g., refs. 17 and 18) suggest
that one should let the data speak for themselves. Third, in fitting
data to econometric models, traditional statistical assumptions
generally are made based on underlying assumptions that the data
were generated by experimentation. However, economic data are
virtually always nonexperimental, with consequences discussed in
endnote iii. Fourth, most models are real analytic, with functionals
that have smoothly varying derivatives as a function of a control
parameter. As a consequence, sudden dramatic changes in a
market’s expected value are highly unanticipated for such models.
Fifth, jump process models are rarely seen, despite their apparent
appropriateness in many settings when isolated political events, or
discretely applied governmental or institutional constraints (e.g.,
interest rate changes), are primary factors. [Cox and Ross (32)
provide a notable exception.] Finally, many models have several
first-order practical limitations, because, to retain analytic elegance,
they often ignore such aspects of financial markets as transaction
costs, liquidity, and tax issues. Although corrections to these
limitations have been proposed (e.g., models incorporating sto-
chastic volatility, jump diffusions, and�or hybrid markets), in prac-
tice it appears that such corrections are either not widely imple-
mented or that, when they are implemented, model modifications
are made in an ad hoc manner, varying considerably among users,
even among financial instruments.

Additionally, pollutants such as fraud and market manipula-
tion seem nearly impossible to model, yet are real and signifi-
cantly alter price movements, involving vast sums of money. The
recent Enron debacle, the 2000–2001 ‘‘penny stock schemes,’’
and the Hunt brothers’ attempts to corner the silver market in
the 1980s are but three of many examples. The technical issue is
that simply incorporating fraud into a random-effects compo-
nent of, e.g., an ARMA model fails, because the extent of fraud
is rarely chronic, but rather is much more interrupted, with ebb
and flow a complicated game between judicial and legislative
efforts and corruptive creativity.

A further issue is the considerable distinction between short-
and long-term investment strategies. Aphorisms such as ‘‘In the
long-term, earnings drive the market’’ abound. Yet in 1999,
investors held stocks for just over 8 months on average, con-
firming that many investment strategies are decidedly not long-
term. We thus require direct means to assess the irregularity of
short sequences, without requiring a model-specification [see
(iv), introduction, ref. 3]. Moreover, even if in the long run,
fundamental analysis does triumph, in the short run, castle-in-
the-air and perceptual issues (e.g., interpretation of cues by the
Federal Reserve regarding interest rate change possibility) often
appear to dominate index fluctuations. The famous Keynes

(1923) quotation ‘‘In the long run we are all dead’’ reflects the
importance of this setting—asymptotics and long-term evalua-
tions are fine, but economists and investors should be intimately
concerned as well with short- and medium-horizon dynamics.

Do these concerns matter? It appears so. The list of individ-
uals and firms that have been badly hurt financially by inade-
quate ‘‘reading of the tea leaves’’ is daunting, including Sir Isaac
Newton, and more recently, Long-Term Capital Management,
an elite hedge fund based in Greenwich, CT, that lost 90% of its
assets in a 6-week financial panic (1998) and needed to be bailed
out by the Federal Reserve. This is to say nothing about the
future of heavy investments in Internet and biotechnology
stocks, whose chronic wild swings often underscore perceptual
and speculative rather than asset-based valuations.

The perspective above strongly suggests that for effective,
broad utility, measures of variability and irregularity should be
‘‘model-independent,’’ i.e., provide robust qualitative inferences
across diverse model configurations. The observation that ApEn
is model-independent fits squarely with this mandate. Of course,
it is important to recognize that ApEn also confirms theory
(establishes, e.g., monotonic parameter evolution) in instances in
which models approximate reality, thus enriching and comple-
menting extant models. However, we believe that the applica-
bility (of ApEn) to data from complicated models of unknown
form is paramount for meaningful financial data analysis and
interpretation.

Independent of whether one chooses technical analysis, fun-
damental analysis, or model building, a technology to directly
quantify subtle changes in serial structure has considerable
potential real-world utility, allowing an edge to be gained. And
this applies whether the market is driven by earnings or by
perceptions, for both short- and long-term investments.

Endnotes. (i) The debate as to the relative importance of financial
markets within economic theory is longstanding. A consensus
among economists is that financial markets are a sideshow and
that rational economic explanations can explain economic cy-
cles. Without taking sides, it appears to us that, especially in
evaluating short-term behavior, there is merit in treating finan-
cial market analysis and economics as distinct, albeit related
endeavors. Moreover, both within economic and finance theory,
there is a history of modeling toward reductionist, analytic
elegance. This elegance does well in conveying central para-
digms, but often it is realized at the expense of considering
observed effects that muddy theory, yet critically affect outcome.
We should recall that the intellectual founders of modern
economic theory, including Keynes and his mentor Marshall
(33), stressed its practical importance. Hence, we reinforce the
need for analytic tools that prove useful both on empirical data
of arbitrary lengths and unknown model formulations, yet are
simultaneously useful within model-based frameworks.

(ii) For many mathematical models, as a control parameter
evolves toward an instability boundary, not only does ApEn
increase toward maximal values (1, 34), but it also changes
significantly earlier in parameter space than do means and
standard deviations. Thus, both empirically and in model set-
tings, ApEn can often provide the investor with advanced
warning of a first-order asset price change.

(iii) Some misconceptions should be clarified. Because finan-
cial time series are nonexperimental, single sequences do not
necessarily satisfy ‘‘randomness’’ criteria given by almost sure
laws of probability theory (e.g., normality) (3–5, 7). Yet many
econometric models implicitly make experimental assumptions.
Oftentimes, one sees as a baseline setting a linear regression
model, for which the regressors have fixed values, and distur-
bances are presumed uncorrelated with 0 mean and constant
variance. Then, presuming classical experimental assumptions, a
least-squares estimator is the best linear unbiased estimator. Of
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course, when this model is violated, the least-squares estimator
no longer has such nice properties. The form of violation (e.g.,
multicollinearity, specification error, serial correlation of resid-
uals, and heteroskedasticity), and putative repairs to each type,
have received much econometric attention. In the end, however,
an experimental framework, with some i.i.d. model component
and axiomatic inferences, is nearly always maintained, subject to
the objections above. This theme, for instance, is reflected in
much of the second generation of B-S and stochastic calculus-
type models, and in somewhat more classical fixes such as
GARCH and SARIMA models. The inadequate fit of theory to
empirical data is recognized, but the fix does not satisfy the
prejudice-free, nonexperimental criterion.

(iv) The efficient market and random-walk hypotheses are
often viewed as synonymous. Although variants of the form of
efficiency exist, depending on which information is available to
whom and how quickly, advocates of this perspective hold that
the present price of a security encompasses all presently available
information, including past prices, and that future prices are
impossible to predict. This has been debated ad infinitum;
certainly numerous studies exist in which the data do not satisfy
a random walk. However, in many violations, despite some
Markovian structure, the martingale form of efficiency [inter-
estingly, Bachelier’s original position (29)] still holds; i.e., future
expected gains are independent of the past.

We have a slightly different viewpoint. The weak evidence of
either technical or fundamental analysts to outperform ‘‘buy-
and-hold strategies’’ does not necessarily imply random incre-
ments, but rather only that no one has previously quantified and
exploited insidious serial structure on a consistent basis. We
believe that for many markets, exploitable opportunities remain,
especially in the �80% maximal irregular ApEn range, where
classical chartism, correlation, and spectral methods typically
disclose little.

(v) Although the emphasis herein has been primarily on ApEn as
a model-independent measure, it is essential to point out that ApEn
has been applied in many model-based studies (1, 8, 34, 35). Thus,
point 4 of the Introduction bears repeating: ApEn can be readily
applied to the classical econometric modeling apparatus.

(vi) We propose a thematic modeling approach that may help
to ‘‘explain’’ rapid increases in ApEn as a precursor to a
significant market instability (as in Fig. 2). Consider a family of
N either independent (suitably superposed) or weakly coupled
oscillators. Then, it will be a generic result that as N increases,
ApEn will also increase monotonically. The genericity will be
robust to most forms of superposition, of oscillators or (quasi-)
periodic phenomena, and of weak coupling. Thus, greater system
instability can often be seen as an increasing number of primarily
distinct cyclic sources, with destabilization a much greater risk in
a significantly fractionized and divisive financial universe. Of
course, a single abrupt catastrophe can abruptly change every-
thing, e.g., the September 11, 2001 attack, but, whereas this type
of event will remain largely unpredictable, other more insidious
‘‘structural’’ changes may well be detectable before a major
market or asset move.

(vii) Superficially, ApEn has a theme common to ‘‘nonlinear’’
statistics such as the correlation dimension and largest Lyapunov
exponent, in that it is a functional of contiguous block input.
However, critical differences exist between ApEn and these
methods. These latter methods are strongly prejudiced; they
correctly apply primarily to deterministic dynamical systems,
only one of many model forms that yield correlated output. In
general, they are correctly used only in asymptotic analyses and
suffer a ‘‘curse of dimensionality’’ when applied to typically sized
data sets. Consequently, the application of such methods to most
time series of moderate length and unknown model-form, e.g.,
financial data, yields nonreplicable results (1, 36). This reinforces
the importance of the choices of parameters m and r (low-order
m, relatively coarse mesh r) in the ApEn specification to ensure
good replicability.

(viii) Cross-ApEn (2), a bivariate measure of asynchrony
thematically related to ApEn, provides a measure of ‘‘corre-
spondence’’ or ‘‘association’’ superior to linear correlation, in
that its quantification matches intuition in broader settings, both
theoretical mathematical and real world (12, 22). This has
important implications to diversification strategies, portfolio
selection, and the use of ‘‘beta’’ in quantifying systematic risk.
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