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Learning increases human electroencephalographic
coherence during subsequent slow sleep oscillations
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Learning is assumed to induce specific changes in neuronal activity
during sleep that serve the consolidation of newly acquired mem-
ories. To specify such changes, we measured electroencephalo-
graphic (EEG) coherence during performance on a declarative
learning task (word pair associations) and subsequent sleep. Com-
pared with a nonlearning control condition, learning performance
was accompanied with a strong increase in coherence in several
EEG frequency bands. During subsequent non-rapid eye movement
sleep, coherence only marginally increased in a global analysis
of EEG recordings. However, a striking and robust increase in
learning-dependent coherence was found when analyses were
performed time-locked to the occurrence of slow oscillations
(<1 Hz). Specifically, the surface-positive half-waves of the slow
oscillation resulting from widespread cortical depolarization were
associated with distinctly enhanced coherence after learning in the
slow-oscillatory, delta, slow-spindle, and gamma bands. The find-
ings identify the depolarizing phase of the slow oscillations in
humans as a time period particularly relevant for a reprocessing of
memories in sleep.

N ewly encoded memory representations are thought to re-
main in a fragile state and to require consolidation for
long-term storage (1, 2). An extensive body of research has
provided convergent evidence that sleep enhances processes of
memory consolidation, presumably by an off-line “replay” of the
newly encoded materials during sleep (3-5). It was first dem-
onstrated in animal studies that patterns of hippocampal activity
observed during encoding were replayed during subsequent
slow-wave sleep (SWS) in rats (6-8). It has been further
proposed that the spontaneous reactivation of hippocampal
memory representations drives a hippocampal-neocortical trans-
fer of the information whereby this information becomes con-
solidated and integrated into long-term representations residing
in neocortical networks (3, 9, 10). Consistent with this view, signs
were found of coherent neuronal reactivation between hip-
pocampal and neocortical regions and within these regions
during sleep after acquisition of a spatial task (11).

The replay of memories in the hippocampus and their hip-
pocampal-neocortical transfer during SWS are assumed to be
linked to a sharp wave-ripple pattern of hippocampal electro-
encephalographic (EEG) activity that occurs in close temporal
correlation to sleep spindles in the neocortex (12, 13). In
humans, intense learning of a hippocampus-dependent declar-
ative memory task induces increased spindle activity during
subsequent sleep, particularly during the first two sleep cycles in
which SWS prevails (14). The occurrence of spindle and fast
activity in sleep is grouped by slow oscillations (dominant
frequency of 0.7-0.8 Hz) in animals as well as in humans (15-17).
In the human EEG, the surface negative-going half-wave of the
slow oscillation is associated with cortical disfacilitation and
suppressed spindle activity (17). This negativity is followed by a
pronounced increase in spindle activity during the subsequent
positive-going half-wave, reflecting a widespread depolarization
in cortical networks. Considering the close temporal relationship
between spindle activity and hippocampal sharp wave-ripple
activity, we supposed that this positive-going rebound phase in
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the slow oscillation represents a period of enhanced replay of
information to the neocortex.

In the neocortex, oscillatory synchronization of activity in
distributed cell assemblies is proposed as one general neural
mechanism underlying sensory integration and information rep-
resentation (18, 19). Accordingly, in humans processes of stim-
ulus encoding and associative learning have been shown consis-
tently to be associated with distinct increases in EEG coherence,
reflecting the synchronized activity between the cortical neuron
populations, contributing to the encoded representations (20—
23). Here, we used measures of EEG coherence during learning
of word pairs and during subsequent sleep to determine learn-
ing-dependent changes in sleep EEG that might point to a
reprocessing of encoded associations. Because hippocampus-
dependent memory tasks like the learning of word pairs are
known to benefit particularly from SWS-rich periods of early
nocturnal sleep (24, 25), we concentrated on EEG activity during
non-rapid eye movement (non-REM) sleep of the first two sleep
cycles after learning. Of special interest was the depolarizing
positive half-wave of the slow oscillation assumed to represent a
period of increased hippocampal-neocortical transfer of newly
acquired representations.

Methods

Subjects and Procedures. Recordings were taken from a sample of
13 subjects (6 male and 7 female, ages 20-30, mean of 23.9 years)
participating in a series of experiments exploring memory func-
tions of sleep. All subjects were healthy, nonsmoking, native
German-speaking students with regular sleep-wake rhythm
during the 6 weeks before the experiments. The experiments
were approved by the local ethics committee. More information
on subjects, procedures, and data processing can be found in
Supporting Text, which is published as supporting information on
the PNAS web site.

After an adaptation night, subjects slept in the laboratory on
two experimental nights (separated by at least 7 days) between
11:00 p.m. and 7:00 a.m. Between 9:30 and 10:30 p.m., they
performed in balanced order on a “learning task” and a “non-
learning task,” as described in ref. 14. On the learning task,
subjects learned a paired-associate list of 336 unrelated words,
arranged in 21 groups of eight pairs (e.g., factory/horse and
circle/scarf). Each group of pairs was presented twice for 106
and 70 sec on the first and second run, respectively, resulting in
a total learning time of 61.6 min. To induce comparable mne-
monic strategies, subjects were instructed to visually imagine a
relation of the two otherwise unrelated words of each pair.
Recall was tested immediately after the second run of presen-
tation and in the next morning. A cued recall testing was used;
i.e., subjects were presented with the first word of each pair and
had to recall the second one (no feedback was given). The
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nonlearning task was designed to resemble the learning task in
as many ways as possible but without the intentional learning
component. On this task, subjects were instructed to count all
letters containing curved lines (e.g., J, P, and U, but not W, Y,
and K) on word-pair stimulus displays identical to those used for
the learning task. Thus, visual input, task duration, and difficulty
were equal in both conditions, but subjects had little chance to
semantically process the words.

Recordings. The EEG was recorded digitally both while subjects
performed the cognitive tasks and during sleep by using a
SynAmps EEG amplifier (NeuroScan, Sterling, VA). EEG sig-
nals were sampled at a frequency of 500 Hz and were filtered
between 0.15 and 70 Hz by using a third-order Butterworth filter
(—6 dB at cutoff frequency and at least —12 dB per octave
rolloff). A 50-Hz notch filter was used to reduce power frequency
interference. Ag-AgCl electrodes were placed according to an
extended 10-20 System (Fpl, Fp2, F3, F4, C3, C4, P3, P4, O1,
02, F7,F8, T3, T4, TS5, T6, FI7, FT8, FC3, FC4, TP7, TPS, CP3,
CP4, Fz, Cz, and Pz) and were referenced to linked mastoids.
Additionally, horizontal and vertical eye movements and the
electromyogram (chin and neck) were recorded for standard
polysomnography.

Data Processing and Statistical Analysis. Each 30-sec epoch of sleep
EEG was scored visually according to standard criteria (26).
Sleep stages (1, 2, 3, 4, and REM sleep), awake time, and
movement artifacts were scored. Stage 2 sleep corresponds to
light non-REM sleep and stage 3 and 4 correspond to SWS.
Scoring included a thorough visual inspection of all 27 EEG
signals for movement and other artifacts during the first two
sleep cycles. The EEG recorded during performance of the
learning and nonlearning tasks was likewise visually inspected.
All epochs with artifacts were excluded from further analysis.
For the first analysis of power and coherence, blocks of 4,096
data points (=8 sec of EEG data) were used from all artifact-free
30-sec epochs of the first and (in eight subjects) also of the
second sleep cycle. Power spectra of the sleep EEG were
calculated after rereferencing recordings to a common average
applying fast Fourier transformations. The average number of
4,096-point blocks per subject was as follows: for stage 2 sleep,
learning condition 352.6 *= 34.0 and nonlearning condition
344.9 = 26.7; and for SWS, learning condition 227.5 = 16.5 and
nonlearning condition 239.5 = 22.1. Individual mean fast Fou-
rier transformations across all blocks of a condition were cal-
culated and subjected to a five-point moving average.
Coherence spectra of EEG activity were calculated from the
cross-spectral density between two EEG channels normalized by
the power-spectral density of each EEG channel. For coherence
calculation, the same 4,096-point blocks were used as for the
power analysis. On the resulting coherence spectrum, a five-
point moving average was also applied. Subsequently, mean
coherences in the classical EEG bands were calculated, i.e., in
the delta (1-4 Hz), theta (4-8 Hz), alpha 1 (8-10 Hz), alpha 2
(10-13 Hz), beta (15-25 Hz), and gamma (25-40 Hz) bands.
Additionally, mean coherences were calculated in the frequency
bands specifically characterizing sleep, i.e., in the slow-oscillation
band (0.5-1.5 Hz), the slow-spindle band (stage 2 sleep, 11.5—-
12.5 Hz; SWS, 9.5-10.5 Hz), typically dominating over fronto-
cortical regions, and the fast-spindle band (13.0-14.0 Hz) show-
ing a more centroparietal distribution. The choice of these
frequency bands was based on the peaks in the power spectra.
Calculation of power spectra was performed separately for stage
2 sleep and SWS, and for slow-spindle activity revealed different
mean peak frequencies of 11.89 = 0.11 and 10.29 * 0.21 Hz,
respectively, during these sleep stages (see Supporting Text; note
also that due to its frequency slow-spindle activity has been
referred to as “frontal alpha” in some reports; e.g., ref. 27). The
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spectral peaks were clearly visible in all subjects and no other
peaks were identifiable. The frequency ranges for the slow-
oscillation, the slow-spindle, and the fast-spindle band were thus
defined around their respective maxima.

Mean power and coherences in the delta, theta, alpha 1, alpha
2, beta, and gamma bands were also calculated from the EEG
recorded during task performance before sleep. These analyses
were performed in the same way as for sleep recordings on
4,096-point blocks of EEG from the first presentation of the
word list (average number of blocks per subject, 174.3 = 7.3).
Before EEG coherence analysis, eye movement potentials were
removed from EEG recordings by a regression method using the
vertical and horizontal electrooculogram (28).

Based on previous data (17, 29), we suspected that the grouping
of spindle activity by slow oscillations during non-REM sleep and
SWS is linked to a learning-dependent reprocessing of newly
acquired memories. On this background, it was of particular interest
whether the strong rebound of spindle activity after the large
negative half-wave of a slow oscillation is associated with enhanced
coherence after learning. This activity was examined by a second
coherence analysis, extending on an analysis (17) used for identi-
fying slow oscillations in the human sleep EEG. After low-pass
filtering of the sleep EEG signal (at Fz) within the slow-oscillation/
delta band (4 Hz), the largest negative half-waves were selected by
using a thresholding procedure (ref. 17; average number of half-
waves per subject in stage 2 sleep, learning condition 145.5 * 11.7
and nonlearning condition 155.7 = 10.3; and for SWS, learning
condition 141.2 = 13.2 and nonlearning condition 148.5 * 14.7;
see Supporting Text). To estimate power and the coherent EEG
activity in relation to the peak of the negative half-wave, blocks
with 512 data points (1.024 sec) were used. On the resulting
coherence spectra a three-point moving average was applied.
Power and coherence were calculated in two consecutive 1-sec
intervals in relation to the peak of the negative half-wave: (i) in
the positive-going rebound interval after the peak (0-1 sec), and
(if) in the —1- to O-sec interval before the peak (Fig. 2). For both
intervals, mean power and coherences were calculated in the
same frequency bands as described above. For further statistical
analyses, power and coherence values of the 0- to 1-sec positive-
going interval were standardized by subtracting respective values
of the preceding —1- to O-sec interval used as reference. To
assure that results of this analysis indeed represent specific
features of the positive-going interval of the slow oscillation, in
a control analysis, power and coherence values were calculated
in randomly distributed 1-sec intervals and values of these
intervals were also standardized by subtracting respective values
of immediately preceding 1-sec intervals.

Coherence analyses were calculated for 276 electrode pairs (all
possible electrode pair combinations not including the sites over
the longitudinal fissure, Fz, Cz, and Pz). Two-sided paired
Student’s ¢ tests were used to test whether coherence for an
electrode pair differed across subjects between the learning and
nonlearning conditions. In coherence maps (as shown in Figs. 1
and 2), solid lines were used to indicate significantly higher
coherence during learning than nonlearning. On the other hand,
dashed lines indicate significantly lower coherence during learn-
ing than nonlearning conditions. For exploratory purposes, the
significance level was set to P < 0.05 at this step of analysis.
Because of the high number of Student’s ¢ tests for each
coherence analysis inflating the risk of type I error, statistical
inferences were subsequently based on two types of x? tests: The
first one was used to decide whether the number of electrode
pairs with significant coherence differences is larger than the
number expected per chance. The second x? test was used to
decide whether the number of observed electrode pairs with
significantly higher coherence in the learning (than nonlearning)
condition is significantly larger than the number of electrode
pairs with significantly lower coherence in the learning condi-
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Fig.1. Coherence maps during task performance before sleep in the classical EEG bands (Upper) and during stage 2 sleep and SWS, respectively, in the slow-oscillation
and gamma bands, which were the only bands revealing significant coherence maps in the global analysis of sleep recordings (Lower). Maps indicate results for the
entire subject sample (n = 13). Coherences were calculated for 276 pairs of electrode sites (O). Significant coherence differences (P < 0.05) were marked with solid lines
for higher coherence during the learning condition and dashed lines for higher coherence during the nonlearning condition. Total numbers of electrode pairs with
significant coherence differences between learning (L) and nonlearning (NL) and results of the x2 tests are indicated below each map. A map was marked NS (not
significant) if the x? tests failed to indicate significance. In addition, electrode sites are indicated at which power in the learning condition was significantly (P < 0.05)

higher (®) or lower (inserted second circle) in comparison with the nonlearning condition.

tion. A coherence map was considered significant only if both x?
tests indicated significance (P < 0.025, corrected for the testing
with two tests). If one of the tests failed to indicate significance
or in the case that the number of electrode pairs with significant
coherence differences was <10 (in which x? testing is not
appropriate), the maps were considered nonsignificant. Regard-
ing the analysis of spectral power for all tests two-sided paired
Student’s ¢ tests were used (with P < 0.05 considered significant).

Results

Recall Performance and Global Coherence During Learning and Sleep.
Directly after learning, 71.6 £ 5.4% (mean = SEM) of the word
pairs were correctly recalled. At retrieval testing after sleep
recall performance averaged 72.4 * 5.6%.

EEG recordings during task performance before sleep re-
vealed that learning in comparison with nonlearning induced a
strong increase in EEG coherence in almost all frequency bands.
This finding means that the number of electrode pairs between
which EEG coherence was significantly higher during learning
than nonlearning in these bands markedly exceeded the number
of electrode pairs with significantly lower coherence during
learning. This result held true for the delta (28 vs. 6 electrode
pairs, P < 0.001), theta (32 vs. 5, P < 0.001), upper alpha (21 vs.
3, P < 0.001), and beta (23 vs. 1, P < 0.001) bands. Visual
inspection of the coherence maps reveals that in the upper alpha
band coherence was especially enhanced between left frontal
and right parietal areas (Fig. 1).

During sleep, the number of differences in EEG coherence
between the two conditions was, in general, distinctly reduced.
Analysis revealed an increased coherence between electrodes
after learning than nonlearning in the slow-oscillatory frequency
band both during stage 2 sleep (17 vs. 3 electrode pairs for higher
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vs. lower coherence in the learning condition, P < 0.01) and SWS
(10 vs. 0, P < 0.01; Fig. 1). In SWS, additionally, greater
coherence after learning was found in the gamma band (15 vs.
3, P < 0.01). Other frequency bands showed no significant
differences between learning and nonlearning conditions.

Complementary analyses were performed to explore differ-
ences in EEG power between the learning conditions during
sleep. These analyses revealed an increased power in the upper
spindle band (13.0-14.0 Hz) in the learning condition as com-
pared with the nonlearning condition, which in stage 2 sleep was
maximal at central electrode sites (P < 0.05, at Fz, F4, C3, Cz,
C4, and P3; Fig. 3, which is published as supporting information
on the PNAS web site). During SWS, it dominated over fron-
tocortical sites (P < 0.05, at Fpl, Fp2, and F3), extending over
this region also into the adjacent beta band (P < 0.05, at Fp1 and
F4), and gamma band (P < 0.05, at F3).

Coherence Analysis Time-Locked to Slow Oscillation. The number
and magnitude of differences in EEG coherence between the
learning and nonlearning conditions markedly increased when
the analysis was focused on the depolarizing positive-going phase
of the slow oscillation. In this positive-going phase 0-1 sec after
the peak of the negative half-waves, coherence was distinctly
higher after learning than nonlearning in the slow-oscillatory
band (stage 2 sleep, 37 vs. 0 electrode pairs, P < 0.001; SWS, 16
vs. 2, P < 0.001), in the delta band (stage 2 sleep, 26 vs. 1, P <
0.001; SWS, 24 vs. 2, P < 0.001), and in the slow-spindle band
(SWS, 11 vs. 2, P < 0.025). Separate analysis of the —1- to 0-sec
interval before the peak of the negative half-waves, did not reveal
any further consistent difference in EEG coherence between the
learning conditions.

Notably, these effects on coherence in the positive-going interval
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Coherence analysis time-locked to slow oscillation. (A) Traces exemplifying extraction of slow oscillation (middle trace) and spindle activity (bottom trace)

from sleep EEG (upper trace) in a single subject. Shaded area, the depolarizing positive-going phase of the slow oscillation; black bar, the preceding —1- to 0-sec
interval used in some analyses as reference. (B) Coherence maps for slow oscillatory (Left), delta (Center), lower spindle (Right Lower), and gamma (Right Lower)
bands during the positive-going phase of slow oscillation (time-locked to the negative peak of slow oscillation and adjusted to the preceding 1-secinterval). Maps
indicate results for the entire subject sample (n = 13). Significant coherence differences (P < 0.05) were marked with solid lines for higher coherence during the
learning condition and dashed lines for higher coherence during the nonlearning condition. In addition, electrode sites are indicated at which power on the
learning condition was significantly (P < 0.05) higher (®) or lower (which never happened) in comparison with the nonlearning condition. Bar diagrams indicate
total number of greater coherences in the learning (hatched bars) and nonlearning (white bars) condition. ***, P < 0.001; *, P < 0.05.

of the slow oscillation proved to be robust in an analysis where
coherence values of the preceding —1- to 0-sec interval were
subtracted from those of the 0- to 1-sec positive-going interval (Fig.
2). In this analysis, again coherence was distinctly greater after
learning than nonlearning in the slow-oscillation band (stage 2
sleep, 22 vs. 0, P < 0.001; SWS, 30 vs. 9, P < 0.001) and delta band
(stage 2 sleep, 46 vs. 2, P < 0.001; SWS, 15 vs. 4, P < 0.025). Also,
a markedly greater coherence after learning than nonlearning was
found for the slow-spindle band, although this effect appeared to be
limited to SWS (20 vs. 0, P < 0.001). In addition, this analysis
indicated enhanced coherences associated with prior learning in the
beta (12 vs. 0, P < 0.01) and gamma (24 vs. 5, P < 0.001) frequency
bands during stage 2 sleep.

To control for effects unrelated to a grouping by the slow
oscillation, a further analysis concentrated on 1-sec intervals that
were randomly distributed over the cycle of the slow oscillation.
Again, coherence values of these randomly distributed 1-sec inter-
vals were expressed as difference with reference to their respectively
preceding 1-sec interval. There was no difference in EEG coher-
ence between the learning conditions in this analysis, further
supporting the time-locked nature of the differences in coherence
emerging during the positive-going interval of the slow oscillation.

We also examined whether learning-induced changes in EEG
coherence during slow oscillations were accompanied by sys-
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tematic changes in local power. Overall, this analysis revealed
local power increases after learning at some few electrode sites,
contributing to the coherence changes, mainly during stage 2
sleep in the gamma band (Fp1, FT7, CP4, P4, and TP8, P < 0.05),
the slow-oscillation band (F4, T5, O1, and O2, P < 0.05), and the
delta band (T5, O1, and O2, P < 0.05). During SWS, learning-
related increases in power occurred in the slow-spindle band at
two locations, only (F3 and T6, P < 0.05; refer to Fig. 2 for a
summary of respective results).

Discussion

Our data indicate that EEG coherence is enhanced during sleep
after intense associative learning of word pairs, as compared
with a nonlearning control condition. Importantly, this enhance-
ment was most pronounced during the depolarizing positive-
going half-wave of slow oscillations (dominant frequency of <1
Hz). During this positive-going phase, prior learning led to a
strong and most robust increase in the number of recording sites
showing coherent EEG activity in the slow-oscillatory, delta,
lower-spindle, and gamma frequency bands. In contrast to the
analysis focusing on periods time-locked to slow oscillations,
effects of learning on EEG coherence were marginal in global
analyses of EEG recordings during non-REM sleep. These
findings suggest the slow oscillation may be of particular func-
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tional significance for a reprocessing of newly acquired associ-
ations during SWS (29).

Analysis of the waking EEG during task performance indicated
a distinct enhancement in EEG coherence in a wide variety of
frequencies during explicit learning of the word pairs as compared
with the nonlearning situation. This finding confirms a number of
previous studies which, mainly based on analysis of event-related
EEG activity, consistently showed similar increases in EEG coher-
ence in tasks, such as object recognition and short-term retention
tasks, demanding the explicit (i.e., declarative) encoding of repre-
sentations (20, 23, 30). Weiss and Rappelsberger (23) found that the
encoding of words that could be correctly recalled later was
associated with enhanced coherence within all frequency bands
(1-18 Hz) except the lower alpha band (8-10 Hz) in comparison
with encoding of words later forgotten. This finding fits remarkably
well with the present results where EEG coherence during word-
pair learning was enhanced in the delta, theta, upper alpha, and
beta bands, but not in the lower alpha band. Collectively, these data
corroborate the concept that efficient declarative encoding of
associations is bound to a large-scale synchrony of cortical neuronal
activity that is sensitively reflected by EEG coherence. The fre-
quencies involved are assumed to depend at least in part on the type
and complexity of the task and to what extent local or distant
cortical and subcortical networks need to be integrated for the
encoding process (20, 31).

High coherence between EEG signals from different sites of
the scalp hints at an increased interplay between the under-
lying neuronal networks. Volume conduction as an artificial
source of coherence can be excluded here because it would
have preferentially enhanced coherences between closer elec-
trode sites (32). However, many of the coherences found here
during sleep and during learning before sleep involved elec-
trode pairs 12 cm and more apart. Most important, the volume
conductance effect would not be expected to differentially
affect sleep after learning and nonlearning. On the other hand,
it is very unlikely that the distinct increase in EEG coherence
during sleep after learning that we observed for the slow-
oscillation, delta, and spindle bands reflects a direct cortico-
cortical interaction between the different neocortical regions.
Because the generation of these oscillations relies on a recip-
rocal interaction within thalamocortical feedback loops, it can
be assumed that the same thalamocortical connections also
contribute to the increase in coherence in these bands (15, 16,
29, 33).

Slow oscillations, which were originally discovered by Steriade
et al. (15, 16) using intracellular recordings and were subse-
quently confirmed in human sleep EEG recordings (17, 34, 35),
grasp the entire thalamocortical system. However, they can be
recorded also in isolated slabs of neocortical tissue which, hence,
is considered the primary generator structure of these oscilla-
tions. The negative half-wave of the slow oscillation in the human
sleep EEG corresponds to a depth-positive neocortical field
potential, which is associated with widespread intracellular
hyperpolarization (17, 36). On the other hand, the positive
half-wave marks a depth-negative extracellular field potential,
reflecting widespread cortical depolarization. The hyperpolar-
ized “down” state of slow oscillations has been shown to be
linked to a general disfacilitation, rather than inhibition, of
cortical networks associated with a silencing of excitatory as well
inhibitory neurons, which probably results from activation of
intrinsic potassium currents (37). Slow oscillations, thus, exert a
fundamental temporal grouping effect on fast brain oscillations
in the spindle, beta, and gamma bands. Whereas during the down
state (EEG-negative half-wave) this activity is suppressed, the
depolarizing up state (EEG-positive half-wave) is associated
with high levels of spiking in neocortical pyramidal cells that
drive through corticothalamic fibers, the thalamic generation of
spindle activity spreading back to the neocortex (38, 39). Ac-
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cordingly, the positive half-wave of slow oscillation is accompa-
nied by a pronounced rebound of spindle activity (17). The close
coupling of the generating mechanisms makes plausible here
that, during SWS after learning, combined increases in EEG
coherence accompanying slow-oscillation positivity were found
to be most robust in just these two frequency bands, i.e., the
slow-oscillatory and (lower) spindle-frequency bands. Analysis
of multisite local field potentials in cats revealed that coherence
of spindle activity was highest during states of increased cortical
excitability, indicating that the depolarizing phase of the slow
oscillation indeed helps to shape the large-scale in-phase syn-
chrony of cortical spindle activity (33).

Notably, effects of learning on EEG coherence during sleep
were distinctly more pronounced than and only loosely related
to changes in EEG power in the respective frequency bands.
Regarding power, the most consistent change was a learning-
induced increase in upper spindle power. Whereas this increase
is in line with previous observations of an enhanced occurrence
of discrete spindles after declarative learning in humans (14, 40),
it was largely unrelated to changes in coherence.

The increase in EEG coherence among widely distributed re-
gions might in part reflect the complexity of the task, for which the
subject, beyond rote learning of the written word pairs, adhered to
a certain mnemonic strategy to visually imagine the word content,
thereby relying on an integration of verbal, visual, and spatial
cortical functions. Previous studies (41-43) indicated a particular
involvement of left frontotemporal and right parietal cortical
regions in the encoding of word pairs. In support of these findings,
here coherence during learning before sleep was distinctly en-
hanced between left frontal and right parietal areas in the upper
alpha band (10-13 Hz, Fig. 1). However, increased EEG coher-
ences found during learning in the delta, theta, and beta bands
indicated an involvement also of further regions, such as the right
frontal and left parietotemporal regions during performance on the
learning task. Interestingly, the pattern of increased coherences in
the upper alpha band between left frontal and right parietal regions
seen during learning before sleep, shared some similarity with the
distribution of slow-oscillation-bound coherences in the (lower)
spindle and gamma bands during subsequent sleep suggesting that
these interhemispheric connections became partly reactivated. This
observation would fit the concept that the same cell assemblies
activated during encoding interact more strongly than others during
subsequent SWS. Nevertheless, one should be cautioned against
taking the observed EEG changes as direct reflection of an actual
reprocessing of the representations acquired before sleep. Our
learning task activated a variety of cortical regions and was not
designed to invoke activity in a select cortical region. Thus, con-
clusions regarding the topography of EEG coherence remain
tentative. In the same way, it could be argued that the EEG
frequencies indicating coherence changes at learning are different
from those whose coherence changed in sleep after learning.
However, this result might not be surprising, considering that the
entire sleep EEG differs in the predominant frequencies from the
waking EEG, especially during SWS. Data corroborating the view
that slow oscillations could be involved in a reprocessing of newly
acquired representations come from a recent study (44) indicating
a local increase in slow-wave activity during sleep after learning
specifically in areas involved in task acquisition, with this increase
being correlated with later retrieval performance.

Our data indicate an experience-dependent increase of EEG
coherence during sleep after a period of intense declarative
learning, which is not necessarily related to any memory function
of sleep (45). However, in identifying the depolarizing positive-
going phase of slow oscillations as a time period associated with
a striking increase in learning-dependent EEG coherence, the
results fit well with recent concepts connecting slow oscillations
to iterative processes of memory formation during SWS (29, 46,
47). According to these models, the long-range synchrony in
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cortical activity associated with the up state (surface positivity)
of slow oscillations drives thalamocortical spindle activity, which
is associated with a massive calcium entry into cortical pyramidal
cells. It thereby sets the stage for synaptic plastic changes in these
cells through activation of calcium-dependent kinases. Concur-
rently, the strong synchronous cortical excitation associated with
the slow oscillation up state is thought to trigger hippocampal
ripple activity, a mechanism underlying the transfer of informa-
tion encoded in hippocampal populations to neocortical net-
works (12, 13, 48). Coincident inputs from spindle and ripple
activity to cortical populations could in this way set the stage for
plastic processes in specific neocortical representations.
According to the outlined concept, the depolarizing positive
phase of slow oscillations enables plastic processes in specific
neocortical networks by synchronizing thalamic and hippocampal
inputs. On this background, an intriguing question pertains to the
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mechanism initiating this depolarizing up state, which seemingly
emerges from a period of neuronal silence (29). Interestingly, as one
mechanism initiating positivity, miniature excitatory postsynaptic
potentials have been identified. They randomly summate during the
down state of slow oscillations and may act in concert with slow
hyperpolarization-activated cation currents to depolarize cortical
pyramidal cells above threshold (49). Assuming that the probability
of miniature excitatory postsynaptic potentials during the silent
down phase is selectively enhanced at synapses previously activated
during associative learning (50-53), this ongoing miniature activity
could well explain the present observation of increased coherence
of slow oscillations between cortical regions previously engaged in
the learning process.

We thank Auja Otterbein for organizational work. This study was
supported by Deutsche Forschungsgemeinschaft Grant FOR 457.

29. Steriade, M. & Timofeev, 1. (2003) Neuron 37, 563-576.
30. Mima, T., Oluwatimilehin, T., Hiraoka, T. & Hallett, M. (2001) J. Neurosci. 21,
3942-3948.
. Varela, F., Lachaux, J. P., Rodriguez, E. & Martinerie, J. (2001) Nat. Rev.
Neurosci. 2, 229-239.
32. Srinivasan, R., Nufiez, A. & Silberstein, R. B. (1998) IEEE Trans. Biomed. Eng.
45, 814-826.
33. Destexhe, A., Contreras, D. & Steriade, M. (1999) J. Neurosci. 19, 4595-4608.
34. Achermann, P. & Borbély, A. A. (1997) Neuroscience 81, 213-222.
35. Marshall, L., Molle, M., Fehm, H. L. & Born, J. (2000) Eur. J. Neurosci. 12,
3935-3943.
36. Steriade, M., Contreras, D. & Amzica, F. (1994) Trends Neurosci. 17, 199-208.
37. Timofeev, 1., Grenier, F. & Steriade, M. (2001) Proc. Natl. Acad. Sci. USA 98,
1924-1929.
38. Contreras, D. & Steriade, M. (1995) J. Neurosci. 15, 604-622.
39. Destexhe, A., Contreras, D. & Steriade, M. (1999) Neuroscience 92, 427-443.
40. Meier-Koll, A., Bussmann, B., Schmidt, C. & Neuschwander, D. (1999) Percept.
Mot. Skills 88, 1141-1159.
. Grady, C. L., McIntosh, A. R., Rajah, M. N. & Craik, F. I. (1998) Proc. Natl.
Acad. Sci. USA 95, 2703-2708.
42. Cabeza, R. & Nyberg, L. (2000) Curr. Opin. Neurol. 13, 415-421.
43. Molle, M., Marshall, L., Fehm, H. L. & Born, J. (2002) Eur. J. Neurosci. 15,
923-928.
44. Huber, R., Ghilardi, M. F., Massimini, M. & Tononi, G. (2004) Nature 430,
78-81.
45. Cantero, J. L., Atienza, M., Salas, R. M. & Dominguez-Marin, E. (2002)
J. Neurosci. 22, 4702-4708.
46. Sejnowski, T. J. & Destexhe, A. (2000) Brain Res. 886, 208-223.
47. Buzsaki, G. (1998) J. Sleep Res. 7, Suppl. 1, 17-23.
48. Nadasdy, Z., Hirase, H., Czurko, A., Csicsvari, J. & Buzsaki, G. (1999)
J. Neurosci. 19, 9497-9507.
49. Bazhenov, M., Timofeev, L., Steriade, M. & Sejnowski, T. J. (2002) J. Neurosci.
22, 8691-8704.
50. Oliet, S. H., Malenka, R. C. & Nicoll, R. A. (1996) Science 271, 1294-1297.
51. Bao, J. X., Kandel, E. R. & Hawkins, R. D. (1998) J. Neurosci. 18, 458—
466.
52. Hoffman, K. L. & McNaughton, B. L. (2002) Science 297, 2070-2073.
53. Eliot, L. S., Kandel, E. R. & Hawkins, R. D. (1994) J. Neurosci. 14, 3280-3292.

w
—

4

juy

Molle et al.



