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Abstract — Although Human African Trypanosomiasis is largely considered to be in the process of extinction today,
the persistence of human and animal reservoirs, as well as the vector, necessitates a laborious elimination process.
In this context, modeling could be an effective tool to evaluate the ability of different public health interventions
to control the disease. Using the Cormas® system, we developed HATSim, an agent-based model capable of simulat-
ing the possible endemic evolutions of sleeping sickness and the ability of National Control Programs to eliminate the
disease. This model takes into account the analysis of epidemiological, entomological, and ecological data from field
studies conducted during the last decade, making it possible to predict the evolution of the disease within this area
over a 5-year span. In this article, we first present HATSim according to the Overview, Design concepts, and Details
(ODD) protocol that is classically used to describe agent-based models, then, in a second part, we present predictive
results concerning the evolution of Human African Trypanosomiasis in the village of Lambi (Cameroon), in order to
illustrate the interest of such a tool. Our results are consistent with what was observed in the field by the Cameroonian
National Control Program (CNCP). Our simulations also revealed that regular screening can be sufficient, although
vector control applied to all areas with human activities could be significantly more efficient. Our results indicate that
the current model can already help decision-makers in planning the elimination of the disease in foci.

Key words: Trypanosomiasis, Tsetse flies, Agent-based model, Simulations, Transmission, Control, Elimination,
Bipindi, Cameroon.

Résumé — Simulation de I’élimination de la maladie du sommeil par un modéle multi-agents. Bien que
la trypanosomiase humaine africaine soit largement considérée comme étant en voie d’extinction aujourd’hui, la
persistance de réservoirs humains et animaux (ainsi que vectoriel) va compliquer le processus d’élimination de la
maladie. Dans ce contexte, la modélisation peut s’avérer étre un outil efficace pour évaluer la capacité des
interventions de santé publique 4 contrdler la maladie. A I’aide du systéme Cormas®, nous avons développé
HATSim, un modéle multi-agents capable d’évaluer les évolutions endémiques ainsi que la capacité des
programmes nationaux de lutte a éliminer la maladie. Ce modele prend en compte ’analyse des données
¢épidémiologiques, entomologiques et écologiques des études de terrain menées au cours de la derniére décennie,
ce qui permet de prédire 1’évolution de la maladie dans cette région sur une période de 5 ans. Dans cet article,
nous présentons d’abord HATSim selon les régles du protocole ODD, classiquement utilis¢é pour décrire les
modeles en systtme multi-agents ; puis dans une deuxieéme partie, nous présentons les résultats des analyses
prédictives portant sur I’évolution de la maladie du sommeil dans le village de Lambi au Cameroun, pour illustrer
I’intérét d’un tel outil. Nos résultats correspondent a ce qui a été observé par le Programme National de Lutte
camerounais. Nos simulations ont également révélé que le dépistage régulier peut étre suffisant, bien que la lutte
antivectorielle, appliquée a tous les sites d’activités humaines, puisse étre beaucoup plus efficace. Nos résultats
montrent aussi que le modele actuel peut déja aider les décideurs dans la planification de I’élimination de la
maladie dans les foyers.
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Introduction

Sleeping sickness, also known as Human African
Trypanosomiasis (HAT), is a parasitic disease involving the
transmission of trypanosomes by the tsetse vector Glossina,
which only feeds on blood. Transmission of HAT generally
occurs when the tsetse fly takes a blood meal from an infected
mammal with Trypanosoma brucei gambiense (chronic form)
or Trypanosoma brucei rhodesiense (virulent form).
Nevertheless, the fly has to be competent to allow the installa-
tion and multiplication of non-infective forms of the parasite in
its midgut, which is followed, after around 20 days, by migra-
tion to the salivary glands, where the trypanosomes acquire
their infective capacity and can be transmitted by the injection
of saliva during the bite. This ability lasts for the whole life of
the tsetse fly, during which it can transmit the parasite at each
blood meal. In humans, after the bite of an infective tsetse fly,
the trypanosomes first multiply in blood or draining lymph
nodes. At this first stage, there are no specific clinical signs
and the host is considered as a reservoir. It can last from a
few months to several years, until the parasites cross the
blood-brain barrier and invade the central nervous system.
At this second stage, neurological signs and symptoms are
characteristic, but differ depending on the individual, and the
course is fatal if the disease is left untreated.

Today, the disease is considered to be in the process of
extinction; according to the World Health Organization, its
elimination has been targeted for 2030 [29]. Nevertheless,
the battle against this disease, which has prevailed for centuries
in Africa, is far from over. Indeed, the maintenance of reser-
voirs in both humans and animals, as well as maintenance of
the vector, demands a laborious elimination process [3, 12].
The tools for controlling the disease have been available for
several decades, including mass screening, treatment, and vec-
tor control, although they are still being improved. This raises
the question as to what the current disease status is, and why it
has been difficult for National Health Programs to reach the
objective of elimination. In this context, modeling could be
an appropriate tool to evaluate the strength of these interven-
tions in controlling the disease.

Trypanosomiasis was initially modeled using compartmen-
tal mathematical models with differential equations [7, 8,
16, 26]. These models revealed the possibility of self-extinc-
tion of HAT in low-prevalence foci, while also promoting the
use of vector control in high-prevalence foci. However, they
have also oversimplified the heterogeneity of the HAT foci
and have induced computational difficulties due to the large
number of foci.

In 2003, a website aimed at tsetse control (http://www.
tsetse.org) was created, which proposed an interactive program
(Tsetse Muse) to define vector control strategies against animal
trypanosomosis. In 2004, Miiller et al. [23] initiated the use
of an individual-based model or agent-based model (ABM)
to simulate the life cycle and behavior of each computer-
generated entity in a multi-agent system. Davis et al. (2011)
elaborated a constructed mechanistic model for the basic
reproduction number, RO, of Trypanosoma brucei gambiense
and Trypanosoma brucei rhodesiense, demonstrating the

importance of the proportion of blood meals taken from
humans [4]. In 2011, the website tsetse.org suggested another
model for the control of tsetse flies and HAT, with an
implementation tool to define the vector control device. One
year later, Hargrove et al. (2012) used a Next-Generation
Matrix (NGM) model to evaluate the impact on animal
trypanosomosis, involving treatment with trypanocides or
insecticides on cattle in Uganda [14]. More recently,
Funk et al. (2013) succeeded (also with an NGM) in evaluating
the importance of a wild animal reservoir in the maintenance
of sleeping sickness in a Cameroonian focus [6]. Using a
two-host ABM, Alderton et al. (2013) incorporated interact-
ing agents in an abstract spatial map that included two
simple daily tasks for farmer and non-farmer agents, in an
attempt to predict the evolution of the 7. b. rhodesiense and
T b. gambiense disease variants in northwest Uganda and
southern Sudan [1].

The model we present herein is based on the methodology
used by Miiller et al. [23], and its development was based on
the main HAT focus in Cameroon in the 2000s, the Bipindi
focus. This model is different from Miiller’s work by its
incorporation of a spatial map corresponding to the occupation
of space within this area. HATSim was developed using the
Cormas® system [2] that relies on an agent-based model and
that was written in the Smalltalk language, using VisualWorks
software®. This is a powerful simulation tool for improving
how we understand the complex interactions between natural
and social dynamics. The Overview, Design concepts, and
Details (ODD) protocol that was proposed by Grimm et al.
in 2006 [13] allowed us to use a standardized method to
describe HATSim.

Material and methods

Epidemiological context and study area

An active sleeping sickness focus in Bipindi was evident
by the end of the 1990s, when 42 HAT cases were identified
in four villages of southern Cameroon [10]. The prevalence
reached 3.5% in two villages, Lambi and Bidjouka, which were
considered to be the epicenter of the focus. At that time, 80%
of the diagnosed cases were in the first phase, indicating that
the disease was still expanding [10]. Regular medical surveys
were conducted by the National Control Program (NCP) from
2000 to 2013, and scientific studies performed to determine the
transmission by tsetse flies [5, 11, 27] suggested the circulation
of T b. gambiense in wild mammals [15, 24]. Nine cases in the
second phase of the disease were detected from 2004 to 2012,
which were all passively diagnosed (Ebo’o E.V, personal
communication). Only one of these cases was diagnosed in
Lambi in 2012, whereas the eight other cases were identified
in other villages (Fig. 1).

The Bipindi area (Ocean Division, South Province) lies
75 km from the Atlantic coast (3N06, 10E30). The climate
is equatorial of the Guinean type, with four seasons: two rainy
seasons with a minor one from March to May, and a major one
from September to November; two dry seasons, with the
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Figure 1. HAT cases diagnosed between 2001 and 2012 in the focus of Bipindi.

major one from December to February and the minor one from
June to August. The landscape is characterized by the
predominance of dense evergreen forest, with village lands
displaying a variety of interlinked vegetation types: fields,
fallow lands, cocoa and coffee plantations, isolated forest
clumps, streams, and marshy hollows. The main villages of this
HAT focus, Lambi and Bidjouka, lie on the right bank of the
Mogue River. The farmers produce most of their own
nutritional needs, plus a few market crops. Farming
encampments are a key component of the farming system.
Each family has its own water point. Most of the information
regarding the human population was provided by a case-
control study performed at the end of the twentieth
century [10].

The HATSim model

The ODD protocol is organized around three axes:
Overview, Design concepts, and Details (ODD). These axes
are divided into subparts that must be described precisely:
purpose, state variables and scales, process overview and
scheduling, design concepts, initialization, input, and
submodels.

Distribution and behavior of human, tsetse, and animal
(both wild and domestic) agents in this model followed what
was observed in the field during several previous studies
concerning tsetse fly and wild mammal populations [10,
11, 15, 19, 20, 24]. The observed densities of tsetse flies
were all recorded taking into account each biotope (village,
fields, water points, cocoa plantations, footpaths, deep forest,
and shoals) by the capture point and their seasonal
variations. All agents are present in spatial units that are
characterized by a main environmental aspect, as described
before. Finally, flies are the only agents we created, made
to live, and die.

We tried to evaluate the epidemiological level of each
epidemiological occurrence by defining a scale.

Purpose

We created HATSim to develop a model that can integrate
the spatial complexity of a HAT focus in the simulations, such
as the agents’ movements, as well as vectors or hosts, humans
or animals, and the seasonal variations that directly impact the
density of tsetse flies. The main purpose of HATSim is to
predict the different scenarios of extension of the disease: in
natural conditions without any public health action, with mass
screening and treatment of the cases, and with such a public
health intervention completed with vector control.

State variables and scale

Spatial units

The simulation space is defined as a 30 X 30 square grid
covering an area of 36 km?”. Each square or cell is 200 m long,
allowing refined spatial resolution that can take into account
the small size of the cultivated land and forest trails. Two hun-
dred meters long also corresponds to the attractive diameter of
a trap for tsetse flies. Each cell is characterized by an environ-
mental attribute, and the cells are distributed according to
previous field observations [16] into village (4%), crop field
(10.5%), cocoa plantations (22.5%), encampments (2%), forest
(40%), shallows (5.5%), water (11%), and footpaths and tracks
(4.5%). Each attribute is associated with a specific color on the
map. The scenes are PROX or NON PROX, which means that
PROX cells correspond to those reserved for domestic animal
divagation. PROX scenes include the village scenes and a
perimeter of 400 m (2 cells) around the village.

Environment

The Bipindi region is characterized by four seasons; this
seasonal variation has a great influence on the local tsetse fly
population. A 50% decrease in the fly population was pro-
grammed for dry seasons, whereas a 50% population increase
was programmed for rainy seasons. Distribution of tsetse flies
was initialized according to results observed with fly captures
in the different biotopes in the area of Bipindi [11].

Humans

In our simulation, the population of Lambi was stabilized
around 500 inhabitants. Ten percent of the population was
considered as sedentary (babies, elderly, or sick people).
The presence of humans in these units is random, except for
fields or plantations that have their owners. The remaining
active population travels to the field, cocoa plantation, water
point, encampment, and forest using footpaths, and as we said,
their distribution is stochastic. During the second period of
sickness, we considered that the patient would stay at home
or be transferred to a medical center far from active tsetse flies
and cannot constitute a reservoir. If diagnosed by the National
Control Program, the individual is considered to be recovered,;
if not diagnosed, the patient will no longer be in the human
population at the end of the second stage.

Animals

Massussi et al. [19, 20] recorded 31 wild mammal species
in Lambi and determined their densities, including six known
reservoir hosts of 7 b. gambiense. Referring to the book
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Table 1. Attributes and status of human agents.

Table 2. Attributes and status of animal agents.

Attributes Status Attributes Status
Infection « Non-infected, Size Small, medium or large
level o Ist Period (randomly lasting from 1 to 4 years), Nature Domestic or wild
e 2nd Period (randomly lasting from 2 to Territories « Radius of territories according to the size
6 months). e “PROX” cells only for domestic ones
L. . . . o All cells except “VILLAGE” cells for wild ones
Localization e Everywhere during the day, in the village by . .
night Movements o Depends on animal size
Four h K b " - o Closed to the territory
o rourhours a week by water points Infection Infected or not infected
level Infection duration = 4 months max

“Mammals of Africa” [17], 59 species were identified in the
area, that were able to be introduced into the model, including
28 rodents, 3 Pholidota, 8 Carnivora, 3 Cetartiodactyla,
15 primates, and 2 Artiodactyla. In line with Massussi’s
estimation of infected wild mammals, we included the six
potential reservoir species representing 47% of the whole wild
mammal population. This results in 296 animals acting as
potential reservoirs among a population of 600 wild mammals
and 30 domestic animals and small livestock (pigs, goats, and
sheep) that were identified in the village [21, 25]. The animal
population is closed to the model and there are no entrances or
exits programmed. Attributes and status are indicated in
Table 2. Concerning the animal agents, distribution is
stochastic and the wild ones are excluded from villages; we
have rather focused on the definition of their territories and
movements.

Tsetse flies

Glossina palpalis palpalis is the main sleeping sickness
vector in the Bipindi area. For tsetse flies, the attributes are:
sex, teneral state, age, pregnant female, hungry state, transmit-
ting competence, and infected state (Table 2). When each fly is
initialized, a counter for the duration of fasting, that will con-
dition the bite for blood feeding, starts. In case of an infected
first blood meal of a competent fly, a counter of incubation will
start and run for 25 days before the fly is able to transmit the
parasite. The methods are implemented in day steps, during
which the flies are being born, biting, transmitting, growing,
laying eggs, moving, and dying, and night steps (resting time).
The vector population respects seasonal changes and the whole
population is maintained in equilibrium.

The total tsetse population that an environment could sup-
port was estimated with Glossina palpalis in the forest area of
the Ivory Coast [9]. By studying population dynamics, capture
— recapture experiments have made it possible to determine a
relationship between the density of flies caught in traps and
the estimated total numbers of flies. This was all summarized
by the equation N = a (Apparent Density per Trap per day)’,
where N is the estimated population for one trapping site,
and a and b are the constants defined by mark and recapture
experiments. In our model, we kept @ and b parameters
obtained by Gouteux [N = 631.8 (1.8)*?] with G. p. palpalis
in villages of Ivory Coast [9], and used the apparent density
per trap per day (ADT) observed in Lambi, as Miiller et al.
[23] did when carrying out the first ABM on HAT. The daily
mortality rate (DMR) that could keep the vector population

in equilibrium (about 3500 flies) was defined, after hundreds
of simulations, as 0.0286 in this area.

We also had to determine the ambit of the flies.
Considering the tropical forest environment of Lambi, which
favors humidity and a great diversity of feeding hosts, and
the study by Melachio et al. (2011) about the genetics of tsetse
flies in Cameroon that identified panmictic subpopulations of
G. p. palpalis [22], flies were programmed to have a range with
a radius of 300 m in length, or a circle with a diameter of 3
cells in HATSim. The tsetse population is closed to the model
and there are neither entrance nor exit movements.

Collectives

The National Control Program or NCP starts mass
screening one week after TO at TS84, followed by one
screening every year, corresponding to five medical surveys
in 5 years. To closely simulate the NCP interventions in the
field, our simulations randomly covered 70% of the population.

Vector control was tested with a trapping device that
covered all of the transmission scenes where humans can be
found, except in the forest. This device implies the use of
200 traps. The programmed impact on the vector population
follows what was observed in the field by Laveissi¢re et al.
in 1994 (e.g. a 90% decrease in the vector population in
2 months) [18].

Process overview and scheduling

The implementation of HATSim follows several steps:
first, the initial instantiation (instance creation) allows
defining of the space, the agents, their attributes, and the initial
values that will be applied to each; following initial
instantiation, the control step allows agents to operate in time
according to a schedule, as well as interactions between
agents (e.g. blood feeding and transmission). Time passes
discretely with a time step corresponding to 2 hours, which
is the estimated mean time spent on an activity by villagers;
correspondingly, there are 21,900 time steps (TSs) in a 5-year
period. The daily 24 hr are divided into day steps and night
steps.

Tsetse flies are the only agents to really follow a schedule:
we make them emerge, live (feeding, reproducing, and
transmitting), and die (see Table 3). Daily, humans only return
to sleep in the village after 6 time steps (TSs) spent moving
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randomly in the grid, except for field and plantation owners.
Animals only move as programmed in Table 1, according to
their size. However, both types of agents can be bitten by
tsetse flies and be infected; in the same cell, there is a 20%
probability for humans to be bitten, and 80% for animals.
As soon as the parasite is transmitted to the host by a compe-
tent fly, a time counter is triggered to determine the slots in
which the duration of the disease (two stages in humans) will
be randomly defined.

Simulations were performed on a standard personal
computer (PC) and data were recorded using MS Excel®. They
were initiated by introducing 20 sleeping sickness cases at the
first stage of the disease in the model (T0). The number of
patients in this simulation corresponds to what was observed
in 2000 by the Cameroonian NCP. Each parameter was tested
using at least 100 simulations. For the analysis, the 21,900 TSs
were reduced to weekly occurrences (every 84 TSs).
Furthermore, the time steps corresponding to the NCP’s inter-
ventions were retained for epidemiological evaluations.

Design concepts

Taking into account the complexity of HAT transmission in
the forest area of Bipindi, such as the distribution of the vector
according to biotope and seasons, the mobility, in space and
time, of the potential animal and human hosts, the variable
duration of the reservoir, or the exceptional occurrences of
competent vector for transmission, HATSim appears to be an
appropriate tool to manage these constraints.

Emergence

Some human habits can be impacted by the disease: in
HATSim, all the patients who enter the second stage of the
sickness (neurological stage) will disappear from the system
at the end of the second period (fatal cases or treatment in a
hospital far from the village). We observed that in simulations
without any public health screening and treatment, this leads to
an average decrease of 14% of the human population.

Adaptation

Seasonal variations in the area imply significant changes in
the DMR of flies, but this also means changes in the lifetime of
tsetse flies: 3 months for those emerging in the rainy season
against 2 months for those that emerge in the dry season.
Looking for blood meals is also dependent on the hunger level:
after one blood meal, a fly will not be hungry for 4 days; past
this time, it will look for a new blood meal and will die 6 days
after the last one if it cannot find any blood provider.

Interaction

The only interactions between tsetse flies, humans, or
animals are blood meals. For glossinas, this implies hunger,
and for humans or animals it can be to become infected if they
are bitten by a competent infected vector, or inversely it can be
to infect a teneral fly by a first blood meal on an infected
mammal. These interactions can take place in each cell
(Fig. 2). Twenty percent of blood meals are taken on humans,
all the others on animals.

Table 3. Attributes and status of tsetse fly agents.

Variables Status
Sex Male or female
Age From 0 to 2 months (3 in the rainy
season)
Daily mortality rate (about 0.3%)
Infection state, teneral ~ Boolean

state, gravid female
Parasite cycle 25 Days from the infected blood meal to
transmission ability, then transmission
during each blood meal
o Look for blood meal after 3 days of
fasting
o Dies in 6 days without eating
Radius of 1.5 cell
One cell per TS, does not go into deep
forest
Transmission competence Randomly 2% of infected flies

Hunger level

Territory
Movements

Stochasticity

Stochasticity is applied to all active agents. Glossinas can
be killed, due to the DMR that strikes the population randomly.
In the same way, if blood feeding occurs mainly (80%) on
animals, the choice of the blood donor is random; only 2%
of infected vectors are considered to be competent for
transmitting the parasite. Concerning humans, when the NCP
performs screening of the human population, people are
screened randomly according to the percentage defining the
medical cover. Evolution of the disease in a patient is also
determined in a stochastic way: the first stage can last from
1 to 4 years and the second stage from 2 to 6 months. Although
territories are defined for most of the agents, the move from
one cell to another at each TS is randomly applied.

Observation

During the simulations, the Cormas® system allows the
visualization of all agents’ movements on the spatial grid
and of indicators at each time step (TS) to follow the dynamics
of events such as: the number of patients in the first and second
periods, the number of the human population (that can change
if second-stage patients die), the number of tsetse flies, infected
and infective flies, and the number of infected animals. These
indicators allow us to calculate the prevalence of the sickness
that is fundamental to evaluate epidemiological evolution.

Initialization

The values corresponding to the agent’s attributes can be
modified before each simulation (Table 4).

Submodels

This mainly concerns all the programming of the agents’
constraints. The DMR is the most sensitive parameter we had
to test in order to obtain a fly population at equilibrium a few
days after the simulations started. Tsetse flies are distributed
on the grid according to the environmental attribute that was
accorded to the cell; this was determined according to field
studies. Humans have some constraints such as coming back



6 P. Grébaut et al.:

Parasite 2016, 23, 63

Humans y National Control Program
Diagnoses/Cures P
Infected Mass screening
) 15t period Treatment
2" period
Moves
Season
Dry or rainy
o
2
3
RS} Glossina
Forest Bites / transmits Was born
Field Reproduces
Cocoa Transcene Bites
Thalweg located Infected
Water Type infective
Village class Transmits
Encampment Moves
Tracks Dies
Bites / transmits
Prox located
Non prox
5
Animals 5 Vector control Kills
o
Type < Trap
- Domestic
- Wild (small,
medium, big)
Infected
Moves
Figure 2. Organigram of interactions between agents in HATSim.
Table 4. Units and initial values for each HATSim agent.
Agents Attributes Values Sources
Glossinas n 5000 Miiller et al. (2004) [23]
Daily mortality rate 0.2865 Defined by modeling by a fly population at equilibrium
Sex ratio 1 Miiller et al. (2004) [23]
Wild mammals n 400 Massussi et al. (2009, 2010) [19, 20]

Size ratio (small/med./large)

Infection sensitivity ratio (small/med./large) 0.51/0.13/0.79

Domestic animals n
Infection sensitivity ratio

Humans n
No. of cases
NCP Medical cover rate

Vector control No. of traps

0.65/0.25/0.1

Kingdon et al. (2013) [17]
Massussi et al. (2009, 2010) [19, 20]
Kingdon et al. (2013) [17]
Massussi et al. (2009, 2010) [19, 20]

30 Van Hoof et al. (1947) [28]
100% Penchenier et al. (2005) [25]
500 Census 1999
20 NCP 2000
0.70 NCP 2000
0-200 According to modeler

to the village for night, going to a water-point 4 TSs a week, or
going to their field or cocoa plantation if they are owners.

Movements, during a 5-year simulation, are limited to each
agent’s territory as defined during the initialization. For each
TS, they are limited to cell by cell for tsetse flies, medium
and small animals. Flies cannot access an isolated “forest
cell”, as observed in the field.

Times had to be under control for the infections
process: beginning of the 25 day cycle of the try-
panosomes in the fly, time of the sickness stages for humans,

and the time of infection in animals; this needed specific
programming.

Sensitivity tests

One of the most important parameters is the equilibrium of
the vector population, including the DMR, the seasonal vari-
ability, and the capacity of blood feeding, depending on the
presence of humans or animals. Knowing the human numbers
(500), that is almost constant, except during epidemic events,
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Figure 3. Sensitivity test on the average number of tsetse flies (Moy) in 20 simulations, according to different numbers (430, 530, 630 and

730) of animals (An).
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Figure 4. Sensitivity test about the evolution of the average prevalence of sleeping sickness during 3 years, using 5 different percentages

(40, 50, 60, 70 and 80%) of medical covers (MC).

we had to estimate the number of wild mammals that could be
able to maintain the equilibrium of the glossinas’ population
(Fig. 3). Added to the 30 domestic animals, 630 mammals
were the number we retained with a 0.0286 DMR.

We tested the sensitivity of the model using different
medical cover rates or and vector control devices. For the
medical cover rates, we observed the evolution of prevalence

of sleeping sickness with different medical cover rates (40%,
50%, 60%, 70%, and 80%), as exposed in Figure 4.

Medical cover was the only parameter that was modulated
in these simulations. We initiate simulations reproducing the
epidemiological situation observed in the field by the NCP in
2000, which diagnosed 20 HAT cases. Each medical cover
was tested through 25 simulations over 3 years. We can
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Figure 5. Comparison, over 5 years, of the evolution of the
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observe that the prevalence curves in Figure 2 give coherent
results in relation to the medical cover rates: the more people
are tested, the more cases are found, and consequently the more
the prevalence falls.

We also tested the efficiency of the vector control device,
using a density of 6 traps per km* (Figure 5). When compared
to the natural population of tsetse flies at equilibrium, we
noticed that vector control works in the model and that we
reached a 90% decrease of the fly population in one year
and that could be maintained up to 5 years.

Results

Modeling the epidemiological evolution of HAT
in Bipindi

The availability of epidemiological data in this area has
allowed us to validate the predictive quality of our model,
including the historical spread of the disease, the mass screen-
ing and treatment interventions of the National Control Pro-
gram (NCP), and the numbers of humans in the first and
second phases of the sickness, as well as the impact of vector
control.

When comparing the cumulative probabilities of extinction
of the disease, with natural endemic evolution, with NCP inter-
ventions (70% medical cover), and with vector control (Fig. 6),
we can see that vector control offers the highest probability of
extinction events of the disease.

We first evaluated the natural expansion of the disease over
a 5-year period in the absence of any public health interven-
tion. This was performed in order to verify that the model
was capable of proposing an endemic situation corresponding
to the one actually observed by the first mass screening

natural tsetse flies population (PopGNat) with a vector control device
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Cumulative probability
of eliminination of the disease

!I'O Year 1 Year 2

~—MCO 0 0 0
MC70 0.00 1.33 10.67
MC70traps 0.00 1.17 13.50

Year 3 Year 4
0.5 5
24.83 40.67
29.83 46.50
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13.83
57.17
63.17

Figure 6. Cumulative probabilities of elimination of endemic
events without any public health action (MCO0), with a medical
survey with 70% of medical cover (MC70), and with medical survey
associated to vector control (MC70 traps).

campaign carried out in the Bipindi focus (at the end of the
twentieth century). We can conclude that without treatment
of the cases, 14% of the population will disappear in 5 years.

We also evaluated the impact of the NCP in the beginning
of the 2000s and recorded the endemic level that prevailed
after each field survey. When comparing the occurrences of
endemic events (RO > 1) with and without NCP interventions
during the 5-year period, it is apparent that the NCP
interventions induce large decreases in the number and the
level of endemic events during this period. This is seen as a
relevant increase in elimination and, inversely, the drop of
epidemic occurrences after the second medical campaign in
year 2.
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Figure 7. Occurrences of endemic events and of extinction of sleeping sickness in Lambi, with a 70% medical cover and vector control
device (6 traps/km?). Group 0 = no case or elimination, group 1 = 1 case, group 2 = from 2 to 5 cases (low endemic level), group 3 = from
6 to 25 cases (high endemic level) and group 4 = more than 25 cases (epidemic situation).

Impact of vector control

Introducing both the NCP survey and trapping devices
(6 traps per km?) in the model (Fig. 7) induces a significant
difference (x> = 3.841, p value < 0.0001, DDL = 1) in the
number of endemic events in the simulation without trapping.
Furthermore, at year 3, sleeping sickness is eliminated in 99%
of the events and there are no more endemic events (RO > 1).
Elimination is completed by year 4, when we cannot find even
a single case.

Discussion

Modeling HAT in Lambi provides greater detailed
information on the natural endemic evolution of the disease
in this area, the capacity of a public health program to
eliminate the disease, and the effect of vector control on the
disease. These results also demonstrate that this tool could
easily be adapted to other sleeping sickness foci, once it has
been developed on a wider scale.

Our simulation results are in agreement with those
obtained by the NCP in Lambi between 2001 and 2011.
Specifically, the first mass screening revealed 3.5% disease
prevalence in Lambi in 2000; field observations as well as
our simulations both indicated the disappearance of a serious
endemic situation by the following year. In year 3, the disease
was eliminated in 75% of the simulations and transmission
only occurred in 14% of the events. In year 4, disease
elimination occurred in 95% of the simulations and transmis-
sion occurred in only 3% of the events. Finally, in year 5,
re-emergence occurred in only two events in groups 1 and 2.
The absence of HAT cases in Lambi from 2004 to 2011 indi-
cates that after 5 years of medical monitoring by the NCP, the
disecase was eliminated in Lambi, as also observed in our
model in 98% of the simulations.

In contrast, the passive diagnosis of one case in the second
stage of disease in 2012 from Lambi raises the question
whether this is due to the maintenance of an animal reservoir
or the arrival of a single case from another local village.
The animal reservoir hypothesis was confirmed by Funk
et al. [6], who found that HAT caused by 7. b. gambiense could
not be maintained in this focus without the contribution of an
animal population. In the simulations, the animal reservoir is
mainly limited by its duration (4 months), which is still
sufficient for maintaining an endemic situation in a few
simulations. However, we did not observe any autonomous
cycle in animals, without any human cases, that was able to
reinitiate an endemic situation. Therefore, we focused on a
human reservoir instead. The epicenter of this HAT focus is
principally composed of two villages, Lambi and Bidjouka,
which present similar demographic, geographical, and social
characteristics, and are regularly screened by the NCP.
Nevertheless, additional cases were diagnosed between 2004
and 2012 in other villages. For example, five cases were
identified in Ebimimbang, located 5 km south of Lambi, with
which it shares a forest that was previously identified as a
potential transmission [10].

Our results indicate that this ABM prototype for simulating
the endemic evolution of sleeping sickness is efficient and
offers a close approximation of reality, showing good
predictive abilities. The results also demonstrate that the
Cameroonian NCP reached elimination of the disease in the
heart of the Bipindi focus, even though the maintenance of a
reservoir in the neighboring villages favored the emergence
of new HAT cases. Importantly, this shows that medical
surveillance must pay particular attention to the perimeter of
a focus. Improving the scale of the model will be the next step,
and this will require incorporating new communities of agents
linked to several villages into the simulations. HATSim is still
in the early phases of development and must evolve to a larger
scale, in order to integrate all the villages that could be
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included within a HAT focus. A better understanding of human
population movements (inside and outside the area, and from
one village to another) is a prerequisite for upgrading the scale
of the model. Only then will the model be able to simultane-
ously integrate all villages within the focus into the
simulations. Many other items relating to the model must still
be clarified. For instance, the tsetse fly’s transmission compe-
tence, as well as its refractoriness to infection, remain
unknown, as Davis et al. reported in 2011 [4]. We could add
the estimation of the fly population or their average lifetime.
The estimations of the wild mammal populations and of the
animal reservoir constitute other speculative points; in particu-
lar, the uncertainty regarding the animal reservoir duration:
although domestic animals have been the subject of several
reports [21, 25, 28] very few studies have been conducted on
wild animals. Consequently, we can only speculate on the dura-
tion of the reservoir of 7. b. gambiense in wild fauna. This type
of information can be sought in the field, but needs time and
technical competence.

Although HAT elimination must still focus on the active
reservoir before transmission spreads, our simulation shows
that modeling the disease will also be an invaluable tool for
predicting its elimination.
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