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Abstract

Copper-catalyzed functionalization of terminal or 1,1-disubstituted alkenes with
bis(pinacolato)diboron and methanol provides formal hydroboration products with exceptional
regiocontrol favoring the branched isomer. Through pairing this procedure with photocatalytic
cross couplings using iridium and nickel co-catalysis, an effective, highly regiose-lective
procedure for the hydroarylation of terminal alkenes is provided.
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The hydroboration of simple terminal alkenes is a transformation of fundamental importance
in synthesis, and the hydroboration/oxidation sequence serves as the introduction to anti-
Markovnikov regioselectivity in most introductory organic chemistry courses.! Despite the
long history of this process, a general approach to reversing the regioselectivity of hydrob-
orations of simple alkenes bearing aliphatic substituents has remained elusive. Coupled with
oxidation of the resulting organoborane, this outcome would provide an equivalent process
to the acid-catalyzed hydration of alkenes with accompanying advantages in scope and
functional group tolerance. Additionally, we envisioned that other processes such as metal-
catalyzed cross-coupling, when paired with a reversal of regiochemistry in hydroborations,
would provide a useful and simple method for the synthesis of tertiary carbon frameworks
through the two-step branch-selective reductive union of alkenes and sp2-carbon
electrophiles. Considering the tremendous recent advances in cross-couplings of secondary
organoboranes,?~ the development of more efficient methods for accessing the requisite
branched organoboranes could find immediate utility.

Most catalytic hydroboration methods provide the linear alkylborane product, often with
efficiencies that greatly exceed the direct thermal addition of boranes to alkenes.® The direct
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access to branched boranes from the hydroboration of terminal olefins is typically
accompanied by chain walking” that often leads to terminal or benzylic boranes. Advances
in reversing the regiochemical outcome of hydroborations are often accomplished through
the installation of directing groups, which can override normally expected preferences based
on the alkene substitution pattern.8 More recent advances illustrated that subtle remote
electronic biases can also be used as a handle for regiocontrol.? Alkenes such as styrenes
provide an electronic bias for the development of catalyst-substrate interactions that enable
regioselectivity reversals, with notable illustrations in directly accessing benzylic boranes
from the rhodium-catalyzed hydroboration of styrenes.10 The copper-catalyzed addition of
bis(pinacolato)diboron (B,Piny) in the presence of methanol has been utilized by Hoveyda
as a formal hydroboration of terminal alkynes with regioreversal compared with traditional
strategies, 1! whereas styrenes afforded the terminal borane product.}1P The procedure,
which involves borylmetalation followed by protonation of the resulting Cu-C bond,
provides considerable utility as a means to access the more hindered alkenylborane products.
Secondary alkylboranes, such as those that potentially could be made by a branch-selective
hydroboration of terminal alkenes, are typically accessed by methods such as addition of
organolithium or organomagnesium reagents to boron electrophiles,12 conversion of alkyl
halides to alkylboranes,13 hydrogenations of vinylboranes,14 or variations of the Matteson
rearrangement, which has proven to be immensely useful in asymmetric versions (Scheme
1).15 Impressive cascade functionalizations of terminal alkenes have enabled preparation of
secondary alkylboranes in tandem with arylation or alkenylation of the terminal alkene
carbon,16 and reports of aminoboration and carboboration were recently disclosed.’
Furthermore a recent approach from Ito described the formal hydroboration of terminal
alkenes via a process catalyzed by copper phosphine complexes.18 While these methods
have enabled many impressive advances in the synthesis and application of secondary
alkylboranes, a more general approach to the hydroboration of a variety of terminal and 1,1
disubstituted alkenes to provide a regiochemical outcome opposite that of classical thermal
additions of borohydrides to alkenes would provide an important entry to branched
alkylboranes for utilization in synthesis. The development of a highly regio- and branch-
selective hydroboration process using a copper-NHC catalyst is described herein, and the
method utility with photocatalytic cross-couplings® is demonstrated.

Efforts to access branched alkylboranes from terminal alkenes began with exploration of
hydroborations using HBPin, with Ni, Pd, Pt, Co, and Rh catalysts and the A-~heterocyclic
carbene ligands IMes, SIMes, IPr, and SIPr (Table 1, entries 1-7, selected data). In all cases,
the terminal alkylborane product was favored, with Co- and Rh-catalyzed processes most
strongly favoring the linear products, and no more than 21% of the desired branched
products being observed in any case. We next examined additions using B,Pin, with
methanol using Cu(l) catalysts given the success seen in regiochemistry reversals involving
terminal alkynes from Hoveyda with similar catalyst systems.! The combination of CuCl
with IMes provided a nearly 2:1 ratio of regioisomers favoring branched isomer 1a (Table 1,
entry 8), whereas the use of SIPr provided excellent regioselectivities favoring 1a, albeit in
modest yield (Table 1, entry 9). A solvent screen illustrated that CH3CN provided superior
conversions compared with THF and other common solvents, and a variety of Cu(l) and
Cu(ll) precatalysts were therefore examined in CH3CN for yield optimization (Table 1,
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entries 10-13). In cases where Cu(ll) precatalysts are effective, it is likely that Cu(l) species
generated under the reaction conditions are functioning as the active catalyst.19 Among the
cases explored, the use of the preformed complex Cu(CI)IPr with B,Pin,/MeOH (Table 1,
entry 11) provided an optimum outcome in terms of conversion, regioselectivity, and
reproducibility across various substrate classes, and this protocol was thus selected for
further study.

A range of simple terminal olefins were examined in the regioselective formation of
branched alkylborane products. Using either 4-phenyl-1-butene or 1-octene, excellent yields
and regioselectivities favoring the branched isomer were observed (compounds 2-3, Scheme
2). Branching at the allylic position was tolerated (compound 4, Scheme 2). Other tolerated
functional groups included benzyl ethers, silyl ethers, unprotected hydroxyls, pivalate esters,
and bromoarenes (compounds 5-9, Scheme 2). Allylbenzene was a highly effective
substrate, and no isomerization to the styrene or to the corresponding benzylic borane
product was noted (compound 10, Scheme 2). Notably, compound 10 was previously
prepared in highly en-antioselective fashion from prop-1-en-1-ylbenzene via Cu-NHC
catalyzed hydroboration.20 Examination of similar chiral NHC’s in the current procedure
using allylbenzene as substrate led to poor enantioselectivities (see Supporting Information
for details). Therefore, the current procedure will be most useful for non-styrenyl substrates
in comparison to this alternative method that is highly effective for styrene hydroborations.
As additional examples, allylsilanes were tolerated in the procedure, leading to 1,2-bis-
metalated products (compound 11, Scheme 2). Indoles were also tolerated to afford products
borylated at the - or y-positions of the A-alkyl chain (compounds 12-13, Scheme 2). To
explore selectivity among different olefin classes, hydroboration of a substrate possessing
both a trisubstituted alkene and a monosubstituted alkene afforded complete selectivity for
the terminal alkene (compound 14, Scheme 2). Similarly, complete selectivity was seen for
hydroboration of the terminal alkene when a 1,1-disubstituted alkene was present
(compound 15, Scheme 2). While alkenes that possess two or more substituents were
generally unreactive, 1,1-disubstututed alkenes could be converted to tertiary borane
products under modified conditions (compounds 16-17, Scheme 2).2

In analogy with other reports of copper-catalyzed additions of B,Pin, and methanol to
alkynes and styrenes,11:17 the mechanism of the process likely involves addition of a copper
borane intermediate to the terminal alkene as the regiochemistry-determining step as
depicted in the 18 to 19 conversion (Scheme 3). Formation of the linear borane is disfavored
as ligand size increases (compare Table 1, entries 8 and 9) due to developing steric
interactions experienced in complex 20a.22 Alternatively, complex 20b, which leads to the
observed branched product, avoids steric interactions between the ligand and alkene
substituent. Following the sterically preferred formation of 19, protonation of the metal-
copper bond produces the desired product along with the formation of a copper methoxide
species, which is converted to the reactive Cu-BPin complex by the reaction with BoPin,.

Recent advances in Suzuki couplings can benefit from the facile entry to the secondary
alkylboranes provided by this procedure.23 For example, the nickel-catalyzed photocatalytic
cross-coupling procedure recently developed by Molander,3° when paired with the above
developments, provides a convenient and versatile method for the direct conversion of
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terminal alkenes to tertiary branched motifs. Alkyl(BPin) derivatives accessed by the
catalytic, regiocontrolled addition of BoPin, with methanol to terminal alkenes (Scheme 4)
are readily converted to the corresponding trifluoroborate derivatives,3323 while maintaining
the versatile functional group tolerance of the hydroboration procedure (Scheme 4). The
resulting functionalized trifluoroborate derivatives then directly participate in nickel-
catalyzed cross-couplings in the presence of iridium photocatalysts following the Molander
protocol. Both electron-rich and electron-deficient bromoarenes participate in the sequence
(21-22, Scheme 4). Notably, the functional group tolerance demonstrated in the synthesis of
branched alkyl-boranes is carried through the trifluoroborate synthesis/photocatalytic cross-
coupling sequence to provide the preservation of sensitive functional groups such as free
alcohols, esters, and indoles (23-25, Scheme 4).

In summary, the regiodivergent hydroboration of a broad range of simple terminal alkenes
may now be readily accomplished.2* While a range of thermal or catalyzed additions of
boranes provides access to linear alkylboranes according to previous reports, the copper-
catalyzed addition of B,Pin, with methanol reported herein provides highly regioselective
access to the isomeric branched alkylboranes. This procedure complements previous
methods for accessing secondary alkylborane structures, and the utilization of the products
obtained in nickel-catalyzed photocatalytic cross-couplings provides a branch-selective
strategy for the reductive cross-coupling of alkenes and aryl bromides. Further exploration
of asymmetric versions of the formal hydroboration is in progress, and utilization of the
racemic organoboranes will be possible with emerging developments in stereoconvergent
cross-couplings.3
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Scope of Branched Alkylborane Synthesis.?

4B,Pin, = bis(pinacolato)diboron; IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene.
Regioselectivity ratios were determined on crude reaction mixtures. Isolated yields are
given. “Diastereomeric ratio (1:1). “Reaction was conducted in CH,Cl, using NaO-#Bu at rt.
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Mechanism of Secondary Alkylborane Formation.
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Scheme 4.
Photocatalytic Cross-Couplings of Branched Trifluoroalkylboranes.?

4 solated yields for the photocatalytic cross-coupling step are provided in the Table. Details
for the synthesis of the RBF3 salts are provided in the Supporting Information. dFCF3ppy =
2-(2,4-difluorophenyl)-5-(trifluoromethyl) pyridine; dme = dimethoxyethane; dtbbpy = 4,4’-
di-fert-butyl-2-2’-bipyridine.
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