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Abstract: In this research, we investigated the influence of the surface coatings of silver nanowires
on the sensitivity of surface acoustic wave (SAW) humidity sensors. Silver nanowires, with
poly(vinylpyrrolidone) (PVP), which is a hydrophilic capping agent, were chemically synthesized,
with an average length of 15 µm and an average diameter of 60 nm. Humidity sensors, with 433 MHz
frequency dual-port resonator Rayleigh-SAW devices, were coated by silver nanowires (AgNWs)
using the electrospray coating method. It was demonstrated that increasing thickness of coated
AgNW on the surfaces of SAW devices results in increased sensitivity. The highest frequency shift
(262 kHz) in these SAW devices was obtained with an injection of 0.5 mL of the AgNW solution with
a concentration of 0.5 mg/mL at an injection rate of 1 mL/h. It also showed the highest humidity
sensitivity among the other prepared SAW devices.
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1. Introduction

The sensing and sensors play an increasingly critical role in various industries. Humidity is a
very important and common component in our environment, its measurement and control is not only
vital for human comfort and health but also for different industries and technologies [1]. Different
units are used for the measurement of vapor, and the most common ones are relative humidity (RH),
dew frost point (D/FPT), and parts per million (PPM) [2].

Humidity sensors have gained increasing application in industrial processing and environmental
control, such as in agriculture, where they are used for green house air conditioning, soil moisture, etc.
Humidity control in manufacturing industries is crucial because it may affect the business cost of the
product and the health and safety of personnel. Sensor sensitivity is a key factor in obtaining precise
measurement results and as a consequence helps control the product costs.

Humidity sensors have been organized into three groups of optical sensors, electrical sensors,
and acoustic sensors [3]. The relatively simple design and low price of the interrogation module
are the two main advantages of electronic sensors [4]. However, they have several disadvantages,
such as their response time, which is considered lengthy and varies from several tenths of a second
to minutes. They need regular calibration and measurement, which would be difficult for relative
humidity below 5%. Another drawback is the difficulty or sometimes impossibility of using them in
certain critical environments, remote places, potentially explosive atmospheres, and areas with high
electromagnetic interference. Optic sensors could be a viable alternative to electronic sensors in places
using corrosive material. Moreover, because of their lack of electricity, there is no spark surrounding
them, and it would be safe to monitor inflammable liquids or gases [4]. Acoustic methods of humidity
measurements can be classified as mechanical methods. Existing methods of humidity measurement
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are based on surface acoustic waves (SAWs), the change in the resonance frequency of a quartz crystal
microbalance (QCM), quartz tuning forks (QTF), film bulk acoustic resonator (FBAR) technology, and
plate acoustic waves (Lamb waves). Recently, Lamb wave devices have also gained attention due to
their high velocity, high quality factor (Q), and large coupling in comparison with SAW devices [5].
Acoustic sensors have several advantages over optic and electrical sensors such as a small power
requirement, a low weight, and simple construction. Moreover, their working principle is based on
frequency shift, which is deemed as a simple and accurate physical measurement [6].

The measurement of humidity by the acoustic method is based on the generation of a
vibration that is affected by adsorption or absorption of water molecules on the sensing surface.
The velocity and attenuation of waves in SAW sensors are changed by the adsorption of water
molecules, which leads to a shift in frequency. The frequency shift can be detected by an oscillator
with high accuracy. The SAW velocity can be affected by three basic interactions: a change in the film
mass (mass-loading effect), a change in the conductivity of the film, and a change in the mechanical
properties of the film material. From a practical point of view, for a gas-sensitive film, only two effects
of the mass density of the film and the change in its electrical conductivity play an important role in
sensor response [7]. On the other side it has been demonstrated that we can enhance the sensitivity of
SAW sensors against various gases or volatile organic compounds with coating a different material on
the surface of the sensor [8–12]. The mass loading ∆m can be calculated as

∆m = CsVf (1)

where Cs is the concentration of the solution of the sensitive material, and Vf is the volume of the
sensitive material. Due to mass loading, a frequency shift occurs, which can be calculated as follows:

∆ f = k2 f 2
0

∆m
A

(2)

where k is the constant of the piezoelectric substrate, f0 is the unperturbed resonant frequency of the
SAW oscillator, and A is the sensitive film area [13,14].

In order to build a sensor with a high sensitivity for a certain gas, the chemical coating material
should be chosen carefully to assure interaction between the target gas and the chemical coating
material [15].

Humidity sensing materials can be grouped into two types: ceramics and polymers, which both
have good chemical and thermal stability, have environmental adaptability, and can work in wide
range of temperatures. Polymeric materials or porous ceramics have been widely used to enhance
the performance of the humidity sensors, as they increase the capability of absorbing water molecules
either through their specific material properties or their significantly increased surface areas [16].
A good sensitivity was achieved with humidity sensors coated with polymeric material were obtained
in 2009 using silicon-containing polyelectrolyte [17].

Nanostructured material as a sensor-sensitive material has attracted great attention in recent
years because their high surface-to-volume ratio provides highly active interfaces, which results in a
sensitivity increase as well as a decrease in response and recovery times. Several nanomaterials
have been used for preparing SAW humidity sensors, and good results have been obtained.
Lei Sheng et al. [18] used a multi-walled carbon nanotube/Nafion (MWCNT/Nafion) composite
material as a humidity-sensitive film that showed excellent sensitivity (above 400 kHz/% relative
humidity (RH) in a range from 10% RH to 80% RH) and a short response time (~3 s@63%).

Silver and its nanostructures are utilized as different sensors, including gas sensors (such as
ammonia sensors) [19]. Silver nanowire, due to its high surface-to-volume ratio, good conductivity
and a fast, simple, and cheap synthesis method has received great attention in different applications,
such as sensing devices. In this study, the enhancement of the sensitivity of SAW sensors that are
coated with silver nanowires with a poly(vinylpyrrolidone) (PVP) capping layer was investigated.
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2. Materials and Methods

2.1. Chemicals

Poly(vinylpyrrolidone) (MW ~55,000), silver nitrate (AgNO3), and isopropyl (99.5%) were
purchased from Sigma-Aldrich (St. Louis, MO, USA), Ethylene glycol (EG), sodium chloride
(NaCl 99%), acetone, and ethanol were purchased from Merck Co., Kenilworth, NJ, USA.

2.2. Instruments and Devices

The following instruments and devices were used: a hotplate and stirrer, a syringe and syringe
pump (KD Scientific, Holliston, MA, USA), a centrifuge device (Hettich, Buckinghamshire, UK),
a sonication device, an electrospray device (which consists of two parts—a sensor holder,
which rotates with a specific rate and is exposed to a negative charge, and a second part, an injector
to spray the material with a positive charge), a SAW device (SAW Components GmbH, Dresden,
Germany), an oscilloscope (Tektronix, Beaverton, OR, USA) to measure the frequency shift before
and after coating, a sensor measurement setup (which includes 7 SAW devices, one of which is used
as a reference that is closed with a lid to block the influence of the gases, and the other six of which
are exposed to humidity at the same time), an optic microscope (Carl Zeiss, Oberkochen Germany),
and a Scanning Electron Microscope (SEM) with a maximum resolution of 2 nm (JEOL JSM.6335F,
Peabody, MA, USA) .

2.3. Synthesis of Silver Nanowires

First, 10 mL of a 0.45 M EG (ethylene glycol) solution of PVP was prepared, and 7 mg of NaCl
was added afterward. The solution was poured into a two-necked round flask to be stirred and heated
at 170 ◦C. A second solution was prepared, and 0.12 M AgNO3 was added to 5 mL of EG. This was
injected dropwise into the PVP solution by an injection pump at a rate of 5 mL/h. The mixture was
stirred and heated at the same temperature for an additional 30 min after injection. The solution color
changes to a yellowish-brown. The final solution was cooled to room temperature, while it was stirring.
After keeping the solution in a stable state for 2 days, the supernatant was decanted and the solid layer
was washed and centrifuged 5 times with acetone and 5 times with ethanol [20]. After all purification
processes, the final precipitate, silver nanowires (AgNWs) with a capping layer of PVP, was dispersed
in isopropyl. Before dispersion in isopropyl, the weight of the solid precipitate was measured with a
precision digital scale in order to reach a specific concentration of the solution.

2.4. SAW Device Preparation

A 433 MHz frequency dual-port resonator Rayleigh-SAW device (SAW Components GmbH,
Dresden, Germany) mounted on a TO-39 socket was employed. This was washed via dipping in
acetone and ethanol, each for 5 min. The reference frequency was measured with an oscilloscope to
compare with its frequency after coating.

2.5. Electro-Spray Coating

The electro spraying system consists of a two-compartment setup with a sample holder in which
sensors are placed on it and spins at 1000 rpm, exposing the sensors to a negative discharge cloud and
the positive electrospray mist. A schematic diagram and its photograph are given in Figures 1 and 2.
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Figure 2. Schematic diagram of the electrospraying system.

A syringe was filled with the solutions and placed in the syringe pump. The solution was
injected at a constant rate into the sensors that were mounted on the rotator. As mentioned above,
in order to obtain sensors with different sensitivities, we changed the amount of coating material on
the SAW device. To that end, seven different SAW sensors were created by changing the injection rate,
the volume, and the concentration of the injected solution. The details for these seven sensors are
given in Table 1.

Table 1. Parameters of AgNW-coated SAW sensors by the electrospray method.

No Rotator Volume Injection Rate Concentration Frequency Shift in Air

S1 1000 rpm 0.75 mL 2 mL/h 0.25 mg/mL 240 KHz
S2 1000 rpm 0.25 mL 2 mL/h 0.5 mg/mL 165 KHz
S3 1000 rpm 0.25 mL 2 mL/h 0.25 mg/mL 123 KHz
S4 1000 rpm 0.25 mL 1 mL/h 0.25 mg/mL 91 KHz
S5 1000 rpm 0.25 mL 1 mL/h 0.75 mg/mL 220 KHz
S6 1000 rpm 0.5 mL 1 mL/h 0.5 mg/mL 262 KHz
S7 1000 rpm 0.25 mL 1 mL/h 0.5 mg/mL 158 KHz
S8 1000 rpm 0.5 mL 1 mL/h 0.25 mg/mL 188 KHz
S9 - - - Uncoated SAW Device -

3. Results and Discussion

3.1. Characterization of Synthesized Silver Nanowires

The morphology and size of the polyol-synthesized silver nanowires were investigated via SEM
analysis, and the results are shown in Figure 3.
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The few silver nanoparticles that can be seen in Figure 3a are normal and inevitable in polyol
synthesis. These nanoparticles have no significant effect on our experiments and results. The nanowires
have an average length of 15 µm and an average width of 60 nm (Figure 3b). All wires are covered
with a PVP capping agent, and no agglomeration is evident in the SEM photos.

To observe the morphology of AgNWs on the surface of the SAW device and the inter-digital
transducers (IDTs), we used an optic microscope with high magnification power and resolution.
Figure 4 shows two different AgNW-coated IDT transducers (Sensors S6 and S7). Both photos show
few silver nanowires on top of the fingers and between them. There is no connection between most
of them, which demonstrates the very low electrical connectivity of the film. Although the amount
of material sprayed on the surface of Sensor S7 (Figure 4b) is different in comparison to Sensor S6
(Figure 4a), the difference is not distinguishable on the images. The reason lies in the weight difference
at the microgram or nanogram scales.
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3.2. Characterization of the AgNW-Coated SAW Sensor

As was explained, the conductivity and mass of the sensing film are the parameters that change
the frequency shift of the SAW device. Thus, we prepared SAW sensors with different coating loads
of silver nanowires to investigate the humidity sensor response and SAW device characterization
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dependency on the mass and conductivity of the sensing film. To that end, seven different SAW sensors
were made by changing the injection rate, the volume, and the concentration of the injected solution.
The details for these sensors are given in Table 1.

In the primary investigation, it was concluded that no frequency shift was obtained from SAW
devices with a high load of AgNWs, which is conductive. A conductive SAW device, which was
obtained in the experiments, resulted from spraying 3 mL of the AgNW solution with a concentration of
0.5 mg/mL at an injection rate of 2 mL/h. This was also observed in the work of Cihat Tasaltin et al. [6],
as they state that the active range of the acoustoelectric effect of the SAWs (the highest change of wave
velocity) was found to be in the range of 0.4 < σs

V0Cs
< 1.7. This range also includes the maximum

point of insertion loss (IL). σs = σh is the surface conductivity, and Cs = εp + ε0 is the concentration of
the solution of the sensitive material (the total dielectric potential associated with the SAW and the
carriers of the electric charge in the gas-sensitive film leads to a decrease in the velocity). V0 is the
sound velocity in the crystal without any sensitive coated materials.

The desired frequency shift was obtained from other sensors with coat that was less thick.
However, they were not conductive. The comparison of the measured frequencies with the duration of
electro-spraying and the concentration of the sprayed solution showed a direct correlation.

3.3. Sensor Measurement Results

Sensor measurements were performed against humidity. The measurements were done twice
for each of the sensors. The concentration humidity varied in a range from 20% RH to 80% RH.
One uncoated sensor was tested as well to compare the results of the coated sensors against it and to
check the sensitivity improvement. The acquired data was gathered in a spread sheet in order to draw
the frequency graph versus the time for each sensor (Figure 5). The graph for Sensor S6, which was
coated with a higher volume and concentration of AgNW solution, is shown in Figure 5b. The graph
shows frequency shift responses to the changes in humidity percentage.
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Figure 5. (a) An uncoated SAW sensor (S9) and (b) an AgNW-coated SAW sensor (S6) response
against humidity in seven different humidity percentage in the range of 20%–80% RH. The baseline
corresponds to 0% RH.

Frequency vs. RH% graph, which indicates sensor sensitivity, for Sensor S6 and the uncoated one,
is shown in Figure 6. It shows that the sensitivity of the SAW sensor with a AgNW-coated surface is
higher than the uncoated SAW sensor. For Sensor S6, the frequency shift in 80% RH is about 6.5 kHz,
which is three times greater than the uncoated sensor at 80% RH.
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Figure 7. Sensitivity of all AgNW-based SAW sensors against humidity.

4. Conclusions

The achieved results from the research illustrate that SAW sensors work perfectly against humidity,
and its response can be enhanced by coating a hydrophilic material on its surface as a sensing layer.
AgNWs covered with PVP, because of its high surface-to-volume ratio and high hydrophilic property,
are a good candidate for this purpose. The electrospray coating method was helpful in obtaining
ideal samples with various amounts of nanomaterials on the surface. Sensor measurement results
demonstrated that the sensitivity increases as the thickness of coated AgNWs on the sensor increases.
It is also concluded that mass loading is a dominant factor in AgNW-based SAW humidity sensors.
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