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Abstract: Altered movement control is typically the first noticeable symptom manifested by
Parkinson’s disease (PD) patients. Once under treatment, the effect of the medication is very patent
and patients often recover correct movement control over several hours. Nonetheless, as the disease
advances, patients present motor complications. Obtaining precise information on the long-term
evolution of these motor complications and their short-term fluctuations is crucial to provide optimal
therapy to PD patients and to properly measure the outcome of clinical trials. This paper presents an
algorithm based on the accelerometer signals provided by a waist sensor that has been validated in
the automatic assessment of patient’s motor fluctuations (ON and OFF motor states) during their
activities of daily living. A total of 15 patients have participated in the experiments in ambulatory
conditions during 1 to 3 days. The state recognised by the algorithm and the motor state annotated by
patients in standard diaries are contrasted. Results show that the average specificity and sensitivity
are higher than 90%, while their values are higher than 80% of all patients, thereby showing that PD
motor status is able to be monitored through a single sensor during daily life of patients in a precise
and objective way.

Keywords: inertial sensors; Support Vector Machine; Parkinson’s disease; motor fluctuations;
ambulatory monitoring

1. Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder whose pathology is typified by a deficit
of dopamine-producing neurons, which is a neurotransmitter involved in movement control [1].
Probably, the best known and most recognisable symptom of PD are resting tremors. Parkinsonian
tremors are usually unilateral and occur when the affected segment is at rest and disappears when
the patient makes any voluntary movement. Although it is the most characteristic symptom of PD,
generally, tremors are one of the less disabling motor symptoms [2–5]. On the other hand, bradykinesia
is a symptom characterised by slowness of motion and is one of the most relevant clinical features
in PD. Bradykinesia results in difficulties with planning, initiation and execution of movements as
well as performing sequential and simultaneous tasks. According to Jankovic [1], early bradykinesia
symptoms are the slow implementation of the activities of daily living, the increase of the reaction
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time and slowness of motion. These manifestations can lead to difficulties in any tasks that require
fine motor control (e.g., buttoning clothes or using tools). Bradykinesia is one of the most recognisable
symptoms by clinicians in PD as it may become apparent before any formal neurological examination.
Other PD motor symptoms are stiffness, postural alteration and freezing of gait (FoG) [1,6–8].

These symptoms, however, can be treated by means of specific medication that aims to increase
dopamine concentration. Among current available therapies, levodopa-based ones are the most used
since levodopa is the precursor of dopamine. At the beginning of levodopa treatment, patients
present a meaningful response and symptoms may completely disappear for hours. However,
these treatments only temporally revert the symptoms, but they do not prevent disease’s progression [9].
Hence, as disease progresses, dyskinesias and motor fluctuations appear. Firstly, levodopa-induced
dyskinesia refers to exaggerated and involuntary movements occurring generally after prolonged
treatment with levodopa. Dyskinesia term is applied to any involuntary movement with choreic nature
(chorea), as a repetitive “dance”, or that provokes dystonic postures (dystonia) that typically affect
trunk, limbs, neck or head. The occurrence of choreic dyskinesias is closely related to the levodopa
levels in plasma: the highest levodopa-induced dyskinesia occurs when antiparkinsonian effects of
levodopa are maximum [10–13]. Secondly, motor fluctuations refer to the oscillations between ON and
OFF periods that patients present after few years of medication. OFF periods are considered as those
parts of the day in which patients manifest PD symptoms, with the exception of dyskinesia. On the
contrary, ON periods refers to the remaining time in which patients regain movement control and the
only appreciable movement alteration is dyskinesia. Medication intakes are commonly scheduled to
keep a constant dopamine level in order to maximise ON time without dyskinesia and minimise OFF
periods and their duration [14,15].

Time in OFF is currently the main parameter employed to assess pharmacological interventions
and to evaluate the efficacy of different active principles. Therefore, obtaining precise information
on the long-term evolution of these ON-OFF fluctuations and their short-term alternations,
i.e., onset and duration, is essential to provide optimal therapy to PD patients and minimise time in
OFF and dyskinesias [14]. Currently, the only available method to collect such information consists of
self-reporting diaries [16]. With this method, patients annotate their motor state every waking hour
during 2 or 3 days. These diaries have some important shortcomings that limit their validity and
their application in clinical practice. First, they have a recall bias, and, second, they present a reduced
compliance [16]. In consequence, a wearable device capable of collecting PD motor fluctuations in
an objective and reliable way could help to overcome the limitations of self-reporting diaries and,
in addition, would provide clinicians with a valuable tool to reduce OFF time and dyskinesia of their
patients. A system with these characteristics would result an invaluable tool in PD diagnosis. Early
detection of dyskinesias and motor fluctuations would help to, first, enhance the effectiveness of the
medication through a better regimen adjustment; second, to significantly improve the quality of life
of patients and, third, to obtain a deeper understanding of the evolution of disease. Another area
that could benefit from a tool with these characteristics is the clinical and epidemiological research.
These studies are expensive and laborious and, often, these economic limitations affect the
methodological rigor. Studies based on movement disorders are especially complicated, on the
one hand by the lack of markers to establish a clear diagnosis and, on the other hand, by the lack of
uniformity in diagnostic criteria.

Wearable inertial sensors based on Micro-Electro-Mechanical Systems (MEMS) are the current
technological basis to analyse PD symptoms. In this sense, Zwartjes et al. [17] analysed the automatic
detection and severity assessment of tremor and bradykinesia in six PD patients. In this study,
the following locations were used to place their wearable sensors: sternum, foot, thigh, and wrist.
The methodology applied provided a good correlation with Unified Parkinson’s Disease Rating Scale
(UPDRS) values. Similarly, Salarian et al. [18] employed two triaxial gyroscopes located on each of
the forearms to detect and quantify tremor and bradykinesia in 20 PD patients, also obtaining a high
correlation with related UPDRS values. Finally, some papers have been presented in the last years as
a result of the work done under the European project PERFORM [19,20], where dyskinesia, tremor,
and bradykinesia detection were analysed. So far, several limitations are found in former studies.
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Firstly, most of the experiments on assessing motor states took place in controlled settings (laboratory),
where patients were asked to perform specific activities with the aim of eliciting PD symptoms [21–24].
These tests can barely provide information to the algorithm in order to confront false positives in real
life and, hence, the algorithm loses consistency; Secondly, OFF states presented by PD patients are
obtained, in most cases, by removing medication intakes prior to experiments. As a result, symptoms
observed are easily more severe than what they would have in the daily life of patients, facilitating the
discrimination between their presence or absence. Therefore, natural conditions to monitor fluctuations
are preferred, avoiding any withdrawal of medication intake.

This work presents a new method for the assessment of ON and OFF motor states through
a single waist-worn device which has an accelerometer as primary sensor. The method estimates,
on the one hand, the presence of bradykinesia based on a Support Vector Machine (SVM) classifier
that detects gait followed by a specific signal processing method that identifies strides and, finally,
a method for characterising bradykinesia. On the other hand, dyskinesia presence is determined by
analysing specific frequency features of the inertial signal. Based on their outputs, ON and OFF motor
states are assessed by a hierarchical algorithm. This algorithm is applied to the signals collected during
1 to 3 days from 15 patients during their daily activities in natural conditions, i.e., without removing
any medication intake. Accuracies above 90% in detecting ON and OFF motor states are obtained with
the hierarchical algorithm and the signals collected from a single sensor.

The paper is organised as follows: the next section is devoted to reviewing the related works on
sensors and algorithms for monitoring PD motor states. Sections 3 and 4 present the methods and
the signal processing techniques employed, respectively. Then, Section 5 reports the obtained results.
Finally, our conclusions are detailed in Section 6.

2. Related Work

Many previous studies have focused on the detection of PD motor symptoms. More concretely,
these works mainly rely on the use of inertial sensors, although there are other less extended
alternatives, as the use of sEMG [25–28] or another physiological measure [29]. The majority of
these research studies have employed wearable sensors to study specific PD symptoms such as
FOG [30–32], dyskinesia [33–36] and bradykinesia [18,19,22,37–39]; thus, the aim was detecting the
presence or severity of a certain symptom. However, the main objective of our work is the detection of
ON/OFF motor states of patients, which is mainly related to a dopaminergic deficit and is not related
to the presence of a unique symptom.

Previous works conducted so far on the detection of ON/OFF motor states are based on
characterising PD symptoms by means of inertial sensors. This idea was followed by the work
conducted in 2004 by scientists at the Medical Center at Leiden University [24], in which hypokinesia,
tremor, and bradykinesia were characterised with the aim of determining the motor state in 50 PD
patients wearing two wrist-worn accelerometers. In this study, three features were extracted in time
periods of half an hour: time during which patients did not move, acceleration average and percentage
of the time with tremor. Patient’s motor state was based on a decision tree; more specifically, it was
determined by comparing the output of each feature against a threshold value. Through the usage of
this method with the wrist-worn signals, the specificity and sensitivity achieved in detecting OFF states
were of approximately 70%, being sensitivity referred to the accuracy in detecting OFF annotations
and specificity to the ON ones.

Salarian et al. [40] conducted another study in which nine sensors were used by 13 patients during
3 to 6 h. These sensors, which consisted of seven gyroscopes and two accelerometers, were located
at the trunk, shins, and forearms. Features extracted aimed to characterise different symptoms and
movements: tremor, bradykinesia, as well as posture and gait parameters. The sensitivity achieved by
using these features into time periods of 10 min and a logistic regression classifier was 76%, being the
specificity 90%.

Some papers have been presented in the last years as a result of the work done under the European
project PERFORM [19,20]. Cancela et al. collected data from 20 patients, while they developed a variety
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of activities. In these research works, a variety of machine-learning classifiers were analysed, obtaining
classification errors of 14%. In addition, in another set of signals obtained from 24 PD patients at home
during 7 days, the same method was applied, obtaining an error rate of 25.6% ± 14.9%. As part of the
PERFORM project as well, Pastorino et al. [41] presented a preliminary result of the PERFORM project
where a correlation between the algorithms developed in the project and motor states in two patients
were reported. In this paper, the algorithms used were not specified and also the resulting specificity
and sensitivity values are not available, only data correlation between the system output and patients’
diary were offered (88.2% ± 3.7%). In the most recent papers of the PERFORM project [42], this system
was reported to present the ON/OFF related information based on UPDRS values. Nevertheless, in
all cases, the system was composed of a set of 5 wearable sensors and a central storage unit, making
the system, from our point of view, unusable as a continuous monitoring system in daily life. Table 1
summarizes the main works focused on the detection of ON-OFF motor states.

Table 1. Summary of most relevant ON-OFF works.

Authors Year Number of Patients Number of Sensors Time Assessment ON-OFF Results

Pastorino et al. [41] 2013 2 5 4 h, 2 days,
unscripted activities

88.2% correspondence
with UPDRS scales

Pastorino et al. [19] 2011 24 5 Scripted activities 74.4% accuracy

Cancela et al. [20] 2010 20 5 Specific movements
Brad. detection: 70%

(walking), 86.6%
(upper limbs)

Keijsers et al. [21] 2006 23 6 3 h activities,
laboratory settings

96% sensitivity,
95% specificity

Patel et al. [22] 2009 12 8 Specific movements
Error: 3.4% in tremor,

2.2 in brad,
and 3.2% in dysk

Hoff et al. [24] 2004 50 2 One hour and a half 70% accuracy

Besides motor states, levodopa-induced dyskinesias, which are a side effect of the dopaminergic
treatment, have been widely analysed. Many works have studied their automatic assessment based on
MEMS sensors. Recently, Keijsers et al. employed five tri-axial acceleration sensors in 13 patients to
achieve an accuracy of 96.6% in detecting dyskinesia [43]. The classification algorithm employed was
based on artificial neural networks and labelled 15-min segments. In contrast, similar results were
achieved by Tsipouras et al. but on smaller segments [44]. In this case, signals from four PD patients
and six control subjects doing a number of previously scripted activities were collected. Patients wore
eight sensors and several classifiers were evaluated on the signals obtained. The accuracies obtained
ranged from 53.85% to 93.7%.

Besides characterising motor symptoms, there is another approach that many research works
have followed to evaluate the motor state of PD patients. This method is inspired in the assessment
commonly done by neurologists at the clinical setting, which consists of administering a scale to
patients that rates patients’ movements, e.g., UPDRS scale. In this approach, that takes advantage
of the relationship between UPDRS and motor state [45], the goal is to assess PD patients while
they are asked to do specific movements and they wear an inertial sensor or use a specific device.
An example of such method is the Kinesia device, developed by Great Lakes Technology, which
consists of a triaxial accelerometer and a gyroscope that measure patient’s finger movement providing
values correlated with UPDRS [46]. This approach was also followed by the work of Patel et al. [22],
who used eight sensors to estimate different UPDRS scores. Compared to the methods presented
before, this one presents the shortcoming of requiring the patient to move in a specific way, as a
finger tapping movement, necessary to provide the rating value. In consequence, the monitoring is
discontinuous, requiring patients to stop their normal activity and may not be frequent enough to
capture motor fluctuations.

To sum up, some systems have been previously developed to monitor ON and OFF fluctuations
during patient’s daily life; however, they require several IMU’s. Furthermore, almost all tests have been
performed in laboratory conditions and, as previously mentioned, most works analyse OFF periods
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that were artificially induced through a prolonged withdrawal of the patients’ habitual medication.
This commonly provokes deeper OFF periods than the natural ones and, hence, could result in non-real
condition evaluation. In the next section, a new method for the assessment of motor states in PD
patients based on a single waist-worn sensor is presented. This method is evaluated in 15 PD patients
without medication withdrawal.

3. Methods

This section describes the methods used to validate the device and algorithms for the assessment
of motor fluctuations. The section is organised as follows. First, the inclusion criteria and descriptive
data of the patients who participated are described. In the data collection part, the data acquisition
methodology is explained.

3.1. Participants

In this study, developed within the MoMoPa 2 project, a total of 15 patients with idiopathic
PD, according to UK PD Society Brain Bank criteria [47], have been used to validate the algorithms.
We included patients aged between 49 and 82 years old and patients who were in a mild or moderate
stage of the disease (Hoehn and Yahr stage greater than or equal to 2.5 in their ON state) and had motor
fluctuations with bradykinesia, freezing of gait or dyskinesia. Patients with other health problems
that hamper physical activity and patients with dementia (DSM-IV-TR criteria) or neuropsychiatric
disorders were excluded. The study was conducted in the province of Barcelona (Spain) over 3 years
(from 2013 until 2015), the experimental protocol was approved by the local Ethics Review Committee
and all participants provided informed consent prior to their inclusion in the study.

3.2. Sensor Device

The device employed to collect inertial signals is the 9 × 2 device, which has been previously
used to collect data from PD patients [48]. The device has been specifically designed for long-term
monitoring and allows capturing inertial data as well as embedding algorithms in real-time. Thus,
commercial devices are not suitable for the purpose of this work. This device saves the inertial
measurements into a micro-SD card and includes a tri-axial accelerometer with a full-scale range
of ±6 g. It also features a rechargeable Li-ion battery. The 9 × 2 maximum sampling data rate
is 200 samples per second. The sensor is worn on the waist by means of a neoprene belt specifically
designed for this purpose, as shown in Figure 1.
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Waist position has been selected due to the following rationale. Regarding the design and
generation of a system and an algorithm for monitoring PD motor states, it is a key factor to
determine the context and conditions in which the system will be used. According to this directive,
two requirements lead and constrained the development of the algorithm and, consequently, the data
acquisition required to generate the algorithms: the number and location of inertial sensors. We find,
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then, a trade-off between the feasibility of capturing accurate data, which affects the precision in
recognising a motor symptom, and patient’s discomfort while wearing a sensor on certain positions or
in simply having to wear several sensors. Thus, in this work, any system implementation that requires
multiple sensors has been discarded and the study has been focused on the use of a single sensor.
Another important issue is the position of the sensor and, in this sense, some studies like those of
Yang et al. and Gjoreski et al. [49,50] have shown that placing an accelerometer on the waist provides
good ergonomics for the patient. Furthermore, from a technical point of view, the closeness and
solidarity with the centre of human body mass provide a precise characterisation of body movement.
Along the same line, Mathie et al. [51] performed a study where volunteers chose, as the most suitable
place to carry a small inertial sensor, the anterior superior iliac spine in the waist. Given this reasoning,
in our work it was considered that a single sensor must be used and, in addition, it must be placed
on the side of the waist, as depicted in Figure 1. Almost all human movements are reflected in the
trunk and, among the different trunk locations a sensor could be located, the waist is considered to
be the optimal place. Related to the symptoms that are detected by the sensor, as Section 4 presents,
this location presents the advantage of enabling the detection of both bradykinetic gait and dyskinesia.

3.3. Data Collection

Data collection is divided into two parts. The main database of accelerometer signals gathered
from 15 PD patients was used to evaluate the motor state detection algorithms. These signals were
collected with the device while patients freely performed their activities of daily life. Additionally,
a former database obtained from 20 patients had been previously collected mainly in laboratory
settings [52]. This database has been employed to develop the window-based analysis of the algorithms,
while the first one has been used to validate the method. Both databases are presented in the
following subsections.

3.3.1. Evaluation Database of Inertial Signals

Data collection basically consists of three days of free monitoring, during which patients wore
the 9 × 2 wearable device. The first day, early in the morning and prior to any recording, PD motor
state was verified by clinical experts, by means of the motor section of the UPDRS, which was evaluated
in order to objectively assess, with standard instruments, the characteristics of patients’ motor state.
Then, a sensor was given to patients and its usage and location were described. Then, the researcher
left patients’ home. This way, during the remaining of the first day, patients wore the sensor and did
their usual daily life activities. In the morning of the second and third day, patients wore up the sensor
by themselves and, as in the first day, performed their daily life activities in a regular way. In addition,
patients used a diary over these three days to report their motor state every half an hour.

Some specific cautions were taken to ensure the validity of the diaries reported by PD patients
since they are known to present some shortcomings: first, patients may not correctly identify their
motor state, and, second, non-motor symptoms could provoke wrong annotations [16]. In addition,
time slots might be confused and time alterations in the diary could be introduced. The first caution
taken was to check that patients enrolled correctly identified their motor state, which was done by
doing some questions; The second measurement taken, which is the main one, consists in gathering
an alternative diary. In this sense, a researcher called patients by phone every two hours while they
used the sensor. This way, another register of patients’ motor state was obtained, which was used
to verify the one delivered by patients. The third caution taken relies on assuming that the temporal
validity of each annotation covers 15 min before and after the time of the annotation. Unfortunately,
six patients stopped the experiment before the third day due to the inconvenience of filling the diary.
The demographics, UPDRS score, Hoehn and Yahr stage and the dominant symptoms of the patients
are provided in Table 2.
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Table 2. Demographics and PD symptoms of the patients included in the database.

Patient Age H & Y Gender UPDRS/Motor State Dyskinesia Motor Fluctuations Bradykinesia Rigidity Tremor Postural Instability FoG

1 61 2.5 Female 29/OFF
√ √ √ √ √ √

2 59 3 Female 46/OFF
√ √ √ √ √ √

3 70 3 Female 29/OFF
√ √ √ √ √ √

4 49 2.5 Male 19/INT
√ √ √ √ √ √

5 68 2.5 Male 16/INT
√ √ √ √ √ √ √

6 80 2.5 Male 11/ON
√ √ √ √ √

7 63 2.5 Female 38/INT
√ √ √ √ √ √ √

8 57 2.5 Male 6/ON
√ √ √ √

9 61 2.5 Male 25/OFF
√ √ √ √ √ √

10 66 2.5 Male 17/INT
√ √ √ √ √ √

11 64 4 Male 62/OFF
√ √ √ √ √ √ √

12 63 2.5 Male 7/ON
√ √ √ √ √

13 57 2.5 Male 9/ON
√ √ √ √ √

14 60 2.5 Female 8/ON
√ √ √ √

15 59 2.5 Male 11/INT
√ √ √ √ √ √
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3.3.2. Learning Database

The second set of accelerometer signals was gathered from 20 PD patients in laboratory setting
as part of a study that took place during 2009 and 2010 [52]. Patients who participated were aged
between 49 and 82 years of age, lived in the Barcelona (Spain) area and had been diagnosed to have
idiopathic PD according to the criteria of the Brain Bank, London [47]. In this study, only patients with
the mild or moderate stage of the disease and motor fluctuations were included.

Accelerometer signals were collected by a former version of the sensor device presented in
Section 3.1. This device, that registered the signals in a micro-SD card, was worn by PD patients while
they performed various activities in laboratory settings and outdoors. Laboratory activities comprised
walking in a straight line, walking over an inclined plane, carrying a heavy object, setting a table and
going upstairs and downstairs. The outdoors protocol consisted of a 15-min walk, at least. Patients
who had motor fluctuations repeated the experiment, excluding the outdoors protocol, in OFF state,
which was induced by avoiding the first-morning intake of medication. The experimental protocol
was approved by the local Ethics Review Committee.

4. Signal Processing Methods

The signal processing method applied to the waist-worn accelerometer measurements to
determine the ON/OFF state of PD patients relies on characterising motor symptoms, similarly
to the methods presented in the related work section. In this sense, two specific algorithms,
which analyse the presence of dyskinesia and bradykinetic gait, are used. Their output is then
merged based on a hierarchical algorithm that eventually provides the motor state estimation.
This section describes each one of the methods used to estimate the motor state of PD patients.

In a previous work of the authors [53], a previous version of the ON/OFF detector was presented,
which was only based on the analysis patients’ gait and it was validated in a different database than
the one used. This new work presents a novel approach in which two algorithms are combined:
a bradykinetic gait detector and a choreic-dyskinesia detector that, combined by means of a decision
tree, perform the detection of the motor states. Notably, the algorithmic basis for the detection of
bradykinesia in [53] and this work, with some modifications, is based on a previous work by the
authors [52]. On the other hand the algorithmic basis of the dyskinesia block is based on another
previous work [33]. The way to combine these algorithms and the database where they are validated
are completely new. In addition, the processing required for extending bradykinetic gait detection
into 10-min periods and the method presented in Section 4.3 to self-tune the corresponding thresholds
are new.

In our approach, ON/OFF states are estimated by means of dyskinesia and bradykinesia detection.
The rationale of using these two symptoms is given below. First, motor fluctuations have been shown
to be associated with oscillating levels of dopamine and to the appearance of PD motor symptoms [9].
In addition, bradykinesia has been identified as the motor symptom whose appearance is more closely
related to the lack of dopamine [54]. More concretely, bradykinesia and OFF states are related to
low dopamine levels. On the contrary, the motor alteration that correlates to high dopamine levels
is peak-dose dyskinesias, which are linked to ON states [1]. In consequence, both bradykinesia and
dyskinesia motor alterations are selected to determine ON/OFF motor states.

Taking into account these observations, we aim to obtain a set of signal processing methods that
identify the presence of bradykinesia and dyskinesia during daily life activities, without requiring
patients to perform specific movements, as some methods presented in the related work do. Related
to choreic dyskinesia, this movement disorder can be evaluated without requiring any exercise,
since it is an involuntary repetitive movement that patients manifest in any body segment with
specific frequencies that have been shown to be up to 4 Hz [36,55]. Bradykinesia requires a more
complex solution since, in general, it is manifested as a slower than normal movement that may be
presented in any body segment. In order to automatically evaluate bradykinesia, movements belonging
to the activities of daily living are considered, since they can be automatically assessed through
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wearable sensors. In this sense, gait is one of the movements involved in many of these activities and,
in addition, it is an automatic movement that is also performed slowly by PD patients due to the effects
of the disease [56]; hence, authors consider it the optimal way to analyse bradykinesia. This way,
a signal processing method that analyses gait to determine the presence of bradykinesia is considered,
which will enable the monitoring of low dopamine levels without requiring patients to do any specific
movement. A general schematic representation of the algorithms is shown in Figure 2.
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The next sections present the algorithms comprising the overall motor state detection: first,
bradykinesia detection; second, dyskinesia detection and finally, the hierarchical algorithm that
provides the motor state estimation based on the first two algorithms. Furthermore, to facilitate the
understanding of the equations presented in the following sections, two tables are presented with the
nomenclature of all the parameters (Table 3) and all the variables (Table 4) involved in the algorithms.
Table 3 presents those parameters that are required to be tuned in order to properly detect the PD
symptoms, while Table 4 summarises the variables that correspond to values that are computed by the
algorithm from the inertial signals.

Table 3. Summary of the parameters used in this work.

Parameter Algorithm Description Value

td Dyskinesia Threshold for dyskinetic band 1.75
tPT Dyskinesia Threshold for postural transition band 0.95

twalk Dyskinesia Threshold for walk band 1
tp Dyskinesia Threshold for the probability of dyskinesia occurrence in 1 min 0.4
tc Dyskinesia Threshold for the confidence of dyskinesia occurrence in 1 min 0.3
C Bradykinesia Balance between empirical error and hyperplane margin 10
γ Bradykinesia RBF kernel hyper-parameter 0.1

α, z, b, ξi Bradykinesia SVM model. Obtained by solving the SVM-related optimization process -

bm
th Bradykinesia Patient-dependent fluency threshold to determine the presence or

absence of bradykinesia. Self-tuned (see Section 4.3)

Table 4. Summary of the variables used in this work.

Variable Algorithm Description

Pd Dyskinesia Power spectra in dyskinetic band
PPT Dyskinesia Power spectra in postural transition band
Pwalk Dyskinesia Power spectra in walk band
dw

h Dyskinesia Dyskinesia detection in window h
dm

j Dyskinesia Dyskinesia detection in the j-th 1-min period
d10m

i ON/OFF Dyskinesia detection in the i-th 10-min period
nd Dyskinesia number of time windows in which the condition PPT ≥ dPT ∨ Pwalk ≥ twalk was not held

pi Bradykinesia Vector of the features that characterize the window of the accelerometer signal (for walking detection)

yi Bradykinesia Window label according to video observations (for walking detection)
l(p) Bradykinesia SVM output (walk/no walk) for a given window represented by p
pstr

j Bradykinesia Power spectra of the stride j
Sk Bradykinesia Number of strides detected in the walking stretch k
f str
k Bradykinesia Averaged fluency value for the strides within the walking stretch k
f m
h Bradykinesia Averaged fluency value of the strides done within minute h
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Table 4. Cont.

Variable Algorithm Description

f s
h Bradykinesia Standard deviation of the fluency values corresponding to the strides done in the minute h

f n
h Bradykinesia Number of strides analyzed in minute h

f̂ m
j Bradykinesia Fluency weighted value for minute j

kh Bradykinesia Filtering coefficient for minute h
wh Bradykinesia Weight for fluency value in minute j
bm

j Bradykinesia The existence of bradykinesia evaluated for minute j
b10m

i ON/OFF Bradykinesia detection in the i-th 10-min period
va

k ON/OFF Motor state estimation done by the algorithm in the k-th 10-min period

ta
k . ON/OFF Time of the kth motor state estimation done by the algorithm

(corresponding to the first minute of the 10-min period)

vp
i ON/OFF i-th motor state annotation given by a patient that corresponds to time tp

i
tp
i ON/OFF Time of the annotation i given by a patient

4.1. Dyskinesia Detection

Dyskinesia detection is the first algorithm presented for the ON-OFF motor states detection.
This algorithm was designed based on many previously works that relate dyskinesia to an increased
power spectra of some specific frequency bands. The algorithm was developed by analysing the
frequency spectra of inertial signals obtained from PD patients while performing different activities,
either while presenting dyskinesias and without presenting them. As a result [52], a specific frequency
band in which power spectra increases with dyskinesia was identified; in addition, other activities were
found to also increase the power spectra in some bands that are overlapped with the dyskinesia one;
thus, these other activities could provoke false positive detections of the symptom. These overlapping
frequency bands are also examined in the algorithm in order to avoid inaccurate dyskinesia detections.

Dyskinesia frequency band was identified within the range of 0 to 4 Hz [57]. As mentioned
previously, other activities with high power spectrum in the same band were found; for example,
the natural frequency of gait and going upstairs and downstairs ranges from 0.5 to 6 Hz [58,59],
being overlapped with the dyskinetic band. However, these activities have strong harmonics whose
frequency reaches 20 Hz, which is not overlapped with the dyskinetic band. On the other hand,
posture transitions span the band from 0 (not included) to 0.68 Hz [60]. A symptom that could
introduce harmonics at frequencies of interest is tremor; nonetheless, according to a consensus of
the Movement Disorders Society [55] the frequency of Parkinsonian tremor goes from 4 Hz to 9 Hz.
This way, the upper limit of the dyskinesia band is set to the lowest frequencies of tremor, and the
possible increment in the power spectra, caused by the tremor, would incorporate in the non-dyskinetic
band. In consequence, dyskinesia algorithm relies on the calculus of three power spectra values:
first, the one corresponding to dyskinetic band (Pd), considered to be in the (0.68, 4] Hz range;
second, non-dyskinetic band (Pwalk), considered to cover [8, 20] Hz; and postural transition band (PPT),
which is (0, 0.68] according to [57]. The power spectra in a given band is computed as the summation
of the corresponding harmonic amplitudes among the three axis.

The sampling frequency has been determined by the maximum frequency of interest following
the Nyquist-Shannon sampling theorem [61]. Given a sample rate f’s, the complete reconstruction of
a continuous signal is guaranteed for a frequency band limit below f’s/2. In consequence, f’s is set
to 40 Hz, since 20 Hz is our maximum harmonic of interest in the previous frequency bands and we
want to minimise the resources used by the algorithms. On the other hand, the window length is set to
128 samples since it enables the evaluation of postural transitions (below 0.68 Hz) and dyskinesias.
In consequence, w = 128/f ’s = 3.2 s.

Dyskinesia features Pd, Pwalk and PPT are obtained in each window of 128 samples, i.e., 3.2 s.
They are used, as Equation (1) shows, to determine if a patient manifests dyskinesia, does not manifest
it, or performed a movement that does not allow to evaluate its presence (i.e., the output is Unknown).
The latter case refers to a patient who walks or performs a postural transition, in which cases these
movements do not enable the detection of dyskinesia since they have overlapped frequency bands.
This way, the detection of dyskinesia in a certain window h is defined by dw

h according to:



Sensors 2016, 16, 2132 11 of 25

dw
h =


1 (Dyskinesia) Pd > td ∧ PPT < tPT ∧ Pwalk < twalk

0 (No dyskinesia) Pd ≤ td ∧ PPT < tPT ∧ Pwalk < twalk

U (Unknown) PPT ≥ tPT ∨ Pwalk ≥ twalk

(1)

where td, tPT , twalk are the thresholds for dyskinetic and non-dyskinetic bands (posture transition band
and walking band) respectively, ∨ is the logical OR operation and ∧ is the logical AND.

The values found for these thresholds are td = 1.75, tPT = 0.95, and twalk = 1. These thresholds
have been set based on the previously described study [52] (see Section 3.3.2) and they are used in a
generic way for any patient.

Dyskinesia is a movement alteration that commonly appears during several minutes. Nonetheless,
short windows are being used (w = 3.2 s). In order to determine the presence of dyskinesia in a more
appropriate time interval, it is proposed to collect the output of several windows under a period
of T = 60 s. Each window is overlapped with the previous one by 64 samples, i.e., a new window starts
every half a window. The algorithm, thus, provides an output once per minute obtained from the
information included in its b2T/wc windows, being b·c the floor function, according to:

dm
j =


1 (Dyskinesia)

b2T/wc
∑

h=1

dw
h

nd
> tp ∧ w·nd

2T > tc

0 (No dyskinesia)
b2T/wc

∑
h=1

dw
h

nd
≤ tp ∧ w·nd

2T > tc

U (Unknown) w·nd
2T ≤ tc

(2)

where dw
1 , . . . , dw

b2T/wc are the outputs represented in Equation (1) corresponding
to the windows evaluated in minute i, nd is the number of time windows in which the condition
PPT ≥ dPT ∨ Pwalk ≥ twalk was not held, tp is the minimum rate of dyskinetic windows in the
analysed period, and tc is the threshold that represents the minimum rate of windows to analyse in
order to validate the detection.
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that a minute period is considered dyskinetic if the rate of positive outputs of Equation (1) in this 
period is greater than ݐ . However, as these band’s power spectra might be increased by other 
activities, and not only by the appearance of dyskinesias, we must add a parameter of confidence in 
which we ensure that the patient is not performing activities that might cause false detections in this 
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According to Equation (2), the algorithm output in a one-minute interval is determined to be
dyskinetic (dm

j = 1) provided that most of the analysed window outputs are dyskinetic. This means
that a minute period is considered dyskinetic if the rate of positive outputs of Equation (1) in this
period is greater than tp. However, as these band’s power spectra might be increased by other activities,
and not only by the appearance of dyskinesias, we must add a parameter of confidence in which
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we ensure that the patient is not performing activities that might cause false detections in this band.
Then, a confidence index is defined as w·nd

2T and represents the number of windows that were rejected
due to the condition PPT < dPT ∨ Pwalk < twalk. A low confidence index indicates an unreliable
detection assessment because only few windows could be analysed. For this reason, the confidence
index is required to be greater than threshold tc.

Threshold values were found based on an optimisation procedure on the signals collected in
the previously mentioned study with 20 patients [52], in which several values for the thresholds
were evaluated in 10 patients and the accuracy was measured onto the signals from other 10 patients.
Values found were tp = 0.4 and tc = 0.3. Figure 3 shows a schematic representation of the dyskinesia
algorithm block.

4.2. Bradykinesia Detection

Bradykinesia detection analyses Parkinsonian gait, as previously presented. The signal processing
algorithm exploits the fact that gait, as an automated movement, is slowed in Parkinson’s patients
during low-dopamine level periods. In consequence, it is considered that the signal processing method
has to, first, determine that patients are walking; second, identify gait cycles from the accelerometer
signals; and, third, characterise gait cycles through a measurement that correlates to the presence of
bradykinesia. The complete bradykinesia detection method consists of a five-step characterisation
method, as described below.

The first step consists in detecting gait and it is based on an SVM classifier. SVM is chosen,
first, given the bi-classification nature of the problem at hand (detecting if the patient walks or not),
which matches the bi-classification problems that SVM solve; second, due to the high performance
that SVM have reported when dealing with this kind of classification problems; and, finally, because
SVM allows us to obtain a global optimal solution, as opposed to Artificial Neural Networks that
may provide suboptimal ones. Thus, given the signal contained in a time window of w = 3.2 s,
as in the dyskinesia case, it is needed to determine whether the patient is walking or not. The SVM
is trained with a Radial Basis Function (RBF) kernel and vectors {p1, . . . , pn}, where pi = [hi

1, . . . , hi
k]

and hi
j are the features which characterise the window of the accelerometer signal. Hyper-parameters

γ and C were tuned through Cross-Validation by testing the following values: {10−3, 10−2, . . . , 103}.
In a previous study [52], 800 frequency features were analysed using data from 10 patients.
Two features were finally selected for walking detection as those that maximised inter-class distance
and minimised intra-class distance according to Relief algorithm [62]. These two features (k = 2)
selected for gait detection were the tri-axial power spectra between in the frequency bands [0.1, 3] Hz
and [0.1, 10] Hz, which are noted as h1 and h2, respectively.

Each vector pi has a label yi = {1, −1} according to video observations used to label the video:
yi = 1 corresponds to those windows whose corresponding video labels were walking and yi = −1 to
the remaining windows. Dataset elements are denoted as {(p1, y1), . . . , (pn, yn)} and were employed to
find the SVM classifier that allows the detection of gait by solving:

minz,b,ξ
1
2 ‖z‖

2
2 + C

N
∑

i=1
ξi

s.t ξi ≥ 0
yi[K(z, pi) + b] ≥ 1− ξi

(3)

where K(z, pi) = eγ‖z−pi‖
2
2 , b is the hyperplane bias, z is the hyperplane that separates both classes

and ξi are the slack variables. Parameters C and γ are determined as the values that maximise the
accuracy among the values 10−2, 10−1, . . . , 102 in a 10-fold Cross-Validation [63], which were found to
be 10 and 0.1, respectively.
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The label of a new window p is then obtained by:

l(p) = sgn

(
l

∑
i=1

yiαiK(pi, p) + b

)
(4)

where the set of α are the Lagrangian multipliers of the dual problem formulation of the SVM.
The second phase is focused on detecting patients’ strides and only those windows whose feature

representation pj = [hj
1, hj

2] satisfies l(pj) = 1 (walking) are analysed. The principles used to detect
strides are based on Zijlstra et al. work [64]. Although segmentation techniques can be employed to
detect strides [65–67], we restrict to biomechanical properties of gait and the way they are observed
in the acceleration signals to do so. More concretely, the beginning of the support phase of gait,
that is when the heel touches the ground, can be detected by a local minimum in the front acceleration
measured from the bottom of the trunk [64]. This event in the gait cycle is known as ‘initial
contact’ and it is regarded as the beginning of step. However, due to lateral particularities of PD [1],
our interest focuses on strides; i.e., the signal comprised between two consecutive steps of one feet.
The discrimination between left and right steps can be performed by analysing the relative extrema of
the lateral acceleration in the waist, which approximately describes a sinusoidal period during gait
cycle [64].

The third step consists in characterising the detected strides in the previous phase with the aim of
analysing the presence of bradykinesia. The basis of this step is the previously mentioned study [52]
where several statistics were applied and evaluated in 20 patients. In this study, several features that
characterised strides were analysed into their ability to linearly separate the presence of the interest
symptom and, also, intuitively represent the fluidity of movement. From the conclusions of this work,
the best feature to characterise the fluidity of movement was the power spectra in the bands of (0, 10]
Hz of the stride. Given a stride detected on the accelerometer signal of a certain patient, the (0, 10] Hz
power spectra of the stride is represented by pstr

j .
The considerations for the fourth step are related to the fact that bradykinesia is a symptom

examined during gait, as it is an automatic movement. In consequence, with the aim of analysing gait
during its highest degree of automation, the inertial parameters of gait are analysed after walking
started and before the patient stopped. Therefore, we consider a sequence of U consecutive walking
windows, i.e., l (px) = −1, l (px+1) = 1, . . . , l (px+U) = 1, l (px+U+1) = −1, called walking stretch, during
which S strides are detected; first and last two strides are not considered because they are not done
under a high automation control, i.e., only Sk− 4 strides are considered. Thus, the result of averaging
the fluency characteristics obtained from the strides within a walking stretch k is denoted by f str

k and is
defined as:

f str
k =

1
Sk − 4

Sk−2

∑
j=3

pstr
j (5)

where Sk is the number of strides detected in the walking stretch k.
Considering that, when bradykinesia appears, it remains present for long periods of time,

we designed an aggregation strategy that provides an algorithm output per minute, in order to
simplify the final evaluation of the presence or absence of symptoms. In this aggregation, algorithm’s
output for a given minute h, noted as f m

h , is computed as the average of the bradykinesia values
associated with the strides contained in the walking stretches within that minute. The standard
deviation of these bradykinesia values is represented by f s

h .
Finally, the algorithm’s fifth step aims to give more robust outputs every minute by considering

longer periods. In consequence, a weighted average of the last 10 min is proposed. Note that the
output of the algorithm persists once per minute. Weighted aggregation is based on the importance
each bradykinesia value has; for example, the value obtained in a minute from only 2 strides should
not have the same weight as the value obtained in one minute with 20 strides detected. Furthermore,
a very high standard deviation within a minute means a large scatter in the data and, in case of
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very high values of f s
h , the average may not be significant. Furthermore, it has been observed that

when the patient goes upstairs or downstairs the standard deviation grows above the usual values.
An estimation of the maximum value of f s

h has been empirically determined through the signals from
the previous study [52]. This value was determined by studying the values of standard deviation
presented by patients who had made the dubious activities. From the presented premises, values per
minute are filtered in the following way: those minutes h in which f s

h is greater than threshold 1.7,
which is formalised through kh coefficients that are set according to:

kh =

{
1,

(
f n
h < 2

)
∧ ( f s

h < 1.7)
0, otherwise

(6)

where f n
h is the number of steps in the minute h.

The results presented in [52] show that the algorithm works best when considering the average
walking steps in stretches over 5 strides. From this result the value of the minimum number of steps
in a minute to be able to estimate the presence of bradykinesia is 2. In order to take into account the
number of strides, a weight function is included. The function selected is the sigmoidal, considering
that the minimum weight (0) should be with 0 steps and the maximum weight is 1. Whereas the
maximum number of strides in a minute will be around 30–40, it is considered that from 20 strides the
confidence in this minute should be high and therefore the weight should be the maximum. According
to these considerations, the weight of data wh in a minute h is represented by wh = 1/1 + e− f n

h . Finally,
the fluidity value representing a period of 1 min, but weighted with the last 10 min, is calculated
through the next function:

f̂ m
j =

∑
j
h=j−9 f m

h khwh

∑
j
h=j−9 khwh

(7)

where f̂ m
j = Unknown (U) if ∑

j
h=j−9khwh = 0.

This value is finally used to determine the bradykinesia presence in the last-minute period under
analysis. Diagnosis of bradykinesia is set differently for the first minute. The existence of bradykinesia
evaluated for the first minute (b1) is defined by:

bm
1 =


1 (Bradykinesia), i f f̂ m

1 < bm
th

−1 (No bradykinesia), i f f̂ m
1 ≥ bm

th
U (Unknown), i f f̂ m

1 = NaN
(8)

where bm
th is the patient-dependent threshold to determine the presence (1) or absence (−1) of

bradykinesia. This threshold is unique for each patient and must be particularised, as it is described in
next subsections.

From this first minute, in order to avoid constant changes of diagnosis in intermediate states, a
minimum variation from the threshold must be considered. This minimum variation is consequently
determined by the maximum allowable standard deviation. The presence or absence of bradykinesia
for the next minutes (j > 1) is set as follows:

bm
j =


1, i f f̂ m

j < bm
th −

1.7
2

−1, i f f̂ m
j > bm

th +
1.7
2

bm
j−1, i f bm

th +
1.7
2 ≥ f̂ m

j ≥ bm
th −

1.7
2

U, i f f̂ m
j = U

(9)

Thus, the output of the bradykinesia algorithm in a given one-minute period j, noted as bm
j ,

is U whenever the patient did not walk in the corresponding minute, bm
j = 1 in case of bradykinesia
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being detected, and bm
j = −1 whenever not bradykinetic gait was present. Figure 4 shows a schematic

representation of the bradykinesia algorithm block.

4.3. Self-Adapting Bradykinesia Detection Algorithm

The threshold applied to the output of the bradykinesia algorithm allows determining the presence
of the symptom by dividing the range of possible values into two zones, one for each motor state.
However, the selection of the threshold is very critical. Given that bradykinesia values pstr

j depend
on the way of walking of each individual, a young person without any pathological movement
would provide high values; nonetheless, with older patients and/or with the presence of diseases
such as arthritis, lower values would be obtained. Similarly, ON and OFF motor states are very
patient-dependant. In consequence, bradykinesia values from each patient must be analysed in order
to establish an optimal separation threshold.Sensors 2016, 16, 2132 15 of 24 
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In our previous works [15,52], the adaptation of the threshold to each patient was performed
by a customisation process which is, in practice, long and complex. This process requires that the
patient visits the clinical setting without medication, a fact which is already difficult to accomplish
in many cases, but also implies that the medical team should perform a double clinical examination
and a double assessment as the patient performs a series of exercises (mainly walking) both in OFF
and ON states. Arguably, it is a methodology completely inapplicable in the clinical practice. In this
section, a new methodology to calculate the threshold is presented.

This new methodology is based on automatically analysing the distribution of the bradykinesia
fluency values ( f̂ m

j ) obtained during few days. Ideally, their histogram could present two clearly
separate distributions representing each motor state. In this case, the bradykinesia optimal threshold
lies within the gap between the two distributions. This type of clear distributions is found only in
some patients, but it does not occur in most of them, where the difference between states is not so
obvious. In these cases some empirical rules, that allow optimally adjusting the threshold, are applied.

More specifically, bradykinesia weighted values f̂ m
j are first collected during few days

(from 1 to 3 days). A histogram is then obtained in order to analyse the data distribution. Histogram
bins are arranged to cover bradykinesia values from 2 to 15 since, from our experience, fluidity
values from PD patients in both motor states are contained within this range. Given this histogram,
the special case in which two different distributions are found, i.e., one for each motor state,
is determined by locating empty bins. In order to standardise it, it is considered that both distributions
must be separated by at least 0.5 points and, in addition, both of them must contain at least 10% of the
total data, in order to avoid identifying a double distribution from merely isolated data. For this case,
the value of the threshold is set to that value in the middle between distributions.
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However, the most common case consists of overlapping distributions. In this case, the
premise for calculating the threshold for this group of patients consists in considering the lower
values of the distribution corresponding to the OFF state and the highest ones to the ON state.
Then, the threshold can be set based on the percentage of frequencies remaining on either side of the
distribution. To implement this approach, the value of the histogram’s bin that has the largest absolute
frequency, i.e., the mode, is obtained. Then, the bin that is located immediately below the mode and
whose frequency is higher than 60% of the mode’s frequency, is selected as threshold bm

th.

4.4. ON/OFF Motor States Detection

PD patients manifest motor fluctuations as an alternation between ON and OFF states.
As previously described, provided that specific symptoms and movement alterations appear in
each motor state, a hierarchical algorithm is designed to estimate the motor state of PD patients by
combining the output of the previously presented methods. This way, dyskinesia and bradykinesia
algorithms’ outputs are merged.

In order to work in a time unit closer to the gold standard, which are the annotations given by
patients that are commonly provided every 30 or 60 min, a similar time basis is proposed. This time
unit is 10 min since it is considered long enough to give accurate estimations and short enough to avoid
mixing different motor states. More concretely, the motor state classifier first computes the presence of
bradykinesia and dyskinesia into the period of 10 min, noted as b10m

i and d10m
i , respectively, according

to Equations (10) and (11):

b10m
i =



U ‖bm
j = U‖ = 10, ∀ j = i− 9, . . . , i

−1
(
‖bm

j = −1‖ > ‖bm
j = U‖

)
∧

‖bm
j = −1‖ > 2, ∀ j = i− 9, . . . , i

1
(
‖bm

j = −1‖ +‖bm
j = U‖

)
< ‖bm

j = 1‖ ∧
‖bm

j = 1‖ > 2, ∀ j = i− 9, . . . , i
0 otherwise

(10)

d10m
i =


U ‖dm

j = U‖ > 7, ∀ j = i− 9, . . . , i
1 ‖dm

j = 1‖ ≥ 3, ∀ j = i− 9, . . . , i
0 otherwise

(11)

where ‖·‖ counts the number of elements satisfying the within condition.
Bradykinesia-algorithm’s output b10m

i is 1 when the symptom is present, −1 if it is absent,
0 if an intermediate state has been detected and Unknown (U) if there is not any gait period detected in
the last 10 min. On the other hand, dyskinesia-algorithm’s output d10m

i is 1 when the symptoms are
present, 0 if absent and Unknown whenever the patient walked or performed a posture change in most
of the 10 min, which is unlikely.

Once the 10-min output has been obtained, the motor state estimated by the algorithm at time ti,
which is noted as va

i , is defined by Equation (12):
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outputs of the ON/OFF decision-tree defined in Equation (12) are obtained, a small filter is then
applied. Considering three consecutive outputs of the decision-tree, if a blank period is found between
two periods that are equal, the empty period is then set to the same state. Figure 5 shows a schematic
representation of the complete ON-OFF algorithmic block.
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4.5. Evaluation

In order to formalise the analysis performed, the time of the patient annotation i corresponds
to tp

i and it is defined by a value vp
i which corresponds to −1 for ON state, 0 for intermediate state

(INT) and 1 for OFF state. The time corresponding to an output of the algorithm va
k is noted as ta

k.
The meaning of va

k is the same as vp
k , corresponding the super-index a and p to the algorithm output

and patient’s annotation, respectively. Since patients reported the motor state every 30 min, the validity
period of an annotation of the patient is considered to be 15 min ahead and behind the time in which
the patient wrote tp

i .
The output of the algorithm relies on the common statistical measures used in binary diagnostic

tests. Thus, we consider a true positive (TP) when an OFF state is detected correctly and a false positive
(FP) when an OFF state is diagnosed when the patient was in ON state. On the contrary, we consider a
true negative (TN) when an ON state is detected correctly and false negative (FN) when an ON state is
incorrectly obtained. It should be noted that intermediate states are excluded from the analysis since
they cannot be identified as either of the motor states. Hence, the algorithm is evaluated based on the
presented gold-standard; for each 10-min output of the algorithm va

i that matches a diary annotation,
a TP, FP, TN or FN is obtained according to:

ei =



TP i f va
i = 1 ∧ ∃ k s.t.

(
vp

k = 1 ∧ tp
i − 15 ≤ ta

k − 10 ∧ tp
i + 15 ≥ ta

k

)
FP i f va

i = 1 ∧ ∃ k s.t.
(

vp
k = −1 ∧ tp

i − 15 ≤ ta
k − 10 ∧ tp

i + 15 ≥ ta
k

)
TN i f va

i = −1 ∧ ∃ k s.t.
(

vp
k = −1 ∧ tp

i − 15 ≤ ta
k − 10 ∧ tp

i + 15 ≥ ta
k

)
FN i f va

i = −1 ∧ ∃ k s.t.
(

vp
k = 1 ∧ tp

i − 15 ≤ ta
k − 10 ∧ tp

i + 15 ≥ ta
k

) (13)

Finally, the sensitivity is the ability of an algorithm to correctly diagnose positive cases
Sensitivity = 100· ‖{ei=TP}‖

‖{ei=TP}‖+‖{ei=FN}‖ , while specificity is the ability of the algorithm to diagnose

healthy cases Speci f icity = 100· ‖{ei=TN}‖
‖{ei=TN}‖+‖{ei=FP}‖ . Specificity and sensitivity values are obtained for

each patient.
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5. Results and Discussion

A total of 420.2 h of inertial sensor signals were gathered from the 15 PD patients who participated
in the experiment. Among these 15 patients, six decided to stop before concluding the three days of
experimentation; however, some hours of valid data were obtained. More concretely, patients 1, 2 and
3 stopped the experiment after 24 h and the patients 4, 7 and 9 stopped after 48 h. All of them claimed
that filling the diary, together with the calls, were very annoying.

As an example, Figure 6 presents, among others, the third day of patient 13: diary annotations
reported by patients are depicted in the upper part and algorithm outputs, each one corresponding to
a period of 10 min, in the lower part.
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7 92.31% 100.00% 80.00% 4/8/0/1 19 (9/4/6) 7 (0) 13 9 7 
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9 93.33% 94.00% 90.00% 9/47/3/1 93 (48/12/33) 51 (0) 60 52 33 
10 83.33% 100.00% 66.67% 4/6/0/2 23 (8/4/11) 31 (0) 12 25 9 
11 85.19% 84.00% 100.00% 2/21/4/0 34 (21/6/7) 20 (0) 27 24 14 
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14 91.67% 91.67% NaN 0/11/1/0 19 (11/1/7) 30 (0) 12 21 10 
15 100.00% 100.00% 100.00% 4/3/0/0 9 (3/4/2) 18 (1) 7 13 4 

Figure 6. Graphical output of the algorithm for those patients who had the poorest results
(patient 1) and some intermediate results (patients 9 and 13) during a day. Patient’s annotations
(upper part) cover, each one of them, a time interval 30 min. Sensor outputs comprise 10 min and
follow the same code colour: white corresponds to ON-state, grey to intermediate-state, and black
to OFF-state.
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Table 5 shows, for each one of the 15 patients: accuracy, specificity and sensitivity of the
OFF detection method; number of outputs provided by the ON/OFF method; number of outputs
(Total outputs) that were used to compute specificity and sensitivity, since only those outputs with
a diary annotation could be used; number of annotations reported by the patient (Total labels);
the number of labels used in the validation (Labels used), since the algorithm output covers a period
of 10 min and labels a time interval of 30 min; and the total number of minutes in the monitoring
(Total of minutes).

Table 5. Results organised by patient. The number of outputs given by the sensor and algorithm are
presented in the ‘Total outputs’ column, distinguishing among ON, OFF and INT states. The number of
Unknown outputs is shown as “Unknown”, being in brackets the amount corresponding to a detection
of both bradykinesia and dyskinesia “(n. br. + dy.)”.

Patient Accuracy Specificity Sensitivity TP/TN/FP/FN Total Outputs
(ON/OFF/INT)

“Unknown”
(n. br.+dy.)

Outputs
Used

Total
Labels

Labels
Used

1 81.82% 83.33% 80.00% 4/5/1/1 19 (6/5/8) 7 (0) 11 10 7
2 100.00% 100.00% 100.00% 1/15/0/0 29 (15/1/13) 14 (0) 16 16 8
3 100.00% 100.00% NaN 0/27/0/0 34 (27/0/7) 21 (0) 27 19 13
4 94.74% 100.00% 92.31% 12/6/0/1 38 (7/12/19) 21 (0) 19 22 10
5 91.89% 91.89% NaN 0/68/6/0 102 (68/6/28) 25 (0) 74 44 33
6 87.50% 83.33% 100.00% 4/10/2/0 53 (10/6/37) 37 (0) 16 33 9
7 92.31% 100.00% 80.00% 4/8/0/1 19 (9/4/6) 7 (0) 13 9 7
8 83.87% 73.33% 93.75% 15/11/4/1 48 (12/19/17) 27 (0) 31 30 15
9 93.33% 94.00% 90.00% 9/47/3/1 93 (48/12/33) 51 (0) 60 52 33
10 83.33% 100.00% 66.67% 4/6/0/2 23 (8/4/11) 31 (0) 12 25 9
11 85.19% 84.00% 100.00% 2/21/4/0 34 (21/6/7) 20 (0) 27 24 14
12 92.59% 91.30% 100.00% 4/21/2/0 37 (21/6/10) 20 (2) 27 25 16
13 95.83% 95.45% 100.00% 2/21/1/0 42 (21/3/18) 94 (0) 24 48 17
14 91.67% 91.67% NaN 0/11/1/0 19 (11/1/7) 30 (0) 12 21 10
15 100.00% 100.00% 100.00% 4/3/0/0 9 (3/4/2) 18 (1) 7 13 4

From Table 5, it is worth noting that the sensitivity average per-patient is 92% and the specificity
is 92%. However, some patients (3, 5 and 14) do not present any OFF state detected by the algorithm,
which is shown as NaN in the sensitivity column, since TP + FN = 0. These NaN values are obtained
because these patients did not enter into the OFF state during the experiment or did not report it and,
consequently, have no OFF state entries in the diaries.

Patients reported an average of 26 annotations (13 h), meaning that the diary was far from being
completely filled (approximately 60 annotations). However, patients 9 and 13 diaries are very complete
in the number of entries (52 and 48 annotations respectively), which are very useful to validate the
output of the algorithms in an optimal sense. In the case of patient 13, as can be seen in Figure 6,
the output of the algorithm fully agrees with the annotations in the patient diary. Furthermore,
in Table 5, some cases where a low number of daily patient labels have been validated are observed.
For example, in the case of patient 15, two problems have been detected: on the one hand, the low
number of entries (13 in 3 days) and, on the other hand, in OFF state, the patient could not or had no
desire to move and, therefore, the algorithm was not able to provide a decision. In the case of patient 6,
the problem is related to the high rate of intermediate states detected by the sensor. The algorithm
output determines a great number of intermediate states because the patient walks briefly and also
in very short stretches. This causes the algorithm not to be able to clearly evaluate gait and, thus,
the motor state of the patient.

Figure 7 presents the precision-recall diagram of all patients who presented OFF state. This figure
shows very high recall values in all patients, and somehow lower precision values for some of them.
These low values (patients 11 and 6) are due to a low amount of OFF states, since only four and two
OFF states are not detected (i.e., four and two false negatives), respectively. In patient 4 and patient 8,
who have more than 10 OFF states, much higher values are obtained.



Sensors 2016, 16, 2132 20 of 25

Sensors 2016, 16, 2132 19 of 24 

 

From Table 5, it is worth noting that the sensitivity average per-patient is 92% and the specificity 
is 92%. However, some patients (3, 5 and 14) do not present any OFF state detected by the algorithm, 
which is shown as NaN in the sensitivity column, since TP + FN = 0. These NaN values are obtained 
because these patients did not enter into the OFF state during the experiment or did not report it and, 
consequently, have no OFF state entries in the diaries.  

Patients reported an average of 26 annotations (13 h), meaning that the diary was far from being 
completely filled (approximately 60 annotations). However, patients 9 and 13 diaries are very 
complete in the number of entries (52 and 48 annotations respectively), which are very useful to 
validate the output of the algorithms in an optimal sense. In the case of patient 13, as can be seen in 
Figure 6, the output of the algorithm fully agrees with the annotations in the patient diary. 
Furthermore, in Table 5, some cases where a low number of daily patient labels have been validated 
are observed. For example, in the case of patient 15, two problems have been detected: on the one 
hand, the low number of entries (13 in 3 days) and, on the other hand, in OFF state, the patient could 
not or had no desire to move and, therefore, the algorithm was not able to provide a decision. In the 
case of patient 6, the problem is related to the high rate of intermediate states detected by the sensor. 
The algorithm output determines a great number of intermediate states because the patient walks 
briefly and also in very short stretches. This causes the algorithm not to be able to clearly evaluate 
gait and, thus, the motor state of the patient. 

Figure 7 presents the precision-recall diagram of all patients who presented OFF state. This 
figure shows very high recall values in all patients, and somehow lower precision values for some of 
them. These low values (patients 11 and 6) are due to a low amount of OFF states, since only four and 
two OFF states are not detected (i.e., four and two false negatives), respectively. In patient 4 and 
patient 8, who have more than 10 OFF states, much higher values are obtained.  

 
Figure 7. Precision-Recall diagrams of those patients who presented OFF states. 

The overall confusion matrix is presented in Table 6, considering the results among all patients. 
From this matrix, it follows that the method has an overall sensitivity and specificity of 90.28% and 
92.11%, respectively, considering all the validated outputs of the algorithm, i.e., without 
distinguishing among patients.  

Table 6. Confusion matrix summarising the results from all patients. 

  
Predicted

 
Positive Negative

Real 
Positive 65 7 72 
Negative 24 280 304

  89 287  

Figure 7. Precision-Recall diagrams of those patients who presented OFF states.

The overall confusion matrix is presented in Table 6, considering the results among all patients.
From this matrix, it follows that the method has an overall sensitivity and specificity of 90.28% and
92.11%, respectively, considering all the validated outputs of the algorithm, i.e., without distinguishing
among patients.

Table 6. Confusion matrix summarising the results from all patients.

Predicted

Positive Negative

Real
Positive 65 7 72
Negative 24 280 304

89 287

ON/OFF patterns have been previously used in the literature [39]. These patterns
graphically summarize the ON/OFF pattern that patients have presented during one or more days.
More specifically, they represent the most frequent motor state that patients annotated at each hour.
Figure 8 presents the ON/OFF pattern for six patients who participated in the study. From this figure,
it is observed that, with few specific exceptions, the estimations made by the algorithm mostly match
the diary annotations.
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So far, there are other works that also analysed the feasibility of monitoring PD motor fluctuations
through wearable sensors. Nonetheless, previous works, as far as authors know, have used several
sensors and, in most cases, in laboratory settings by following a set of scripted activities as shown in
Table 1 [19–23]. The work of Cancela and Pastorino et al. developed in the project PERFORM [19]
reports an accuracy of 86% [20] and 74.4% [19], respectively, with inertial signals obtained from twenty
PD patients following a set of previously defined activities. These accuracies are similar or lower
than the 92% reported in this work. Furthermore, their system is composed of a set of five wearable
sensors and a central store unit, in contrast to the single device used in our study. Similarly, the work
of Keijsers et al. and Patel et al. was performed with several inertial systems, being very cumbersome
for patients [21]. Finally, it is difficult to compare the results obtained in this work with the one
presented by Pastorino et al. in 2013, in which only two patients performed the test obtaining a 88.2%
of correspondence between patient’s diary and ON/OFF phases identified by the system [41].

The main limitation of the algorithm presented in this work relies on the fact that the detection of
OFF states can only be evaluated if patients walk. In consequence, there could be long periods during
which the algorithm does not provide any information. In spite of this, it has been reported that PD
patients in both moderate and advanced stages commonly walk more than 40 times per day [68,69].
Hence, it is considered that the algorithm would be capable of providing enough information.

Currently, clinicians rely on patients’ self-reporting to monitor ON and OFF motor states.
The algorithmic approach presented in this work combined with the simplicity of wearing a single
waist-sensor has the potential of being an excellent clinical tool to replace these self-reporting diaries.
However, the method requires further validation in more patients to confirm the results obtained in
this research work.

6. Conclusions

In this work, a hierarchical algorithm has been presented, which combines the output of a
dyskinesia-detection and a bradykinesia-detection method based on a waist-worn sensor in order
to determine the motor state of PD patients. This algorithm has been validated in 15 PD patients
with idiopathic Parkinson’s disease, who only wore a waist-sensor mainly consisting of a triaxial
accelerometer. The results on sensitivity and specificity, above 90%, show the great potential of
the method, both algorithm and sensor device, despite the rather low number of patients that has
been validated. In addition, these results show that the motor status in PD patients is able to be
monitored through a single sensor during daily life of patients in a precise and objective way. However,
the method requires further validation in more PD patients.

This automatic detection of PD motor status might provide relevant advances. In a relatively
short time, physicians can obtain accurate information for the purpose of adjusting the medication
intake. Furthermore, this automatic assessment opens up the possibility to modify drug infusion rates
in apomorphine and duodopa pumps in real-time, by adjusting to patients’ motor state. In addition,
clinical trials may benefit from such tool since an objective comparison of the efficacy of distinct active
principles would be obtained.

To conclude, wearable devices for PD patients that objectively monitor the disease in daily life
environments are a great advance in the clinical practice. Through them, the pharmacological regimen
can be tailored to PD patients and, in addition, drug infusion pumps can interact in real-time to
improve patients’ motor state.
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