Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1991 Jul 1;88(13):5562–5566. doi: 10.1073/pnas.88.13.5562

Cooperativity in axonemal motion: analysis of a four-state, two-site kinetic model.

C K Omoto 1, J S Palmer 1, M E Moody 1
PMCID: PMC51917  PMID: 1829522

Abstract

A kinetic model for axonemal motion based upon a four-state mechanochemical cycle of dynein with two active sites is described. Our model analysis determines the pseudo-steady-state concentrations of enzyme species for specified rate constants, most of which are experimentally determined, with given substrate and product concentrations. The proportion of enzyme species in which both active sites are detached from the microtubule (denoted as "both detached"), numerically calculated from the model, appears to be proportional to experimental observations of flagellar beat frequency. This correlation between beat frequency and the both-detached enzyme species is maintained over a wide range of substrate concentrations and exhibited an apparent positive cooperativity at low substrate concentrations, which we call "obligate cooperativity." The unusual obligate cooperativity exhibited by flagellar beat frequency parallels that seen in the calculated proportion of the both-detached enzyme species and is interpreted as a requirement for a molecule of substrate to bind to each active site in a multimeric dynein in order to produce oscillatory motion. Furthermore, the proportion of the both-detached enzyme species correlates with experimentally observed changes in beat frequency with a nucleotide analog and with product inhibition.

Full text

PDF
5562

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brokaw C. J. Adenosine triphosphate usage by flagella. Science. 1967 Apr 7;156(3771):76–78. doi: 10.1126/science.156.3771.76. [DOI] [PubMed] [Google Scholar]
  2. Brokaw C. J. CO2-inhibition of the amplitude of bending of triton-demembranated sea urcin sperm flagella. J Exp Biol. 1977 Dec;71:229–240. doi: 10.1242/jeb.71.1.229. [DOI] [PubMed] [Google Scholar]
  3. Brokaw C. J. Effects of viscosity and ATP concentration on the movement of reactivated sea-urchin sperm flagella. J Exp Biol. 1975 Jun;62(3):701–719. doi: 10.1242/jeb.62.3.701. [DOI] [PubMed] [Google Scholar]
  4. Gibbons B. H., Gibbons I. R. Flagellar movement and adenosine triphosphatase activity in sea urchin sperm extracted with triton X-100. J Cell Biol. 1972 Jul;54(1):75–97. doi: 10.1083/jcb.54.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gibbons I. R., Fronk E. A latent adenosine triphosphatase form of dynein 1 from sea urchin sperm flagella. J Biol Chem. 1979 Jan 10;254(1):187–196. [PubMed] [Google Scholar]
  6. Holzbaur E. L., Johnson K. A. ADP release is rate limiting in steady-state turnover by the dynein adenosinetriphosphatase. Biochemistry. 1989 Jun 27;28(13):5577–5585. doi: 10.1021/bi00439a036. [DOI] [PubMed] [Google Scholar]
  7. Holzbaur E. L., Johnson K. A. Rate of ATP synthesis by dynein. Biochemistry. 1986 Jan 28;25(2):428–434. doi: 10.1021/bi00350a023. [DOI] [PubMed] [Google Scholar]
  8. Johnson K. A. The pathway of ATP hydrolysis by dynein. Kinetics of a presteady state phosphate burst. J Biol Chem. 1983 Nov 25;258(22):13825–13832. [PubMed] [Google Scholar]
  9. Kamiya R. Mutations at twelve independent loci result in absence of outer dynein arms in Chylamydomonas reinhardtii. J Cell Biol. 1988 Dec;107(6 Pt 1):2253–2258. doi: 10.1083/jcb.107.6.2253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kamiya R., Okamoto M. A mutant of Chlamydomonas reinhardtii that lacks the flagellar outer dynein arm but can swim. J Cell Sci. 1985 Mar;74:181–191. doi: 10.1242/jcs.74.1.181. [DOI] [PubMed] [Google Scholar]
  11. Lymn R. W., Taylor E. W. Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemistry. 1971 Dec 7;10(25):4617–4624. doi: 10.1021/bi00801a004. [DOI] [PubMed] [Google Scholar]
  12. Neet K. E. Cooperativity in enzyme function: equilibrium and kinetic aspects. Methods Enzymol. 1980;64:139–192. doi: 10.1016/s0076-6879(80)64009-9. [DOI] [PubMed] [Google Scholar]
  13. Okuno M., Brokaw C. J. Inhibition of movement of trition-demembranated sea-urchin sperm flagella by Mg2+, ATP4-, ADP and P1. J Cell Sci. 1979 Aug;38:105–123. doi: 10.1242/jcs.38.1.105. [DOI] [PubMed] [Google Scholar]
  14. Omoto C. K., Brokaw C. J. 2-Chloro adenosine triphosphate as substrate for sea urchin axonemal movement. Cell Motil Cytoskeleton. 1989;13(4):239–244. doi: 10.1002/cm.970130403. [DOI] [PubMed] [Google Scholar]
  15. Omoto C. K., Johnson K. A. Activation of the dynein adenosinetriphosphatase by microtubules. Biochemistry. 1986 Jan 28;25(2):419–427. doi: 10.1021/bi00350a022. [DOI] [PubMed] [Google Scholar]
  16. Omoto C. K. Mechanochemical coupling in eukaryotic flagella. J Theor Biol. 1989 Mar 21;137(2):163–169. doi: 10.1016/s0022-5193(89)80203-6. [DOI] [PubMed] [Google Scholar]
  17. Omoto C. K., Nakamaye K. ATP analogs substituted on the 2-position as substrates for dynein ATPase activity. Biochim Biophys Acta. 1989 Nov 30;999(2):221–224. doi: 10.1016/0167-4838(89)90222-7. [DOI] [PubMed] [Google Scholar]
  18. Pate E., Cooke R. A model of crossbridge action: the effects of ATP, ADP and Pi. J Muscle Res Cell Motil. 1989 Jun;10(3):181–196. doi: 10.1007/BF01739809. [DOI] [PubMed] [Google Scholar]
  19. Penningroth S. M., Peterson D. D. Evidence for functional differences between two flagellar dynein ATPases. Cell Motil Cytoskeleton. 1986;6(6):586–594. doi: 10.1002/cm.970060607. [DOI] [PubMed] [Google Scholar]
  20. Piperno G. Functional diversity of dyneins. Cell Motil Cytoskeleton. 1990;17(3):147–149. doi: 10.1002/cm.970170302. [DOI] [PubMed] [Google Scholar]
  21. Piperno G., Ramanis Z., Smith E. F., Sale W. S. Three distinct inner dynein arms in Chlamydomonas flagella: molecular composition and location in the axoneme. J Cell Biol. 1990 Feb;110(2):379–389. doi: 10.1083/jcb.110.2.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Porter M. E., Johnson K. A. Transient state kinetic analysis of the ATP-induced dissociation of the dynein-microtubule complex. J Biol Chem. 1983 May 25;258(10):6582–6587. [PubMed] [Google Scholar]
  23. Shimizu T., Johnson K. A. Presteady state kinetic analysis of vanadate-induced inhibition of the dynein ATPase. J Biol Chem. 1983 Nov 25;258(22):13833–13840. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES