Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1991 Jul 1;88(13):5572–5576. doi: 10.1073/pnas.88.13.5572

Delivery of macromolecules into living cells: a method that exploits folate receptor endocytosis.

C P Leamon 1, P S Low 1
PMCID: PMC51919  PMID: 2062838

Abstract

Difficulties with the nondestructive delivery of macromolecules into living cells have limited the potential applications of antibodies, genes, enzymes, peptides, and antisense oligonucleotides in biology and medicine. We have found, however, that the natural endocytosis pathway for the vitamin folate can be exploited to nondestructively introduce macromolecules into cultured cells if the macromolecule is first covalently linked to folate. Thus, treatment of KB cells with folate-conjugated ribonuclease, horseradish peroxidase, serum albumin, IgG, or ferritin allowed delivery of greater than 10(6) copies of the macromolecules within a 2-hr period. Cytochemical staining using 4-chloro-1-naphthol further demonstrated that the horseradish peroxidase retained activity for at least 6 hr after internalization. Since folate is an essential vitamin required in substantial quantities by virtually all cells, these observations may open the possibility of scientific and medical applications for many of the above macromolecules.

Full text

PDF
5572

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antony A. C., Kane M. A., Portillo R. M., Elwood P. C., Kolhouse J. F. Studies of the role of a particulate folate-binding protein in the uptake of 5-methyltetrahydrofolate by cultured human KB cells. J Biol Chem. 1985 Dec 5;260(28):14911–14917. [PubMed] [Google Scholar]
  2. Bernhardt R., Matus A. Initial phase of dendrite growth: evidence for the involvement of high molecular weight microtubule-associated proteins (HMWP) before the appearance of tubulin. J Cell Biol. 1982 Feb;92(2):589–593. doi: 10.1083/jcb.92.2.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chakrabarti R., Pfeiffer N. E., Wylie D. E., Schuster S. M. Incorporation of monoclonal antibodies into cells by osmotic permeabilization. Effect on cellular metabolism. J Biol Chem. 1989 May 15;264(14):8214–8221. [PubMed] [Google Scholar]
  4. Chakrabarti R., Wylie D. E., Schuster S. M. Transfer of monoclonal antibodies into mammalian cells by electroporation. J Biol Chem. 1989 Sep 15;264(26):15494–15500. [PubMed] [Google Scholar]
  5. De Larco J. E., Rapp U. R., Todaro G. J. Cell surface receptors for ecotropic MuLV: detection and tissue distributions of free receptors in vivo. Int J Cancer. 1978 Mar 15;21(3):356–360. doi: 10.1002/ijc.2910210317. [DOI] [PubMed] [Google Scholar]
  6. Deutsch J. C., Elwood P. C., Portillo R. M., Macey M. G., Kolhouse J. F. Role of the membrane-associated folate binding protein (folate receptor) in methotrexate transport by human KB cells. Arch Biochem Biophys. 1989 Nov 1;274(2):327–337. doi: 10.1016/0003-9861(89)90446-3. [DOI] [PubMed] [Google Scholar]
  7. Doxsey S. J., Sambrook J., Helenius A., White J. An efficient method for introducing macromolecules into living cells. J Cell Biol. 1985 Jul;101(1):19–27. doi: 10.1083/jcb.101.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Elwood P. C., Kane M. A., Portillo R. M., Kolhouse J. F. The isolation, characterization, and comparison of the membrane-associated and soluble folate-binding proteins from human KB cells. J Biol Chem. 1986 Nov 25;261(33):15416–15423. [PubMed] [Google Scholar]
  9. Furusawa M., Nishimura T., Yamaizumi M., Okada Y. Injection of foreign substances into single cells by cell fusion. Nature. 1974 May 31;249(456):449–450. doi: 10.1038/249449a0. [DOI] [PubMed] [Google Scholar]
  10. Furusawa M., Yamaizumi M., Nishimura T., Uchida T., Okada Y. Use of erythrocyte ghosts for injection of substances into animal cells by cell fusion. Methods Cell Biol. 1976;14:73–80. doi: 10.1016/s0091-679x(08)60469-0. [DOI] [PubMed] [Google Scholar]
  11. Graessmann M., Graessmann A. Microinjection of tissue culture cells. Methods Enzymol. 1983;101:482–492. doi: 10.1016/0076-6879(83)01033-2. [DOI] [PubMed] [Google Scholar]
  12. Gray A. G., Morgan J., Linch D. C., Huehns E. R. Uptake of antibody directed cytotoxic liposomes by CD3 on human T cells. Clin Exp Immunol. 1988 Apr;72(1):168–173. [PMC free article] [PubMed] [Google Scholar]
  13. Harrison M. L., Rathinavelu P., Arese P., Geahlen R. L., Low P. S. Role of band 3 tyrosine phosphorylation in the regulation of erythrocyte glycolysis. J Biol Chem. 1991 Mar 5;266(7):4106–4111. [PubMed] [Google Scholar]
  14. Henderson G. B., Zevely E. M., Huennekens F. M. Irreversible inactivation of the methotrexate transport system of L1210 cells by carbodiimide-activated substrates. J Biol Chem. 1980 May 25;255(10):4829–4833. [PubMed] [Google Scholar]
  15. Horn M. A., Heinstein P. F., Low P. S. Biotin-mediated delivery of exogenous macromolecules into soybean cells. Plant Physiol. 1990 Aug;93(4):1492–1496. doi: 10.1104/pp.93.4.1492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kamen B. A., Capdevila A. Receptor-mediated folate accumulation is regulated by the cellular folate content. Proc Natl Acad Sci U S A. 1986 Aug;83(16):5983–5987. doi: 10.1073/pnas.83.16.5983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kamen B. A., Johnson C. A., Wang M. T., Anderson R. G. Regulation of the cytoplasmic accumulation of 5-methyltetrahydrofolate in MA104 cells is independent of folate receptor regulation. J Clin Invest. 1989 Nov;84(5):1379–1386. doi: 10.1172/JCI114310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kamen B. A., Wang M. T., Streckfuss A. J., Peryea X., Anderson R. G. Delivery of folates to the cytoplasm of MA104 cells is mediated by a surface membrane receptor that recycles. J Biol Chem. 1988 Sep 25;263(27):13602–13609. [PubMed] [Google Scholar]
  19. Kane M. A., Portillo R. M., Elwood P. C., Antony A. C., Kolhouse J. F. The influence of extracellular folate concentration on methotrexate uptake by human KB cells. Partial characterization of a membrane-associated methotrexate binding protein. J Biol Chem. 1986 Jan 5;261(1):44–49. [PubMed] [Google Scholar]
  20. Kane M. A., Waxman S. Role of folate binding proteins in folate metabolism. Lab Invest. 1989 Jun;60(6):737–746. [PubMed] [Google Scholar]
  21. Kenigsberg R. L., Trifaró J. M. A technique for the microinjection of macromolecules into viable chromaffin cells in culture. J Neurosci Methods. 1985 Apr;13(2):103–118. doi: 10.1016/0165-0270(85)90023-8. [DOI] [PubMed] [Google Scholar]
  22. Knight D. E., Scrutton M. C. Gaining access to the cytosol: the technique and some applications of electropermeabilization. Biochem J. 1986 Mar 15;234(3):497–506. doi: 10.1042/bj2340497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Krolick K. A., Villemez C., Isakson P., Uhr J. W., Vitetta E. S. Selective killing of normal or neoplastic B cells by antibodies coupled to the A chain of ricin. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5419–5423. doi: 10.1073/pnas.77.9.5419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. McHugh M., Cheng Y. C. Demonstration of a high affinity folate binder in human cell membranes and its characterization in cultured human KB cells. J Biol Chem. 1979 Nov 25;254(22):11312–11318. [PubMed] [Google Scholar]
  25. McNeil P. L., Murphy R. F., Lanni F., Taylor D. L. A method for incorporating macromolecules into adherent cells. J Cell Biol. 1984 Apr;98(4):1556–1564. doi: 10.1083/jcb.98.4.1556. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. McNeil P. L., Warder E. Glass beads load macromolecules into living cells. J Cell Sci. 1987 Dec;88(Pt 5):669–678. doi: 10.1242/jcs.88.5.669. [DOI] [PubMed] [Google Scholar]
  27. Miller M. R., Castellot J. J., Jr, Pardee A. B. A general method for permeabilizing monolayer and suspension cultured animal cells. Exp Cell Res. 1979 May;120(2):421–425. doi: 10.1016/0014-4827(79)90404-x. [DOI] [PubMed] [Google Scholar]
  28. Miller M. R., Castellot J. J., Jr, Pardee A. B. A permeable animal cell preparation for studying macromolecular synthesis. DNA synthesis and the role of deoxyribonucleotides in S phase initiation. Biochemistry. 1978 Mar 21;17(6):1073–1080. doi: 10.1021/bi00599a021. [DOI] [PubMed] [Google Scholar]
  29. Miskimins W. K., Shimizu N. Synthesis of a cytotoxic insulin cross-linked to diphtheria toxin fragment A capable of recognizing insulin receptors. Biochem Biophys Res Commun. 1979 Nov 14;91(1):143–151. doi: 10.1016/0006-291x(79)90595-3. [DOI] [PubMed] [Google Scholar]
  30. Netland P. A., Dice J. F. Red blood cell-mediated microinjection: methodological considerations. Anal Biochem. 1985 Oct;150(1):214–220. doi: 10.1016/0003-2697(85)90461-0. [DOI] [PubMed] [Google Scholar]
  31. Noé C., Hernandez-Borrell J., Kinsky S. C., Matsuura E., Leserman L. Inhibition of cell proliferation with antibody-targeted liposomes containing methotrexate-gamma-dimyristoylphosphatidylethanolamine. Biochim Biophys Acta. 1988 Dec 22;946(2):253–260. doi: 10.1016/0005-2736(88)90400-2. [DOI] [PubMed] [Google Scholar]
  32. Oeltmann T. N., Heath E. C. A hybrid protein containing the toxic subunit of ricin and the cell-specific subunit of human chorionic gonadotropin. II. Biologic properties. J Biol Chem. 1979 Feb 25;254(4):1028–1032. [PubMed] [Google Scholar]
  33. Okada C. Y., Rechsteiner M. Introduction of macromolecules into cultured mammalian cells by osmotic lysis of pinocytic vesicles. Cell. 1982 May;29(1):33–41. doi: 10.1016/0092-8674(82)90087-3. [DOI] [PubMed] [Google Scholar]
  34. Ortiz D., Baldwin M. M., Lucas J. J. Transient correction of genetic defects in cultured animal cells by introduction of functional proteins. Mol Cell Biol. 1987 Aug;7(8):3012–3017. doi: 10.1128/mcb.7.8.3012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Ostro M. J., Cullis P. R. Use of liposomes as injectable-drug delivery systems. Am J Hosp Pharm. 1989 Aug;46(8):1576–1587. [PubMed] [Google Scholar]
  36. Poznansky M. J., Hutchison S. K., Davis P. J. Enzyme replacement therapy in fibroblasts from a patient with cholesteryl ester storage disease. FASEB J. 1989 Feb;3(2):152–156. doi: 10.1096/fasebj.3.2.2644147. [DOI] [PubMed] [Google Scholar]
  37. Ranade V. V. Drug delivery systems. 1. site-specific drug delivery using liposomes as carriers. J Clin Pharmacol. 1989 Aug;29(8):685–694. doi: 10.1002/j.1552-4604.1989.tb03403.x. [DOI] [PubMed] [Google Scholar]
  38. Renneisen K., Leserman L., Matthes E., Schröder H. C., Müller W. E. Inhibition of expression of human immunodeficiency virus-1 in vitro by antibody-targeted liposomes containing antisense RNA to the env region. J Biol Chem. 1990 Sep 25;265(27):16337–16342. [PubMed] [Google Scholar]
  39. Richardson W. D. Introducing proteins into cultured animal cells. J Cell Sci. 1988 Nov;91(Pt 3):319–322. doi: 10.1242/jcs.91.3.319. [DOI] [PubMed] [Google Scholar]
  40. Rothberg K. G., Ying Y. S., Kolhouse J. F., Kamen B. A., Anderson R. G. The glycophospholipid-linked folate receptor internalizes folate without entering the clathrin-coated pit endocytic pathway. J Cell Biol. 1990 Mar;110(3):637–649. doi: 10.1083/jcb.110.3.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Siegall C. B., FitzGerald D. J., Pastan I. Cytotoxicity of IL6-PE40 and derivatives on tumor cells expressing a range of interleukin 6 receptor levels. J Biol Chem. 1990 Sep 25;265(27):16318–16323. [PubMed] [Google Scholar]
  42. Vesely D. L., Kemp S. F., Elders M. J. Isolation of a biotin receptor from hepatic plasma membranes. Biochem Biophys Res Commun. 1987 Mar 30;143(3):913–916. doi: 10.1016/0006-291x(87)90336-6. [DOI] [PubMed] [Google Scholar]
  43. Weinstein J. N. Liposomes as drug carriers in cancer therapy. Cancer Treat Rep. 1984 Jan;68(1):127–135. [PubMed] [Google Scholar]
  44. Wu G. Y., Wu C. H. Evidence for targeted gene delivery to Hep G2 hepatoma cells in vitro. Biochemistry. 1988 Feb 9;27(3):887–892. doi: 10.1021/bi00403a008. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES