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Abstract

The full reference tissue model (FRTM) is a PET analysis framework that includes both free and 

specifically bound compartments within tissues, together with rate constants defining association 

and dissociation from the specifically bound compartment. The simplified reference tissue model 

(SRTM) assumes instantaneous exchange between tissue compartments, and this “1-tissue” 

approximation reduces the number of parameters and enables more robust mapping of non-

displaceable binding potentials. Simulations based upon FRTM have shown that SRTM exhibits 

biases that are spatially dependent, because biases depend upon binding potentials. In this work, 

we describe a regularized model (rFRTM) that employs a global estimate of the dissociation rate 

constant from the specifically bound compartment (k4). The model provides an internal calibration 

for optimizing k4 through the reference-region outflow rate k2′, a model parameter that should be 

a global constant but varies regionally in SRTM. Estimates of k4 by rFRTM are presented for four 

PET radioligands. We show that SRTM introduces bias in parameter estimates by assuming an 

infinite value for k4, and that rFRTM ameliorates bias with an appropriate choice of k4. 

Theoretical considerations and simulations demonstrate that rFRTM reduces bias in non-

displaceable binding potentials. A two-parameter reduction of the model (rFRTM2) provides 

robust mapping at a voxel-wise level. With a structure similar to SRTM, the model is easily 

implemented and can be applied as a PET reference region analysis that reduces parameter bias 

without substantially altering parameter variance.

Introduction

Reference tissue models (RTMs) have been developed and employed in PET analyses for 

over two decades. Under the assumption that a reference region in the brain is devoid of 

specific binding of PET radioligand, RTMs enable calculation of non-displaceable binding 

potentials (BPND) in each brain voxel by comparing the tissue time-activity curve (TAC) to 
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the reference region, which serves as a surrogate of the plasma TAC while also providing an 

index of non-specific binding (Gunn et al., 2001, Slifstein and Laruelle, 2001). This 

approach obviates arterial blood sampling by providing a surrogate for plasma radioligand 

concentrations.

Various RTM approaches have been developed in the literature to address the balance 

between parameter variance and parameter bias. A full reference tissue model (FRTM) fits 

four parameters for each TAC (Cunningham et al., 1991, Lammertsma et al., 1996), which 

may represent a relatively noiseless brain region of interest (ROI) or a much noisier image 

voxel. The sensitivity of FRTM to noise motivated the simplified reference tissue model 

(SRTM), which reduces the number of model parameters to three (Lammertsma and Hume, 

1996, Gunn et al., 1997). However, even SRTM lacks robustness to noise at the voxel-wise 

level, and so a two-parameter variant (SRTM2 or MRTM2) often is employed that uses a 

global value for the washout time constant in the reference region (Wu and Carson, 2002, 

Ichise et al., 2003). SRTM and SRTM2 have become standard PET analysis strategies and 

form the foundation of several extended methods that modify basis functions to describe 

dynamic changes in binding due to within-session functional challenges (Alpert et al., 2003, 

Zhou et al., 2006, Normandin et al., 2012).

SRTM is predicated upon an assumption of instantaneous equilibration between the free and 

bound compartments in all tissues. While this assumption is never strictly accurate, the 

model produces excellent fits to experimental data for many radioligands. Analyses of 

simulated data that conform to FRTM have found that SRTM generally provides relatively 

accurate estimation of BPND, with errors typically below 10% for selected radioligands 

when fitting a full 90-minute TAC (Slifstein et al., 2000, Salinas et al., 2015), as commonly 

done when using a compound labeled by 11C. Three-parameter variants of SRTM 

overestimate BPND in low-binding regions (Salinas et al., 2015) and exhibit a relatively high 

variance in the presence of noise (Wu and Carson, 2002). The model provides a separate 

estimate of the washout rate constant (k2′) in the reference region for each voxel or ROI, 

which motivated a reduced model that provides regularization by fixing the value of k2′ as a 

global parameter. However, many investigators have noted that different regions provide 

different values for this rate constant, and the method for defining a global value is not 

standardized; various reports have suggested using the value in a high binding region 

(Seneca et al., 2006), or the median or average across either the brain (Wu and Carson, 

2002) or a series of ROIs (Ichise et al., 2003, Seo et al., 2015). In contrast to the three-

parameter SRTM, the two-parameter variant generally underestimates BPND in low-binding 

regions (Schuitemaker et al., 2007), and bias in high-binding regions is smaller and depends 

upon a subjective choice for k2′.

Though SRTM biases suggested by previous studies are not large for many radioligands, this 

level of accuracy is comparable with typical test-retest reproducibility (Cropley et al., 2008, 

Lee et al., 2013), suggesting that model error cannot be discounted as a source of variance 

even for studies of basal receptor concentrations. In occupancy studies that measure 

modulations of available receptors, model bias in BPND produces bias in estimates of 

occupancy. In displacement studies using either a drug or tasks that modulate 

neurotransmitter levels, a 10% error can be significant, because changes in true occupancy 
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can be subtle when using behavioral tasks or low drug doses. Following administration of 

large agonist challenges, some PET radioligands exhibit little or no change in apparent 

occupancy, or even paradoxical increases in binding potential (Laruelle, 2000). Behavioral 

tasks that attempt to detect changes in dopamine efflux using [11C]raclopride have reported 

positive or negative changes in BPND below 10% (Zald et al., 2004, Hakyemez et al., 2008, 

Martin-Soelch et al., 2011), a regime where model error can play a major role in drawing 

scientific inferences.

The goal of this work was to develop a reference tissue model that reduces parameter bias 

relative to SRTM without substantially altering parameter variance. Our search for an 

alternative model began with the observation that SRTM2 analyses of occupancies often 

exhibit a characteristic spatial pattern in the limit of low displacement, with apparent 

displacement in the highest binding regions and apparent paradoxical increases in BPND in 

surrounding low-binding regions. These patterns are most evident in multi-session averages 

or spatially smoothed data and suggest a source of bias in these studies that varies 

monotonically with BPND. To devise an alternative model to SRTM, we developed a basis-

function approach to FRTM, and we regularize the model by employing a global estimate 

for the dissociation rate constant from the specifically bound compartment. SRTM is one 

solution to the model in the limit of infinite k4, but this solution imparts a bias in the 

estimate of model parameters relative to FRTM. We describe a method to empirically 

estimate a global value of k4 to minimize parameter bias, and we employ simulations to 

demonstrate that our method reduces bias in the estimation of BPND and receptor 

occupancies.

Methods

Fig. 1a shows FRTM and the reduction of the model to SRTM. Both models assume that the 

reference region exhibits one-compartment kinetics representing non-displaceable PET 

radioligand that is either free or non-specifically bound. FRTM models the target region as a 

compartmental summation of non-displaceable and specific binding (Gunn et al., 2001), 

whereas SRTM assumes “1-tissue” kinetics in the limit of fast exchange between free and 

bound compartments. Eq. A1 presents the differential equations describing FRTM.

Regularized FRTM (rFRTM)

Eq. A6 provides an exact expression for FRTM in a form designed to mimic the basis-

function approach to SRTM. To derive this formula, we replaced the SRTM approximation 

of instantaneous equilibrium with an expression (Eq. A3) relating the time dependence of 

the bound concentration to the total tissue concentration and its derivative. In this way, we 

model the true bound fraction in the tissue as a function of time. The FRTM model has four 

parameters, including two rate constants (k2, k4), a ratio of rate constants (R1=k2/k2′), and a 

parameter that depends upon BPND (k2a=k2/(1+BPND). The model incorporates convolution 

by an exponential equilibration function E(t) = exp(–k4(1 + BPND)t) to account for non-

equilibrium conditions that are reflected by a change in the tissue concentration.
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[1]

The solution to this equation previously has been approached two different ways. The 

literature approach to FRTM attempts to derive all four parameters for each voxel or ROI, a 

strategy that is limited by convergence problems, high parameter variance, and long 

computational times (Lammertsma et al., 1996, Slifstein and Laruelle, 2001). As an 

alternative to FRTM, SRTM employs the approximation that k3 and k4 approach infinity 

(equivalently, the time constants 1/k3 and 1/k4 approach zero) in order to reduce the number 

of parameters from four to three and produce an equation that is linear in all parameters. In 

this limit, the convolution terms vanish. This approach reduces parameter variance 

(Lammertsma and Hume, 1996) but introduces bias in parameter estimates by failing to 

accurately model the specifically bound fraction of the tissue radioligand concentration. Bias 

will be more pronounced for slower radioligands (smaller k4) and for low-binding regions 

(smaller BPND), because the effective rate for equilibration to a steady state in Eq. 1 is k4 

(1+ BPND).

We propose a new approach (rFRTM) using a globally constant value of k4 that is selected in 

order to minimize regional bias in k2′. We show below that k2′, which should take the same 

value irrespective of the tissue region under analysis, cannot be regionally invariant in 

SRTM when association and dissociation rates constants are finite. Within the context of 

FRTM, bias reduction in k2′ is accompanied by bias reduction in BPND, which is the main 

parameter of interest.

Solution of rFRTM: Overview

Application of the proposed model requires two steps: 1) a method to solve Eq. 1 provided 

that the best global value for k4 is known, and 2) a method to determine the best global value 

for k4. Although these steps could be combined in principle by simultaneously fitting many 

voxels or regions of interest, we employed a procedure in which the model first was applied 

multiple times in a region-of-interest analysis using different values of global k4 in each 

analysis, and subsequently the best value of k4 was identified and used for a final analysis of 

all regions and voxels. The steps for solving Eq. 1 and identifying the best global k4 are 

described in the following two sections.

Solution of rFRTM for individual TACs

Given an a priori estimate of the global value for k4, Eq. 1 can be solved either by non-linear 

fitting or by an iterative approach that incorporates repeated application of a linear model; 

our approach used the latter method. To avoid using the relatively noisy convolution term in 

basis functions, our implementation rearranged Eq. 1 to add the convolution integral to the 

dependent variable.

[2]
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Specifically, we used the following steps to solve Eq. 2.

1. Create three basis functions with “n” time points for CR, ∫ CR, and ∫ CT. These 

basis functions form a 3-by-n design matrix X. Using an n-by-n diagonal 

weighting function W to represent the time-changing magnitude of signal 

variance, compute the 3-by-n matrix M = (XTW−1X)−1XTW−1 for use in all 

iterations. Initialize parameters by SRTM using the weighted least squares 

estimate β=M CT, where the vector β = [R1 k2 k2a].

2. Compute BPND = k2 / k2a – 1 using parameter estimates from the previous 

iteration. Compute the convolution of the tissue derivative with 

 for each time point, where  is a fixed 

value used for all iterations and all regions. Create a modified tissue vector (CT′) 

equal to the left hand side of Eq. 2. Update parameter values as β=M CT′.

3. Repeat step #2 until a stopping criterion is reached: 1) the change in BPND does 

not exceed some predefined tolerance, 2) the number of iterations exceeds some 

predefined limit, 3) or BPND is negative.

Intuitively, this formulation can be viewed as a model that estimates the tissue concentration 

profile that would be required to conform to SRTM by adding a correction to the dependent 

variable to account for overestimation of the bound fraction due to the SRTM approximation 

of instantaneous equilibrium. Relative to modification of basis functions as suggested by Eq. 

1, or alternatively a non-linear fitting approach, this strategy has the additional advantage of 

simplicity and speed because it proceeds by repeated application of the same linear model 

for all iterations.

Estimation of global k4 using post hoc analysis

Implementation of rFRTM requires a global value k4, and this parameter can be estimated 

from a post hoc analysis of regional trends in a derived parameter, the reference-region 

washout rate constant (k2′ = k2 / R1). Although k2′ is evaluated repeatedly for every voxel 

or region of interest, it should take the same value irrespective of the region under analysis. 

However, k2 cannot in general be the same for both rFRTM and SRTM because it multiplies 

different basis functions in each model. If rFRTM represents ground truth and the value of 

k4 is finite and global, then SRTM biases the k2 basis function by ignoring the convolution 

term. Under these conditions, SRTM biases both k2 and k2′, particularly at low values of 

BPND where the convolution term becomes larger. More generally, values of k2′ and BPND 

derived from rFRTM will be biased with dependencies upon the local binding potential 

through the convolution term unless the value of k4 assumed in analysis matches the true 

value. Within the context of rFRTM, reducing bias in k2′ is equivalent to reducing bias in 

BPND, because an inaccurate estimate of k4 biases both parameters through the convolution 

term. This claim is evident from Eq. 1 and also is demonstrated in simulations in this report.

In this work, we estimated  as the value that minimized the dependence of k2′ upon 

BPND. After defining a series of regions with different values of BPND, we performed a 

series of analyses on these regions with a different value of  used in each analysis. This 
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process generates Q different relationships between  and  across the R regions. 

Rather than perform a purely graphical analysis to determine the value of  that 

minimizes the dependence k2′ upon BPND, we automated analysis using two different 

methods that produced very similar results: 1) minimize the mean squared error between k2′ 

and the average value of k2′ using a grid search for , or 2) employ an approximate 

functional form to simultaneously fit all curves of k2′ versus BPND for a series of stepped 

values for . For the latter method, we employed an ad hoc functionality designed to 

satisfy these criteria within the framework of rFRTM:

1. k2′ should become independent of BPND when  matches the optimal value 

(denoted ), because then the model matches the assumed ground truth. The 

sign of bias in k2′ should depend upon the relative magnitude of  in relation 

to , because the sign of bias depends upon the magnitude of the 

convolution term.

2. Higher values of BPND should be associated with less biased values of k2′, 

because the convolution term tends toward zero in high-binding regions (i.e., 

SRTM becomes a more accurate approximation).

According to these principles, we fit the dependencies of k2′ on BPND for all Q values of 

 as a constant value plus a decreasing exponential function that introduces bias with a 

sign dependent upon the relative magnitude of  and . For convenience, we 

employed time constants (1/k2′ and 1/k4) rather than rate constants in the fit:

[3]

The parameters of interest in this fit are the two global rate constants ( , ). This 

functionality produces an approximate form across a wide range of values for .

Reduction to rFRTM2

Ultimately, the goal of rFRTM is to enable accurate parameter mapping at a voxel-wise 

level, and so further regularization is required. Specifically, the goal is to fix two global 

parameters ( , ) in order to reduce the model to the same two local parameters 

used for SRTM2 (k2, k2a). Fixing k2′ in SRTM2 changes the structure of model bias, 

because k2′ is not invariant in SRTM. Conversely, rFRTM2 should maintain accuracy while 

reducing parameter variance, provided that we can accurately identify the value of 

that produces invariance in k2′. The two-parameter reduction of rFRTM2 follows the same 

strategy used to reduce SRTM2 to two parameters and two basis functions (Ichise et al., 

2003).
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[4]

Note that solution of rFRTM2 follows an approach similar to the one described by Eq. 2 for 

the 3-parameter implementation of rFRTM. Also, these models need modification to 

describe a functional challenge, as in a drug occupancy study or a behavioral study using a 

single synthesis of a radioligand such as raclopride. Such paradigms can be analyzed by 

applying a temporal dependence to the k2a parameter (Alpert et al., 2003, Zhou et al., 2006), 

so that values of k2a after the functional challenge are associated with a change in BP. To 

compute changes in occupancy for the simulated data in this report, we use this same 

strategy such that k2a → k2a + Δk2a f(t), where f(t) in this report is modeled as a rapid 

change to a new state using a sigmoidal “step function” beginning at time t0 with f(t′) = t′/

sqrt(1 + t′2) and t′ = (t – t0)/t, where the time constant (τ) was set to a value of 1 min.

Forward-model Simulations

Simulations were used to confirm predictions of theory and to determine bias and variance 

properties of kinetic models. Simulations within the framework of FRTM tested these 

hypotheses: 1) An inaccurate estimate of k4 biases both k2′ and BPND, and reducing bias in 

k2′ is equivalent to reducing bias in BPND; 2) in the presence of noise, analyses based upon 

SRTM and rFRTM produce similar variances in estimates of BPND, and analyses based upon 

SRTM2 and rFRTM2 produce similar variances that are lower than the 3-parameter versions 

of these models; 3) due to bias introduced into BPND, estimates of occupancy using within-

scan challenges are biased in SRTM and SRTM2, and biases can be mitigated using rFRTM.

Forward-model simulations with and without noise employed the system of differential 

equations in Eq. A1 to iteratively compute profiles of PET radioligand concentration versus 

time for selected experimental conditions. Simulations focused on two commonly used 

radioligands of dopamine receptors that often employ SRTM for analysis. [11C]NNC-112 

targets D1 receptors and can detect extra-striatal binding, which emphasizes the need to 

accurately model binding parameter across a wide range of binding potentials. 

[11C]Raclopride is a D2/D3 selective ligand that is widely used in applications that 

characterize changes in basal ganglia dopamine levels in response to behavioral cues or 

other stimuli. For each of Figures 2-4, input parameters for simulations are shown in Table 

1. The temporal shape and magnitude of plasma concentrations were adjusted to roughly 

match experimentally measured reference-region TACs from the cerebellum of non-human 

primates (NHP) using the forward model specified by Eq. A1. Occupancy maps in Figure 4 

were simulated as instantaneous reductions in k3 that were localized to the right nucleus 

accumbens and occurred at 40 minutes into the scan.

Data presented in Figures 3d and 4 included a standard model of synthetic noise in which 

signal variance is proportional to signal multiplied by an exponentially increasing decay 

correction (Logan et al., 2001); for the uniform time bins used in simulations, noise was 

modeled as , where C is the time-dependent concentration of radioligand, λ 
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is the rate of radioactive decay, and S is a scale factor specifying the level of noise. For 

Figure 3d, the reference-region curve was assumed to have a relatively low level of noise 

(S=2 Bq/cc), and the level of noise in tissue regions was increased from zero to a large value 

(S=200 Bq/cc) that corresponded to a fractional standard deviation in the TAC of about 35% 

at 90 minutes. For each level of noise, 50,0000 TACs were generated to define standard 

deviations in estimates of BPND.

Experimental NHP Data

Data were collected in NHP in order to demonstrate that 1) the dependence of k2′ on BPND 

is consistent with the proposed model, and k2′ becomes invariant with an appropriate global 

choice of k4; 2) the spatial relationship between BPND values suggested by SRTM and 

rFRTM is consistent with simulations; 3) the proposed rFRTM method produces robust 

voxel-wise maps. All NHP experimental procedures complied with the regulations of the 

Subcommittee on Research Animal Care at Massachusetts General Hospital. Data were 

collected from anesthetized NHP using simultaneous PET/fMRI according to methods 

described previously (Mandeville et al., 2013, Sander et al., 2013, Sander et al., 2015).

Analysis of Simulations and NHP Data

Analyses of simulated and real data employed SRTM, SRTM2, rFRTM, or rFRTM2. 

Parameters were solved by weighted least squares assuming a noise-free approximation to 

Poisson weights (Thiele and Buchert, 2008), with convergence for rFRTM and rFRTM2 

defined to be a change in BPND less than 0.1%. Analyses of simulated occupancy 

incorporated a sigmoidal regressor to model a change in the parameter k2a (Alpert et al., 

2003, Zhou et al., 2006). To define the value of k4 to use in rFRTM analyses, analyses of k2′ 
versus BPND were fit using Eq. 3. When describing simulation results, we denote true 

binding potentials as BP, defined as the ratio of k3 to k4 values that were used as inputs for 

the forward-model simulations, and BPND is a derived quantity from analyses of data. 

Within simulations, bias in BPND was assessed as a percentage relative to the known value 

of k3/k4.

All NHP data were aligned to the INIA19 rhesus macaque brain atlas (Rohlfing et al., 2012) 

using T1-weighted MRI data, and the known transformation between PET and MRI defined 

the atlas-based region for the right nucleus accumbens (cyan region, Fig. 4b) in a manner 

that was spatially consistent with the PET BPND map (colored image, Fig. 4b). To define a 

set of regions that varied systemically versus BPND, NHP data were analyzed initially by 

SRTM2 to generate a map of BPND. Brain voxels then were sorted by BPND values so that 

they could be efficiently grouped into less noisy ROIs for further analyses based upon BPND 

similarity. To minimize bias from noise in low-binding regions, ROIs were excluded below a 

BPND threshold, which generally was set to 1 or 2. ROIs were analyzed by rFRTM using 

five values for k4, and all data were then fit by Eq. 3 to define the global value of k4 to use in 

a final analysis.
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Results

Figure 2 provides an intuitive window into assumptions underlying SRTM and rFRTM and 

how these assumptions bias measurements of BPND. Noiseless simulated time-activity 

curves for a reference region and a target region are shown in Fig. 2a for a relatively low-

binding region (BP=1) using a PET radioligand that has an offset time constant from the 

bound compartment of 1/k4 = 15 min. Fig. 2b compares the true fraction of the target tissue 

concentration that is specifically bound (black points) versus values assumed by SRTM (red 

line) and by rFRTM using different analysis values for 1/k4. The bound radioligand fraction 

does not reach the SRTM approximation until about 30 minutes into the scan, and SRTM 

also does not match the true value at the end of the scan. Because the goal of reference 

models is to estimate specifically bound tissue fractions in order to define BPND, inaccurate 

estimates of k4 produce bias in BPND. When the analysis value of k4 matches the true value, 

the analytical estimate for the bound fraction (Eq. A3) matches the simulated value.

Figures 3a and 3b demonstrate that an inaccurate estimate of k4 used in analysis introduces 

bias into both k2′ and BPND, and that this bias is a function of BP. An assumption of 

instantaneous equilibrium (SRTM, red curves) causes positive bias in both BPND and the 

time constant 1/k2′. Conversely, both parameters exhibit negative bias when kinetics are 

assumed be slower than reality (blue and purple curves). The derived parameter k2′ 
becomes an invariant quantity only when the value of k4 used in rFRTM analysis matches 

the true value used for the forward-model simulation. Note that Fig. 3a provides a graphical 

motivation for the fitting method of Eq. 3.

When SRTM2 employs a global value for k2′, bias in BPND is similar in magnitude to 

SRTM, as shown in Fig. 3c. If one defines k2′ to be the projected asymptotic value in the 

limit of high BP (long dashes), then SRTM2 (red) underestimates BPND at all values of BP. 

However, literature methods define the value of k2′ for SRTM2 using analyses of regions 

with a finite BPND (Wu and Carson, 2002, Ichise et al., 2003); in this case, SRTM2 will 

produce a positive bias in the highest-binding regions and a negative bias in low-binding 

regions (short dashes). Conversely, rFRTM2 (black) shows very little residual bias (long 

dashes) when Eq. 3 identifies global values of k4 and k2′. Additionally, the figure depicts the 

effect an incorrect value of k2′ at the correct value of k4 (black curve, short dashes). 

Because rFRTM2 has a model structure similar to SRTM2, it exhibits a similar sensitivity to 

errors in k2′.

Parameter bias is not the only criteria for selecting PET kinetic models; parameter variance 

is another important quantity. Fig. 3d compares percentage standard deviations in estimates 

of BPND at different noise levels. SRTM2 is used as the reference, and so the SRTM2 curve 

in the figure is the line of identity. As expected, SRTM2 exhibits small variance in BPND 

relative to SRTM. rFRTM2 and SRTM2 have similarly noise sensitivities that are small 

compared to the three-parameter models.

Inaccuracies in SRTM become problematic in the context of functional studies that attempt 

to characterize small changes in receptor occupancy; in particular, spatial variations in 

binding potentials can potentially bias inferences about changes in occupancy. Figure 4a 
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reports analyses of simulated data for a radioligand like [11C]raclopride. SRTM exhibits a 

positive bias in occupancy (solid red line, Fig. 4a), while SRTM2 (dashed lines) shows a 

strong monotonic dependence of occupancy on BP with bias dependent upon the global 

value for 1/k2′, which was chosen to be 3.8 min from a high-binding region (BP=6) for the 

long dashed line or 4.4 min from a lower binding region (BP=4). Bias in occupancy for 

rFRTM was reduced to a few percent using Eq. 3 to estimate the value of k4 (black line).

Results of Fig. 4a suggest that spatial variations in BP will yield occupancy values with a 

regional bias, and other panels in Fig. 4 illustrate the potential for reference tissue 

approaches to exhibit spatial variations in bias that produce false positive results or mask 

real changes in occupancy. A simulated 10% change in occupancy was localized to the right 

nucleus accumbens (cyan region, Fig. 4b), with the magnitude of noise in each voxel 

illustrated by the TACs in Fig. 4b. Analysis of these data by SRTM suggested an increase in 

occupancy throughout basal ganglia, albeit with high noise in the map due to the inherent 

instability of three-parameter fits (Fig. 4c). Maps produced by SRTM2 showed a 

characteristic pattern of apparent positive changes in occupancy in the highest-binding 

regions surrounded by apparent decreases (Fig. 4c, top right). This pattern was altered either 

by choosing a different global value of k2′ or by changing the infusion paradigm; a bolus 

plus continuous infusion (BI) simulation designed to achieve a stead-state just prior to the 

challenge showed a different regional pattern of bias (Fig. 4c, bottom right). Conversely, 

using the fitting method of Eq. 3 to calibrate rFRTM, a change of about the correct 

magnitude was observed in the correct location with little bias in other areas of basal ganglia 

(Fig. 4c, bottom left), and this pattern was maintained for either a bolus or a BI injection of 

radioligand (not shown). Note that the cyan oval curves in these figures demark the 

lateralized change in simulated occupancy, and other apparent changes in binding potential 

are artifacts of analysis.

If rFRTM provides a realistic biological model, then application of rFRTM to experimental 

data should identify and remove correlations between k2′ and BPND that arise in SRTM, in 

agreement with the simulated data of Fig. 3a. Figure 5 applies rFRTM analyses to 

representative experimental data collected in anesthetized NHP using four different 

radioligands. Points in Fig. 5 represent analyses of ROIs created by grouping voxels with 

similar BPND values from a first-pass analysis. Each set of differently colored points in a 

figure panel represent an analysis using a different global value of k4. As the analysis time 

constant 1/k4 increases from 0 (SRTM, red) to larger values, curves first become flatter until 

the curvature reverses at low values of BPND. The best value of k4 to use in a final rFRTM 

analysis is the one that produces invariance of k2′. Lines in Fig. 5 illustrate application of 

Eq. 3 to simultaneously fit all the data points for all values of k4. Optimal values of global 

1/k4 estimated by the fit for these specific experiments were 10.4, 10.6, 11.6, and 56 min for 

the scans using [11C]raclopride, [11C]AZ-10419369, [11C]NNC-112, and [18F]fallypride, 

respectively. In eight repeated measurement in a single NHP using [11C]raclopride, 

estimates were reproducible with values of 1/k4=9.7 ± 1.0 min (mean ± st. dev.).

Figure 6 demonstrates ROI and voxel-wise fits of the rFRTM to NHP data using 

[11C]NNC-112. Fig. 6a compares the two terms on the left-hand side of Eq. 2 in order to 

demonstrate that the convolution term, which is missing in SRTM, has much less noise than 
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the tissue concentration in a single voxel. Analysis of bilateral putamen by SRTM yields an 

excellent fit to data (Fig. 3b, gray curve and points), and rFRTM produces a fit of similar 

quality to the “corrected” data of Eq. 2 (black curve and points). SRTM reports a BPND 

value that is 9% higher than rFRTM in this region. The SRTM value for R1 is 15% lower 

than for rFRTM, consistent with the expectation that SRTM underestimates R1 values 

(Muzic and Christian, 2006, Thiele and Buchert, 2008).

Simulations suggest the rFRTM should enable robust voxel-wise mapping with parameter 

variance similar to SRTM, and Fig. 6c shows a map of BPND obtained with rFRTM2 in 

order to illustrate this point. Additionally, relative BPND magnitudes obtained by rFRTM2 

and SRTM2 are compared as a ratio in Fig. 6d using a percent deviation map, with the blue-

green color scale indicating lower BPND values for SRTM2 relative to rFRTM2. The map 

generated by SRTM2 used a global value for k2′ from putamen following the method that 

suggests obtaining this value from a high-binding region (Seneca et al., 2006). The selected 

value (1/k2′=15.5 min) was higher than the asymptotic value of 14.3 min in Fig. 5c, and so 

the simulations of Fig. 3c suggest that SRTM2 should underestimate BPND in low-binding 

regions but overestimate BPND in the highest-binding regions. The map demonstrates the 

expected relationship between the two methods and is consistent with simulations.

Voxel-wise analyses using a linear-model formulation of rFRTM2 (Eq. 2) reached 

convergence in most brain areas after about 5-10 iterations using a 0.1% tolerance on BPND, 

and accordingly the processing time surpassed a linear-model implementation of SRTM2 by 

a factor of about 5-10. For a typical NHP dataset with 95 frames and 350,000 voxels, 

processing time increased from 2.5 min using SRTM2 to 15 min using rFRTM2. Relaxing 

the tolerance will reduce the number of required iterations and the computational time. The 

iterative linear-model implementation of rFRTM2 converged much faster than non-linear 

damped least-squares minimization using a Levenberg-Marquardt algorithm, which 

increased computation time by a factor of about 100 over linear model iteration.

Discussion

SRTM has become a common PET analysis strategy for reversible radioligands that can be 

appropriately analyzed by reference region methods, and this method has a number of 

distinct advantages, including deterministic solutions and simple implementation. For many 

applications that map receptor densities or investigate pharmacological challenges that 

produce large changes in receptor occupancy, SRTM offers sufficient accuracy while also 

guarding against instabilities and potentially larger errors that can arise in more complicated 

models. For ROI analyses, the three-parameter SRTM requires no subjective parameter 

estimates and generally produces small bias in the highest-binding regions. The two-

parameter SRTM2 requires a subjective assignment of one global parameter (k2′) but 

increases robustness to noise while offering a level of bias comparable to SRTM. As 

testament to the popularity of SRTM, two early papers describing the method (Lammertsma 

and Hume, 1996, Gunn et al., 1997) have garnered about one thousand citations over the 

past decade (see (Salinas et al., 2015)).
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Based upon simulations that assumed a finite rate for k4 that was consistent with literature 

estimates (Farde et al., 1989, Pappata et al., 2002), we showed that biases inherent to SRTM 

can obscure detection of subtle changes in BPND, as illustrated by the inability of SRTM-

based analyses to accurately identify the simulated BPND changes of Fig. 4. Spatially 

varying patterns of SRTM bias make interpretation difficult even if using a fast radioligand 

like raclopride. Using SRTM2, estimates of occupancy will vary depending upon a 

subjective selection of the reference region k2′ value, which is not globally invariant in that 

model. Moreover, the degree of apparent occupancy can change dramatically with the size of 

an ROI, due to spatial variations in bias. In general, both SRTM and SRTM2 exhibit a 

positive bias in estimates of occupancy in high-binding regions (e.g., Fig. 4), and so analyses 

based upon these models can produce false positive results.

In order to reduce bias due to model topology using a RTM approach, the SRTM 

approximation of instantaneous equilibrium must be abandoned, a step that requires 

inferences about rate constants associated with the specifically bound compartment. Prior 

versions of FRTM have employed a methodology that attempts to fit four parameters for 

each voxel or ROI (Lammertsma et al., 1996). PET analyses rarely use this approach, and it 

is impractical for voxel-wise mapping for several reasons. High-binding regions have little 

intrinsic sensitivity to the absolute values of k3 or k4, as illustrated by the convergence of 

curves in Fig. 3a, whereas low-binding regions have limited sensitivity to specific binding 

parameters in the presence of noise. Fitting a simple TAC becomes unstable with four 

parameters, as the two local parameters used in SRTM2 generally are sufficient for good fits. 

Relative to FRTM as used in the literature, SRTM reduces parameter variance at the expense 

of increased parameter bias.

The model proposed here (rFRTM) offers an alternative to SRTM-based approaches, with 

the potential to ameliorate parameter bias without substantially altering parameter variance. 

In fact, SRTM is really just one solution of rFRTM in which the offset time constant is 

assumed to be zero, as illustrated by Fig. 3. rFRTM2 fits the same two local parameters as 

SRTM2, but it first requires a step of model identification to select optimal global values for 

k2′ and k4. The former parameter is a property of the reference region that is fit repeatedly 

for each TAC, a process that conveniently provides a method to calibrate the model by 

selecting a value of k4 that produces invariance in k2′. As shown by simulations within the 

FRTM model, bias reduction in k2′ is accompanied by bias reduction in estimates of BPND 

and occupancy.

One of the features of rFRTM is the ability to determine a value for k4 using a large of 

portion of data, and our expectation is that estimates provided by this method will exhibit 

reduced variability relative to existing literature methods that obtain a value from each 

kinetic analysis. Using rFRTM, our results for k4 generally compare well to literature results 

subject to the limitations of large error bars in the literature and relatively few results 

reported here in anesthetize NHP. For [11C]raclopride, two different kinetic approaches 

estimated 1/k4 values in the range 9 to 15 minutes in human subjects (Farde et al., 1989), 

which are comparable to our result. Our estimate for [11C]AZ-10419369 falls within a 

reported range of 0 to 16 minutes (Varnas et al., 2011). A human study reported values of 18 

to 50 min for [11C]NNC-112. The large 1/k4 value of nearly one hour for [18F]fallypride in 
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our NHP study is consistent with the long scan duration required to obtain reliable estimates 

of BPND using this tracer in humans (Vernaleken et al., 2011).

There is scant literature on the magnitude of in vivo biological variations in k4 across brain 

regions, subjects, or physiological states. If this rFRTM approach proves to increase 

precision in estimates of this parameter, even though estimates are global, it might serve an 

important function by providing in vivo estimates of shifts in the dissociation rate constant, 

which might differ across subject populations, in response to allosteric modulators (Wootten 

et al., 2013), or as a consequence of agonist-induced internalization, which has long been 

suspected as a source of confound in the interpretation of PET occupancies (Chugani et al., 

1988, Laruelle, 2000, Ginovart, 2005).

Potential Limitations

Compared to FRTM, which attempts to determine a value for k4 from each TAC, a potential 

criticism of rFRTM is that k4 might not be regionally invariant. However, rFRTM is 

predicated upon the assumption that the best average value of k4 can be identified even in 

the presence of local variations. Experimental data conform to this assumption (Fig. 5) by 

enabling identification of self-consistent models with invariant values of k2′ at some 

selected value for the average offset time constant from the bound compartment. Conversely, 

using simulations it is easy to show that attempts to estimate k4 directly from TACs using 

FRTM can succeed in the absence of noise but will produce severely biased results with even 

modest amount of noise, and bias becomes particularly pronounced at high values of BPND 

where FRTM becomes insensitive to k4. The inability of FRTM to accurately determine 

local values for k4 limits our ability to address the appropriateness of using a global average 

value for this parameter.

The proposed method for estimating the global value of k4 requires a range of BPND values 

and a threshold on BPND to reduce noise-induced variations in k2′ and BPND that arise at 

low BPND. Ligands like [11C]NNC-112 and [18F]fallypride have striatal and extra-striatal 

binding to generate a wide distribution of BPND values using relatively large ROIs, which 

simplifies the identification of rate constants. Conversely, [11C]AZ-10419369 generally has 

BPND values below 2, which makes identification of k4 more difficult. This issue could limit 

applications of the model using very low-binding radioligands. Alternatively, the model 

could be employed using a fixed value of k4 for a given radioligand, just as SRTM uses a 

value of 1/k4=0, with similar methods employed for choosing k2′ for voxel-wise mapping.

The specific fitting method we employed in this study for estimating the best global value of 

k4 (Eq. 3) was designed to accomplish the more general goal of producing invariance in the 

parameter k2′, but other approaches might accomplish the same end with equal or better 

accuracy. For instance, global k4 can be selected as the value that minimizes the slope of a 

simple linear fit of k2′ versus BPND across regions. Alternative approaches, including 

methods that obviate the need for a threshold on BPND, are subjects for continued research.

Achieving a level of accuracy better than 10% in BPND or occupancy is challenging, and this 

study addresses only one source of bias. A recent report discussed other SRTM biases 

associated with an imperfect reference region, mismatched distribution volumes between 
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reference and target regions, and the failure of reference models to account for blood volume 

contributions (Salinas et al., 2015). Other sources of bias in BPND include time-dependent 

errors that can arise from image reconstruction, attenuation correction, or radioactive 

metabolites. Occupancy studies in principle could be affected by modulation of cerebral 

blood flow and volume, effects that can be addressed experimentally using simultaneous 

fMRI to measure CBF or CBV during PET (Sander et al., 2014).

Finally, it is important to note that we did not investigate all possible variations of SRTM or 

other alternative approaches to estimating binding potentials or changes in occupancy. For 

instance, a study that attempts to measure dopamine release from a within-scan behavioral 

challenge using a bolus plus continuous infusion of [11C]raclopride might ignore much of 

the data prior to the challenge to avoid bias from early time points in a weighted-least 

squares SRTM analysis; this strategy presumably will reduce bias but also sacrifice detection 

power. While other potential approaches and contributions to parameter bias warrant further 

study, the SRTM “1-tissue” approximation can be addressed directly with this proposed 

model.

Conclusions

In conclusion, we described a regularized FRTM approach for analysis of PET binding 

potentials and changes in occupancy. We demonstrated that the model can be calibrated 

using invariance in the reference-region outflow rate as an internal standard, and that 

mapping using the two-parameter rFRTM2 produces robust voxel-wise parameter estimates. 

Simulations and underlying principles suggest an improved level of accuracy of rFRTM 

relative to SRTM, without an increase in parameter variance. The main applications of this 

model are likely to be in functional studies that investigate small changes in occupancy, and 

potentially also in vivo estimates of the dissociation rate constant.
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Appendix

The first-order differential equations that define the FRTM model in Fig. 1a are:

[A1]

If R1 is defined as the ratio K1/K1′ and the distribution volume of non-specifically bound 

tracer is equal in all tissues (K1/K1′=k2/k2′), then the plasma concentration can be 
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eliminated to produce an equation for the target tissue that depends upon the reference 

region and either the free or bound concentrations:

[A2]

The bound concentration in this equation is not directly measurable. SRTM (Fig. 1b) 

addresses this problem by positing fast exchange within the target tissue to produce a “1-

tissue model” (Lammertsma and Hume, 1996). As an alternative to the SRTM 

approximation, one can solve the time dependence of the bound compartment. Eq. A1 

provides the differential equation for the bound concentration, and the solution is subject to 

the initial condition that tissues are devoid of specifically bound PET radioligand at time 

zero.

[A3]

A more convenient expression can be obtained using integration by parts to write the 

solution of Eq. A3 in terms of the tissue concentration and derivative, while also defining 

BPND = k3/k4 and using notation of a convolution integral ( ):

[A4]

Eq. A4 can be substituted into Eq. A2 to write a reference tissue model that no longer 

depends upon explicitly upon the bound concentration:

[A5]

We can employ the same definition for k2a (= k2 / (1+ BPND)) used in SRTM (Lammertsma 

and Hume, 1996) and integrate both sides of Eq. A5 to produce a form for FRTM that 

mimics common representations of SRTM.

[A6]
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Note that Eq. A6 becomes SRTM in the fast-exchange limit when the rate constants k3 and 

k4 approach infinity, or when the tissue concentration maintains a true steady state, for then 

the convolution terms disappear. Computation of BPND is performed identically for SRTM 

or rFRTM: BPND = k2 / k2a – 1.
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Fig. 1. 
The full reference tissue model (a) and simplified reference tissue model (b) use a single 

compartment to describe the concentration of PET radioligand in the reference region (CR) 

so that the plasma concentration (CP) is not needed in analysis. FRTM partitions other tissue 

concentrations into free (CF) and specifically bound (CB) fractions, whereas SRTM assumes 

fast exchange between these compartments and thus approximates all tissues using a single 

compartment model.
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Fig. 2. 
a) Simulated time-activities of a reference region (gray) and target region (black) for 

relatively low-binding regions using (a) BP = 1 and 1/k4 = 15 min. b) The corresponding 

ratio of bound to total concentration of PET ligand in the target region versus time (black 

points) is compared to the model estimate for SRTM (red) and FRTM using values of 1/k4 

from 5 to 25 minutes.
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Fig. 3. 
Analyses of simulated data. (a) An offset time constant 1/k4 equal to the true value (15 min) 

removes the variation of the derived reference-region outflow time constant 1/k2′ versus BP 
using rFRTM. A value of 1/k4 =0 corresponds to SRTM (red). (b) Bias in BPND for the same 

set of k4 values used in panel (a). (c) Bias in BPND for 2-parameter reductions SRTM2 (red) 

and rFRTM2 (black) using values for 1/k2′ of 16.5 min (long dashes) or 17 min (short 

dashes). (d) The percent standard deviation of BPND values at varying levels of noise.
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Fig 4. 
a) Noiseless simulations of [11C]raclopride bias in occupancy for SRTM, SRTM2 using two 

different values of k2′ (see text), and rFRTM2 as calibrated using Eq. 3. b) A typical TAC 

for simulations of a localized 10% increase in occupancy occurring at 40 minutes in the right 

nucleus accumbens (cyan); the image shows basal BPND values used in simulations. c) Maps 

of change in BPND using different analysis methods; clockwise from top left: SRTM, 

SRTM2, SRTM2 using a BI infusion, and rFRTM2.
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Fig. 5. 
Data obtained in isoflurane-anesthetized NHP using different PET radioligands. Fitting the 

BPND functionality of the reference region washout time constant (1/k2′) for different values 

of the dissociation time constant (1/k4) facilitated model identification using Eq. 3. Red data 

points correspond to SRTM analysis (1/k4=0), and other sets of data points used analysis 

values of 1/k4 that were progressively stepped by either 3 min (a-c) or 15 min (d).

Mandeville et al. Page 23

Neuroimage. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
a) A time-activity curve for [11C]NNC-112 from a single voxel in putamen (black) and the 

rFRTM correction term of Eq. 2 (blue). b) Whole putamen (gray dots) together with an 

SRTM fit (gray solid line) and the reference-region (cerebellum) scaled by R1 (gray dashes); 

the corresponding black points and curves are the rFRTM modified data (Eq. 2), the rFRTM 

fit, and the R1 contribution. c) A map of BPND produced by rFRTM2 analysis of 

[11C]NNC-112 in NHP. d) The percent difference of BPND values produced by SRTM2 

relative to rFRTM2, with blue-green colors indicting smaller SRTM2 values and red-yellow 

colors indicating larger SRTM2 values.
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Table 1

Parameters used in simulations

Fig. K1’ (ml/ml/min) 1/k2’ (min) 1/k4 (min) k3/k4 (BP) R1 Noise Model

2 0.05 16.5 15 1 0.85 None

3a-c 0.05 16.5 15 Variable 0.85 None

3d 0.05 16.5 15 1 0.85 (**)

4 0.15 3.5 10 (*) (*) (**)

(*)
Spatial distribution measured across NHP basal ganglia.

(**)
Noise followed a standard model (Logan et al., 2001).
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