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ABSTRACT Efavirenz pharmacokinetics is characterized by large between-subject
variability, which determines both therapeutic response and adverse effects. Some of
the variability in efavirenz pharmacokinetics has been attributed to genetic variabil-
ity in cytochrome P450 genes that alter efavirenz metabolism, such as CYP2B6 and
CYP2A6. While the effects of additional patient factors have been studied, such as
sex, weight, and body mass index, the extent to which they contribute to variability
in efavirenz exposure is inconsistently reported. The aim of this analysis was to de-
velop a pharmacometric model to quantify the contribution of genetic and nonge-
netic factors to efavirenz pharmacokinetics. A population-based pharmacokinetic
model was developed using 1,132 plasma efavirenz concentrations obtained from 73
HIV-seronegative volunteers administered a single oral dose of 600 mg efavirenz. A
two-compartment structural model with absorption occurring by zero- and first-
order processes described the data. Allometric scaling adequately described the rela-
tionship between fat-free mass and apparent oral clearance, as well as fat mass and
apparent peripheral volume of distribution. Inclusion of fat-free mass and fat mass in
the model mechanistically accounted for correlation between these disposition pa-
rameters and sex, weight, and body mass index. Apparent oral clearance of efavirenz
was reduced by 25% and 51% in subjects predicted to have intermediate and slow
CYP2B6 metabolizer status, respectively. The final pharmacokinetic model accounting
for fat-free mass, fat mass, and CYP2B6 metabolizer status was consistent with
known mechanisms of efavirenz disposition, efavirenz physiochemical properties,
and pharmacokinetic theory. (This study has been registered at ClinicalTrials.gov un-
der identifier NCT00668395.)
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Efavirenz is a nonnucleoside reverse transcriptase inhibitor that is used in combina-
tion with nucleoside/nucleotide reverse transcriptase inhibitors to treat HIV-

infected individuals older than 3 years who are naive to antiretroviral drugs. Due to its
proven efficacy and low cost relative to newer antiretrovirals, efavirenz-based therapy
remains the preferred first-line regimen in many low-income nations and is conse-
quently one of the most commonly prescribed antiretroviral drugs (1). Efavirenz
pharmacokinetics (PK) is characterized by large interindividual variability in plasma
concentrations following a single dose (2, 3) and during chronic administration (4),
which has important clinical implications. During the induction phase, efavirenz expo-
sure is associated with central nervous system and psychiatric adverse events, liver
enzyme elevation, and rash, among others (5, 6). This may result in increasing rates of
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poor adherence and treatment discontinuation or modification (7, 8). The frequency of
neuropsychiatric adverse effects is higher during the first days of treatment, and their
intensity is greatest in the hours immediately after drug intake, suggesting a relation-
ship with maximum efavirenz concentrations (Cmax) (9). A recent noninferiority dose-
reduction study (ENCORE1) demonstrated that the daily efavirenz dose could be
reduced from the standard 600-mg dose to 400 mg without compromising efficacy (6).
While there was some evidence of reduced side effects with dose reduction, 37% of
patients reported adverse events related to the study drug and the frequency of spe-
cific adverse events remained high (6). Therefore, understanding the sources of heter-
ogeneity in drug exposure after initiating efavirenz remains critical to successful
therapy, as it impacts both the efficacy and tolerability of the drug.

Variability associated with both absorption and disposition processes likely contrib-
ute to efavirenz pharmacokinetic variability. Absolute bioavailability of efavirenz in
humans is unknown due to a lack of intravenous formulation, and the extent to which
intra- and interindividual variability in bioavailability influence efavirenz exposure is
unclear. Administration of efavirenz with food increases the area under the
concentration-time curve (AUC) and Cmax following a single dose and at steady state
and increases the frequency of adverse reactions (10, 11). In preclinical studies, high-
dose efavirenz was shown to delay gastric emptying (12). If efavirenz similarly affects
gastric motility in humans, it may have unpredictable effects on efavirenz exposure and
drug interactions. Efavirenz is lipophilic (log of the partition coefficient, �2.07) (13) and
highly bound to plasma proteins (greater than 99%) (14), which may significantly
impact its apparent volume of distribution (V/F). The apparent volume of distribution of
efavirenz has been reported to be larger in females (15, 16), which may be a conse-
quence of altered body composition in females relative to males (17). However, a
mechanistic basis for these associations has not been explored.

Hepatic metabolism of efavirenz to form several inactive metabolites is the principal
mechanism of efavirenz clearance. Metabolism occurs predominantly through cyto-
chrome P450 (CYP) 2B6-mediated hydroxylation to 8-hydroxy efavirenz, which is further
conjugated by glucuronidation and sulfation to form the most abundant plasma
metabolites (18, 19). Additional minor primary metabolic pathways include CYP2A6-
mediated hydroxylation to form 7-hydroxy efavirenz and formation of efavirenz
N-glucuronide by UGT2B7 (20, 21). CYP2B6 also catalyzes the sequential hydroxylation
of hydroxylated metabolites to form dihydroxy metabolites (19, 20, 22). Like many of
the genes encoding drug-metabolizing enzymes in the human liver, CYP2B6, CYP2A6,
and UGT2B7 are highly polymorphic (http://www.cypalleles.ki.se/), which contributes to
variability in the metabolism of substrates of these enzymes in vitro and in vivo (23, 24).
Of the CYP2B6 alleles studied, CYP2B6*6 is the most common allele conferring low
enzymatic activity, with allele frequencies of 15% to 60% across ethnic groups (24). The
CYP2B6*6 allele codes for two nonsynonymous amino acid changes, Q172H and K262R,
with the Q172H substitution conferring reduced function (24).

Efavirenz clearance is significantly reduced in individuals with a CYP2B6*6/*6 geno-
type (1.5 to 9-fold relative to the CYP2B6*1/*1 genotype) following a single dose (2, 3,
15) and at steady state (25–27). Additionally, there are several additional rare CYP2B6
alleles that confer null or reduced CYP2B6 activity, resulting in higher efavirenz expo-
sure (28). Intra- and interindividual variability in efavirenz clearance in HIV patients may
additionally be influenced by coadministered drugs that are known to induce CYP2B6
expression and increase de novo protein synthesis (16). In contrast with CYP2B6,
genetic variation in CYP2A6 and UGT2B7 has a relatively minor effect on efavirenz
clearance, likely due to 7-hydroyxlation and N-glucuronidation being minor elimi-
nation pathways (18, 20). However, efavirenz exposure may be increased in indi-
viduals harboring reduced-function CYP2A6 and UGT2B7 alleles that also have
CYP2B6 poor metabolizer genotypes, though it is unclear whether the exposure
change is clinically relevant (29, 30).

A number of population-based pharmacokinetic models have been developed to
characterize efavirenz PK in both healthy volunteers and HIV-infected individuals (2, 15,
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25, 27). Many of these studies have focused on genetic determinants of clearance, with
a lesser focus on other sources of variability in drug exposure and disposition. Incon-
sistency between studies as to the covariates evaluated contributes to uncertainty as to
their clinical utility in predicting efavirenz PK. These discrepancies may be attributed to
many factors: whether the study design was sufficient to address the PK question,
focus, and intent of the PK analysis, the availability of covariates, the effects of
concomitant medications or disease burden, and therapeutic compliance, among
others. We have conducted a population-based pharmacokinetic analysis of intensively
sampled plasma efavirenz concentrations in HIV-seronegative volunteers administered
a single dose of 600 mg efavirenz. We observed that anthropometric measures of body
composition and germ line genetic variation in CYP2B6 influence both the apparent
volume of distribution and clearance of efavirenz.

RESULTS
Study population characteristics. Through an initial telephone screen and base-

line physical and clinical laboratory tests, we identified 96 subjects who were eligible
for study enrollment. Of these, 73 subjects were enrolled into the study and were orally
administered 600 mg efavirenz and the drug cocktail. The remaining 23 eligible
subjects could not be enrolled for various reasons (primarily due to failure to report to
the Indiana University School of Medicine Clinical Research Center [ICRC] and voluntary
dropout). After receiving study drug, three subjects withdrew from the study, of which
one withdrawal may have been due to a side effect of efavirenz (the subject reported
nausea and vomiting). Baseline characteristics for the study subjects are given in Table
1. Study subjects were young (median age, 25 years; range, 18 to 50 years), and 46 of
the 73 subjects were male (63%). The subjects were largely Caucasian (52 of 73; 71.2%)
and African-American (16 of 73; 21.9%), with the remaining subjects reporting partial or
complete Asian, Indian, or American Indian ancestry (5 of 73; 6.8%). Weight (WT) and
body mass index (BMI) were typical of North American populations, and 9 of 73 subjects
(12%) were clinically obese (BMI � 30 kg/m2).

The classification of genetic polymorphisms identified in this study population into
expected metabolizer phenotypes is described in Table S1 in the supplemental mate-
rial. Genetic variants genotyped in this study were those with known functional
consequence and occurring at a high frequency in multiple populations. Missing
metabolizer phenotypes were a result of technical failures of genotyping one or more
variants in the respective genes. Haplotypes could not always be definitively deter-

TABLE 1 Study population demographics and anthropometric measures

Parameter Median (range) or no.a Mean (SD) or frequency (%)b

Age (yr) 24 (18–50) 28 (10)
Wt (kg) 72.7 (53.0–103.6) 74.0 (13.4)
Ht (m) 1.76 (1.55–1.98) 1.75 (0.09)
BMI (kg/m2) 24.0 (17.8–32.2) 24.2 (3.7)
Fat-free mass (kg) 56.4 (35.6–75.1) 53.7 (10.9)
Fat mass (kg) 18.8 (6.3–42.7) 20.3 (7.2)

Sex
Male 46 63.0
Female 27 37.0

Race
Caucasian 52 71.2
African-American 16 21.9
Indian 1 1.4
American Indian 1 1.4
Asian 3 4.1

aFor all parameters except sex and race, the values are medians (ranges); for sex and race, the values are
numbers of participants.

bFor all parameters except sex and race, the values are means (SDs); for sex and race, the values are
frequencies (percent).
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mined based on the genotyping results. For instance, subjects heterozygous for
CYP2B6*4 and CYP2B6*9 variants may have autosomes carrying the *4 and *9 alleles, or
the *1 allele and *6 alleles. However, an inability to distinguish haplotypes did not alter
the phenotypic classification for most cases.

Population PK model. Our population-based pharmacokinetic analysis of single-

dose efavirenz disposition utilized plasma concentration measurements from all 73
subjects enrolled. Of the three subjects that withdrew from the study, blood samples
were drawn and plasma efavirenz concentrations were measured in these subjects up
to 6, 24, and 48 h after efavirenz administration (a total of 8, 8, and 14 efavirenz
concentrations measured, respectively). A single plasma measurement at 6 days (145 h)
was available for one subject due to misplaced blood samples prior to efavirenz
quantification. Of the remaining 69 subjects, 14 to 16 plasma efavirenz concentrations
were measured and analyzed per subject. In total, 1,132 plasma efavirenz concentra-
tions were included from the analysis and two concentrations below the assay lower
limit of quantification (LLOQ) were excluded.

A two-compartment model with first-order absorption and a lag time adequately
described the data and was used for evaluation of several absorption models. This
model included both additive and proportional residual variability terms, and between-
subject variability (BSV) in apparent oral clearance was assumed based on exploratory
data analysis. Additional BSV random effects were evaluated individually for each
model parameter and then added sequentially, resulting in an interim model that
included BSV in all model parameters except bioavailability (ΔOFV � �625, P �

0.00001 [where OFV is objective function value]). Plasma efavirenz concentration
profiles in the first 6 h of dosing displayed marked heterogeneity in our study
population, suggesting that efavirenz absorption was not uniformly described by
first-order absorption kinetics (see Fig. S1 in the supplemental material). Efavirenz
absorption was rapid in some individuals, leading to a singular Cmax following dosing.
Other subjects displayed apparent zero-order absorption kinetics resulting in a nearly
flat Cmax, and yet other subjects displayed discontinuous absorption suggestive of
different kinetic processes. Apparent double peaks were observed in some subjects,
occurring mainly within 6 h of dosing. To better describe efavirenz absorption, we
evaluated several empirical models, including first-order absorption processes drawn
from bimodal normal distributions estimated using a mixture model, dual simultaneous
first-order absorption processes with independent lag times, and sequential or simul-
taneous zero- and first-order absorption processes with independent lag times. A
transit compartment model was also evaluated in which the optimal number of
presystemic compartments, the mean transit time to the absorption compartment, and
an absorption rate constant were estimated (31). Including BSV for absorption param-
eters was considered during implementation and comparison of these models. Efa-
virenz absorption was best described by a simultaneous zero- and first-order absorp-
tion model with BSV in the first-order absorption rate constant (Ka), lag times prior to
first- and zero-order absorption (tlag1 and tlag2), and the duration of the zero-order
absorption process (D2). We estimated the fraction of the dose administered absorbed
through the first-order process (F1 � 0.414) and assumed the remainder of the dose
was absorbed by zero-order absorption (F2 � 1 � F1 � 0.586). While our model did not
restrict the order of absorption processes, empirical Bayes estimates of tlag1 and tlag2

supported a sequential absorption process in most subjects, where absorption initiates
with zero-order kinetics and continues as a first-order process (tlag2 � 0.445 h,
D2 � 0.675 h, tlag1 � 1.97 h). The corresponding typical zero-order absorption rate in
this study was 1,650,080 nmol/h (521 mg/h). The zero-order process ended prior to
initiation of the first-order process in 67 of 73 subjects (92%), with simultaneous
absorption processes occurring in the remaining 6 subjects for a median of 0.60 h
(range, 0.30 to 1.39 h). Notably, these 6 subjects had absorption profiles characterized
by an initial slow zero-order process that correlated with slowly rising plasma concen-
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trations in the first 4 h after efavirenz ingestion. Population estimates of absorption
parameters were fixed prior to evaluation of covariate effects.

Covariate model development. Investigating covariates that might alter apparent
oral clearance (CL/F) revealed positive correlation with total body weight (TBW), with similar
improvements in OFV when parameterized as a linear (equation 1; ΔOFV � �19.786, P �

0.05) or as an allometric relationship (equation 2; ΔOFV � �15.094, P � 0.05) (see
Materials and Methods for equations). An additional significant relationship between
CL/F and fat-free mass (FFM) was similarly well described by an allometric model
(equation 2; ΔOFV � �19.551, P � 0.05) and a linear model (equation 1; ΔOFV �

�18.275, P � 0.05). Allometric scaling of CL/F by normal fat mass (NFM)-suggested fat
mass (Ffat � 0.08) has a small contribution to variability in CL/F relative to FFM
(equation 2; ΔOFV � �16.736, P � 0.05; ΔOFV versus FFM alone � 2.815, P � 0.05).
Further model development accounted for FFM versus WT or NFM given the overall
improved fit and mechanistic relationship with clearance. An allometric exponent of 3/4
was fixed in the final model as estimation of the exponent did not significantly lower
the overall objective function (ΔOFV � �3.033, P � 0.05) and bootstrap estimation did
not support an alternative parameterization (mean of 100 bootstrap simulations � 0.72,
95% confidence interval [CI] � 0.60, 0.83). Inclusion of a sex effect on CL/F (equation 4)
was significant (ΔOFV � �5.138, P � 0.05) but did not remain a significant, indepen-
dent predictor after CL/F was adjusted for FFM (ΔOFV � 1.232, P � 0.05). Plots showing
the relationship between BSV in CL/F and fat-free mass for the base and final models
are provided in Fig. 1.

We initially identified a correlation between the apparent peripheral volume of
distribution (Vp/F) and sex, with females having approximately 20% greater volumes on
average (equation 4; ΔOFV � �14.794, P � 0.05). Additionally, we observed a signif-
icant correlation between Vp/F and BMI that was described by an exponential relation-
ship between BMI and Vp/F (equation 3; ΔOFV � �18.183, P � 0.05). After adjustment
for BMI, sex remained an independent predictor of volume of distribution (V/F)
(ΔOFV � �7.159, P � 0.05). The population-predicted Vp/F in males was approxi-
mately 90% of that in females, suggesting that the sex dependency of Vp/F was not fully
accounted for after accounting for BMI. A comparison of demographics and anthropo-
metric measures between males and females is provided in Table S2 in the supple-
mental material. Furthermore, the nonlinear relationship between BMI and Vp/F would
extrapolate to extremely large distribution volumes in very obese subjects. Further
exploration of the influence of body composition revealed a strong positive relation-
ship between Vp/F and fat mass (FM) that was best described using allometric scaling
(equation 2; ΔOFV � �69.202, P � 0.05). An allometric exponent of 1 was fixed in the
final model as estimation of the exponent resulted in a small improvement in overall
model fit (ΔOFV � �4.686, P � 0.05) and was not strongly supported by bootstrap
estimation (mean of 100 bootstrap simulations � 1.13, 95% CI � 0.79, 1.46). Allometric
scaling of Vp/F by FM reduced BSV (% coefficient of variation [%CV]) from 59.1% to
37.4% (Table 2). After accounting for the effect of FM on Vp/F, no other covariates were
found to significantly alter Vp/F. Plots showing the relationship between BSV in Vp/F
and FM for the base and final models are provided in Fig. 1.

Accounting for FM effect on Vp/F and FFM effects on CL/F in the model, stepwise
univariate inclusion of metabolizer status for each CYP gene identified CYP2B6 me-
tabolizer status to significantly alter CL/F (ΔOFV � �30.164, P � 0.05) and reduced BSV
(%CV) in CL/F from 31.6% to 26.3%. The metabolizer statuses of CYP3A5 (ΔOFV �

�11.182, P � 0.05), CYP2C8 (ΔOFV � �6.663, P � 0.05), and CYP2C19 (ΔOFV � �8.84,
P � 0.05) were also significant when added individually. However, within each of these
models, metabolizer status did not alter CL/F by more than 10%, and for CYP3A5 and
CYP2C8, there was not a clear trend between metabolizer status and CL/F. Furthermore,
CYP3A5, CYP2C8, and CYP2C19 metabolizer statuses were not significant in models
including metabolizer status of CYP2B6 and were not retained in the final model.
Compared to efavirenz CL/F of subjects classified as having normal CYP2B6 metabolic
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status, efavirenz CL/F was estimated to be reduced by 25% in subjects with reduced
CYP2B6 activity (intermediate metabolizer) and to be reduced by 51% in subjects
predicted to have slow CYP2B6 metabolic status (CYP2B6*6/*6) (Table 2). Estimating
CL/F for the combined group of CYP2B6 extensive and intermediate metabolizers
increased the OFV by 12.879 points (P � 0.05), supporting the independent effects of
CYP2B6 metabolizer status on efavirenz CL/F. No relationships were identified between
absorption model parameters and subject demographics or CYP metabolizer status.
Plots showing the relationship between BSV in CL/F and CYP2B6 metabolizer status for
the base and final models are provided in Fig. 1.

After accounting for covariates, model improvement was observed after accounting
for correlation between CL/F and Vp/F, in addition to correlation between apparent
intercompartmental clearance (Q/F) and Vp/F (ΔOFV � �63.605, P � 0.05). Univariate
elimination of covariates from the final model resulted in significantly increased OFVs,
i.e., �86.947 (CYP2B6 metabolizer status), �14.975 (allometric scaling of FFM on CL/F),
and � 95.176 (allometric scaling of FM on Vp/F) (P � 0.0001), supporting their inclusion
in the final model. In summary, the OFV was reduced by 177.084 points after account-
ing for covariates and parameter correlation. Population parameter estimates for the
base and final models given the reference covariate effects (56-kg FFM, 19-kg FM,
CYP2B6 normal metabolizer) are summarized in Table 2. As shown in Table 2, fixed and

FIG 1 Relationship between CL/F or Vp/F and influential covariates for the base and final models.
Between-subject variabilities in CL/F (�CL/F) or Vp/F (�Vp/F) versus CYP2B6 metabolizer status (top panels),
fat-free mass (kg) (middle panels), and fat mass (kg) (bottom panels) are shown. These relationships are
illustrated for estimates of �CL/F and �Vp/F prior to incorporation of covariate effects in the model (base
model; left column) or after adjusting for these covariates in the model (final model; right column).
Boxplots shown in the top panels depict five-number summaries as horizontal lines representing (from
top to bottom) 75th percentile � (1.5 � interquartile range) (end of upper whisker), 75th percentile,
median, 25th percentile, and 25th percentile � (1.5 � interquartile range) (end of lower whisker).
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random-effect parameters were precisely estimated (most with a percent relative
standard error [%RSE] of �10%).

Model evaluation. Visual predictive checks (VPCs) resulting from 10,000 simulations
from the final model, stratified by CYP2B6 metabolizer status, are shown in Fig. 2. The
5th, 50th, and 95th percentiles of the observed data fell within the respective 95%
confidence intervals, indicating that the model described the range of plasma efavirenz
concentrations observed following a single dose. Compared to VPCs for CYP2B6 normal
and intermediate metabolizers, prediction intervals within the CYP2B6 poor metabo-
lizers were wider, given the limited number of subjects with the CYP2B6*6/*6 geno-
types. A prediction-corrected VPC (pcVPC) provided in Fig. S2 in the supplemental
material similarly supports the performance of the final model. The pcVPC suggests
underprediction of the 5th and 50th percentiles of plasma concentrations in the early

TABLE 2 Summary of pharmacokinetic parameters

Parameter (unit)a

Base model
estimate

Final model
estimate

Median bootstrap
estimate %RSEb

Absorption
F1 0.414 0.414
tlag1 (h) 1.97 1.97
Ka (h�1) 0.504 0.504
F2 0.586 0.586
tlag2 (h) 0.445 0.445
Duration of zero-order absorption (h) 0.675 0.675

Disposition
CL/F (liters · h�1) (CYP2B6 normal

metabolizer; FFM, 56 kg)
6.36 7.52 7.56 1.70

Vc/F (liters) 125 125 127 6.03
Vp/F (liters) (FM, 19 kg) 364 374 386 3.53
Q/F (liters · h�1) 37.9 32.3 33.3 5.21

CYP2B6 effect on CL/F
CYP2B6 normal metabolizer (factor) 1
CYP2B6 reduced metabolizer (factor) 0.752 0.740 5.54
CYP2B6 poor metabolizer (factor) 0.490 0.494 7.22

Between-subject variability (SD)
CL/F 0.366 0.257 0.257 6.85
Vc/F 0.307 0.318 0.318 7.16
Vp/F 0.591 0.374 0.374 7.01
Q/F 0.547 0.671 0.624 15.77
tlag1 0.263 0.271 0.272 7.85
Ka 0.837 0.965 0.952 7.72
tlag2 0.480 0.473 0.472 7.53
Duration of zero-order absorption 0.677 0.703 0.703 6.83

Correlation (�)c

CL/F to Vp/F 0.196 0.248 59.78
Q/F to Vp/F 0.849 0.831 8.27

Residual error
Proportional error (%) 0.016 0.016 0.130 8.90
Additive error (nmol/liter) 5,290 4,270 4,320 10.78

aF, bioavailability; F1, fraction of dose absorbed by first-order absorption; F2, fraction of dose absorbed by
zero-order absorption; tlag1, time between dosing event and initiation of first-order absorption from the gut
compartment; tlag2, time between dosing event and initiation of zero-order absorption from the gut
compartment; duration, duration of time that zero-order absorption occurs following the absorption lag
time (tlag2); CL/F, apparent oral plasma clearance; Vc/F, apparent central volume of distribution; Vp/F,
apparent peripheral volume of distribution; Q/F, apparent inter-compartmental clearance; CL/F � CLTV �
(FFM/56)3/4 � factor (liters · h�1) (for subjects with normal CYP2B6 metabolizer status); Vp/F � Vp,TV � (FM/
19) (liters). Proportional error, additive error, and between-subject variation are expressed as standard
deviations.

bPercent relative standard error (%RSE) was calculated from 1,000 bootstrapped parameter estimates.
%RSE � 100 � (bootstrap SE/population model parameter estimate).

cThe correlations between BSV terms i and j are reported as correlation coefficients, where �i,j � cov(�i, �j)/
(�i � �j).
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absorption phase, which may be a consequence of median normalizing given the wide
range of concentrations observed at these time points. Additional model diagnostic
plots are displayed in Fig. 3, which show the goodness of fit of the final PK model to
the data. The distribution of conditional weighted residuals was generally uniform
across the range of predicted concentrations and time after dose (Fig. 3).

DISCUSSION

Variability in the PK of antiretroviral agents, such as efavirenz, is a well-known
determinant of heterogeneity in clinical response and adverse effects (32). Efavirenz

FIG 2 Visual predictive checks of plasma efavirenz concentrations by CYP2B6 metabolizer status. Within
each panel, the 95th, median, and 5th percentiles of observed plasma efavirenz concentrations (nmol/
liter) within each bin are represented by the upper red dashed line, middle red solid line, and lower red
dashed line, respectively. The 95th, median, and 5th percentiles of predicted plasma concentrations
(nmol/liter) within each bin are represented by the upper black dashed line, middle black solid line, and
lower black dashed line, respectively. The red-shaded area represents the 95% confidence interval for the
median predictions, whereas the upper and lower blue-shaded areas represent the 95% confidence
intervals for the 95th and 5th percentiles of predicted concentrations, respectively. The inset figures
within each panel display the visual predictive checks during the first 24 h after efavirenz administration.

FIG 3 Diagnostic plots for the final population-based pharmacokinetic model. (A and B) Observed
plasma efavirenz concentrations (nmol/liter) versus population-predicted (A) or individual-predicted (B)
efavirenz concentrations (nmol/liter). Paired observed and predicted concentration measurements for a
given subject are plotted as circles and connected by lines. (C) Conditional weighted residuals versus
population-predicted efavirenz concentrations (nmol/liter). (D) Conditional weighted residuals versus
time (hours). Residuals for a given subject are plotted as circles and connected by lines. In panels A to
D, red lines represent the result of a loess smoother with fitting by weighted least-squares.
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pharmacokinetic variability has been attributed, in part, to patient characteristics that
are variable at a population level (2, 3, 15, 28). Despite this, efavirenz is dosed without
regard to patient characteristics. Recent clinical trials support the therapeutic equiva-
lence of 400 mg efavirenz to the historically used dose of 600 mg, citing a similar
efficacy and an improved toxicity profile (33). However, these comparisons are largely
based on the average response in all trial subjects and individual response may vary
widely. Using a population-based pharmacokinetic modeling approach, we have esti-
mated sources and the extent of variability in the absorption, distribution, and elimi-
nation of efavirenz following a single oral dose and identified patient factors that
markedly influence efavirenz disposition.

The impact of germ line genetic variation on efavirenz clearance has been exten-
sively studied. In vivo studies of efavirenz metabolism have largely reflected in vitro
drug metabolism studies, which show that the primary route of efavirenz elimination is
through CYP2B6-mediated hydroxylation (18–20). Of the genetically polymorphic CYPs
evaluated in this study, only CYP2B6 metabolizer status was found to be a significant
predictor of CL/F. Relative to subjects predicted to have normal CYP2B6 metabolizer
status, we estimated that CL/F is reduced by 25% in subjects with CYP2B6 intermediate
metabolizer status (which included a subject with a *1/*18 genotype) and 50% in
subjects with poor metabolizer status (CYP2B6*6/*6 genotypes). Accordingly, BSV in
CL/F was increased from 25.7% to 35.2% when CYP2B6 metabolizer status was removed
from the final model (37% increase in variability). Our results are similar to those of
other studies that demonstrate a significant effect of CYP2B6 genotypes on CL/F and a
25 to 50% reduction in unexplained BSV upon accounting for CYP2B6*6 or CYP2B6
c.516G-to-T alleles (2, 26, 27, 34). It is expected that the CYP2B6 variants evaluated in
this study account for the majority of the influence of CYP2B6 genetic variability on
efavirenz concentrations in the population studied, given the relatively low allelic
frequency and/or minor effects of additional variants (28, 35). In addition to CYP2B6,
CYP2A6 polymorphisms have been shown to be associated with efavirenz CL/F, efa-
virenz concentrations, or 7-OH efavirenz concentrations (25, 29, 30). In these studies,
the relative influence of the CYP2A6 genotypes on efavirenz PK was more prominent in
CYP2B6 slow metabolizers, suggesting that the minor elimination pathway of
7-hydroxylation mediated by CYP2A6 may play an increased role in subjects with low
CYP2B6 activity (20). In the present study, CL/F was not found to be significantly altered
by CYP2A6 metabolizer status when analyzed univariately or in subgroups of CYP2B6
metabolizer status, consistent with our previous findings (2). Our ability to attribute
efavirenz concentration changes to a genetic interaction modulating a minor elimina-
tion pathway was likely limited by sample size. However, formation of 7-OH efavirenz
by CYP2A6 may have a more significant effect on plasma efavirenz concentrations
during chronic dosing due to induction of CYP2A6, particularly in those subjects with
slow CYP2B6 metabolizer phenotypes who do not exhibit induction of CYP2B6 activity
(36–38). Consequently, some gene-gene interactions may be more prominent as
efavirenz is dosed to steady state.

In our study, we evaluated the influence of body composition on efavirenz CL/F
using the traditional scalar weight and compared this to FFM, which has been proposed
to approximate the lean tissue mass responsible for drug clearance (17, 39). Given the
range of measured body weights and calculated FFM in our study subjects, the
relationship between either WT or FFM and CL/F was approximately linear. Accordingly,
both linear and allometric models provided similar improvements in model fit. Under
the assumption that clearance increases linearly with FFM, but nonlinearly with TBW,
weight-adjusted clearance may inaccurately predict clearance in obese subjects (39).
Therefore, we retained the allometric FFM scalar and suggest that TBW- and FFM-scaled
efavirenz clearance be further evaluated over a broader weight range that is biased
toward obese subjects. Reported sex differences in efavirenz CL/F have been conflict-
ing, with some studies showing associations (3, 40) and others reporting no relationship
(15, 16). Similarly, differences in CYP2B6 expression and activity in human liver micro-
somes between sexes have been inconsistent in the literature (41–43). We observed a

Efavirenz Pharmacokinetics Antimicrobial Agents and Chemotherapy

January 2017 Volume 61 Issue 1 e01813-16 aac.asm.org 9

http://aac.asm.org


small change in CL/F between sexes in this study, with males estimated to have lower
clearance (fractional reduction in CL/F of �1%); however, this effect was not observed
after scaling CL/F by FFM. While the contribution of sex to variability in efavirenz
clearance cannot be excluded, our results suggest that this effect likely has no clinical
significance and may be accounted for by body composition differences between
males and females.

As with clearance, there have been contradictory reports regarding the influence of
body weight, body composition, and sex on efavirenz distribution. BMI has been
reported to be positively correlated with efavirenz Vp/F, inversely correlated with AUC,
and uncorrelated with terminal elimination half-life (3). However, other studies have
also concluded there is no impact of weight or BMI on Vp/F (27, 44) or did not report
whether these effects were considered (15, 25, 40). Weight-normalized apparent vol-
ume of distribution has been reported to be 1.6-fold larger in females than males,
suggesting that a sex-dependent factor influenced V/F independent of weight (16). We
observed strong associations between sex, BMI, and Vp/F. The median Vp/F of efavirenz
was greater in females (507 liters, range � 168 to 1,339 liters) than males (334 liters,
range � 76 to 955 liters), and Vp/F increased nonlinearly with BMI. However, subject sex
remained a significant predictor of Vp/F after accounting for BMI. Since bioelectrical
impedance, a measure of nonconducting adipose tissue, increases linearly with BMI but
with a sex-dependent relationship, we hypothesized that the nonlinear but sex-
dependent relationship between Vp/F and BMI may be explained by differences in fat
composition between sexes (17). We rationalized that differences in body composition
between females and males may account for the reported larger weight-normalized
apparent volumes of distribution observed in females (3, 16). Exploration of a mecha-
nistic basis for these associations revealed a linear relationship between Vp/F and
calculated FM that was well described by allometric scaling. Given the expected
lipophilicity of efavirenz, we suspect that these findings have a strong physiologic
interpretation. Specifically, our results suggest that the reported associations of sex,
weight, and BMI with efavirenz Vp/F reflect distribution and extensive binding of the
highly lipophilic drug into tissue compartments with high lipid content, such as
adipose. In addition to FM, another determinant of variability in the apparent V of
efavirenz may be the interaction with plasma proteins. Efavirenz is estimated to be
�99% bound to serum albumin, and inter- and intrasubject variability in albumin may
contribute to variability in V/F by modifying plasma/tissue partition (14). Mechanisti-
cally, as only free drug is available to diffuse across the membranes and would be
available to be enzymatically degraded by the liver, variability in free plasma concen-
trations may also be an important determinant to variability in efavirenz clearance that
is not explained by between-subject differences in enzymatic clearance due to genetic
polymorphisms.

The potential impact of fat mass on efavirenz pharmacokinetics and pharmacody-
namics (PK/PD) may be complex and counterintuitive. Large distribution volumes are
expected to result in longer half-lives and small peak-to-trough changes in plasma
concentrations that would be therapeutically favorable. The apparent influence of body
composition on drug concentrations would be modified by clearance changes due to
subject weight and genetics. However, extensive distribution of drug into adipose
tissue, as might occur in extreme obesity, may sufficiently reduce biophase concentra-
tions and increase the probability of viral escape. There are limited studies of the impact
of body composition on viral or immunological responses to efavirenz-containing
regimens, and we could not identify any cohort study evaluating therapeutic outcomes
with respect to measures of body fat composition (45). It has been reported that a
morbidly obese patient (BMI, 66 kg/m2) required dose escalation to 1,800 mg efavirenz
once a day to achieve plasma concentrations above 2,000 ng/ml and sufficient sup-
pression of HIV RNA load (46). Further studies are needed to determine the influence
of body composition on efavirenz PK/PD, and our results suggest that calculation or
measurement of body fat mass may improve the determination of these relationships.

Frequent measurement of plasma concentrations in our study facilitated the inter-
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rogation of variability in the absorption and distribution phases of efavirenz disposition,
which have been observed (3) but incompletely characterized. Efavirenz concentrations
in the absorption and early distribution phases revealed heterogeneous and complex
absorption kinetics that were best described by an absorption model with zero- and
first-order absorption processes with independent absorption lag times. Our model
estimates suggest that zero-order absorption of nearly 60% of the oral efavirenz dose
occurs rapidly (absorption duration � 0.675 h, BSV [%CV] � 70.3%) in most subjects
following a short lag time (0.445 h, BSV [%CV] � 47.3%) and that the remainder of the
dose is absorbed with first-order kinetics following a significant longer absorption lag
time of nearly 2 h. Since oral bioavailability is unknown and fixed to 1 in our model, a
component of the uncertainty in absorption rates may reflect subject differences in
bioavailability. Furthermore, efavirenz has been shown to undergo N-glucuronidation,
the product of which may be excreted in the bile and reabsorbed following deconju-
gation by gut flora (47). Several subjects in this study exhibited secondary peaks
beyond the expected end of absorption that would be consistent with enterohepatic
recirculation, which was not explicitly modeled in our study. The extent to which
enterohepatic recirculation influences the PK of efavirenz is unclear. Our results suggest
that the zero-order absorption component largely occurs in the proximal small intes-
tine, with unabsorbed drug undergoing slower absorption later and in lower intestinal
regions. These speculations are supported by physiologically based pharmacokinetic
modeling of efavirenz absorption, which predicted 40 to 50% of a dose to be absorbed
in the duodenum and jejunal segments (48). Additionally, in vivo radiopharmacology
studies of efavirenz disintegration and gastrointestinal transit time have demonstrated
that the average time to 50% gastric emptying of 200- to 300-mg efavirenz tablets
administered to fasting healthy volunteers was approximately 30 min (% RSE � 41 to
75%) (49). While we did not explicitly model gastric emptying and intestinal transit,
model estimates of time between dosing event and initiation of zero-order absorption
from the gut compartment (tlag2), which represent a composite transit rate from the
dosing compartment to the site of initial absorption, are consistent with these observed
gastric emptying times and suggest that absorption initiates rapidly upon the drug’s
leaving the stomach. In these studies, there was no apparent correlation between time
to disintegration of the efavirenz and its PK, suggesting that the rate and extent of
dissolution may be a significant contributor to variability in efavirenz absorption
kinetics (49). Under these conditions, the low aqueous solubility of efavirenz may limit
absorption, and patient variability in water content, native surfactants, and coingested
food or medications, among other factors, may influence the rate and extent of
absorption during intestinal transit (50, 51). Consistent with our observations, sequen-
tial zero- and first-order absorption models have best described the absorption of other
compounds with suspected dissolution-limited absorption (52, 53). Dissolution-limited
absorption of efavirenz may account for the reported nondose proportionality of Cmax

for oral doses ranging from 100 to 1,600 mg (11).
Understanding variability in efavirenz absorption and identifying factors that de-

scribe BSV in the rate, duration, and extent of absorption may provide additional
guidance to limit adverse effects. Higher efavirenz concentrations are associated with
acute neuropsychiatric disorders during the induction phase and during chronic ther-
apy (54, 55). While acute central nervous system side effects may be transient in some
patients, over one-third of patients have side effects that persist during chronic therapy,
which are significantly associated with plasma drug concentrations (55, 56). For side
effects that exhibit a direct correlation to plasma concentrations, we would expect
factors contributing to variability in Cmax to significantly impact a patient’s risk. Current
adult dosing recommendations for efavirenz account for the known effect of food to
increase efavirenz Cmax and neuropsychiatric side effects (11).

Limitations. Due to the significant food effect on efavirenz absorption, efavirenz-
containing regimens are prescribed to be taken at bedtime, several hours following an
evening meal (11). While subjects in our study were instructed to fast overnight prior
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to drug administration, actual food intake was unmonitored. Given the ability of
moderate- and high-fat diets to increase efavirenz absorption, food effects cannot be
ruled out as a source of variability in absorption or bioavailability. We also expect
additional imprecision in PK parameter estimates due to an incomplete understanding
of the extent of efavirenz bioavailability, which was fixed to 1 in our analysis.

An additional potential limitation was the use of calculated estimates of fat mass
and fat-free mass based on semimechanistic models derived by Janmahasatian et al.,
who utilized volunteers from Brisbane, Australia (17). Racial differences in body com-
position have been shown for fat-free body mass and fat patterning (57). It is unclear
how potential racial differences between populations might influence the generaliz-
ability of models to predicted fat-free mass and, by extension, the correlation between
body composition and efavirenz disposition identified in this study. Utilizing direct
measures of body composition (e.g., bioelectrical impedance analysis [BIA] or dual-
energy X-ray absorptiometry [DXA]) in future studies of efavirenz PK would be expected
to more precisely estimate these relationships, independent of potential confounders
like race. While our study population had a broad distribution of body composition
(Table 1), it included few obese (BMI � 30 kg/m2) and no morbidly obese (BMI � 40
kg/m2) patients. Therefore, extrapolation of the relationship between V/F and FM
should be done cautiously in subjects with very high FM before these relationships are
independently confirmed.

Our study did not evaluate the potential influence of genetic variation in UGT2B7 on
efavirenz disposition. However, N-glucuronidation is likely a minor pathway of efavirenz
clearance, as evidenced by the low plasma concentrations of conjugated efavirenz
relative to other metabolites and the small amount of conjugated efavirenz excreted in
the urine following a single oral dose of 600 mg (47).

Summary. Using population-based pharmacokinetic analysis, we have developed a
model that accounts for subject genotype-predicted CYP2B6 metabolizer status and
body composition to estimate plasma efavirenz concentrations following a single dose.
This model provides a framework to mechanistically account for the influence of
patient-specific factors, such as genetics, sex, weight, and obesity. Our findings may
have relevance to dosing efavirenz in obese patients.

MATERIALS AND METHODS
Study subjects. Subjects were recruited between August 2007 and April 2010. The study protocol

was approved by the Indiana University Institutional Review Board and conducted at the Indiana
University School of Medicine Clinical Research Center (ICRC). Subjects were male and female volunteers,
ages 18 to 49 years, free of significant medical conditions. Subjects must have been nonsmokers or
willing to refrain from smoking or the use of tobacco or marijuana for at least 1 month prior to and until
the completion of the study. Upon enrollment in the study, individuals must have adhered to the study
dietary restrictions. After written informed consent was obtained, subjects completed a thorough
medical history, physical examination, and laboratory tests, including electrocardiography (EKG), HIV test,
urinalysis, and blood tests (complete blood count [CBC], complete metabolic panel, and urine pregnancy
tests for females). Females with a positive pregnancy test before and at any time during the study were
excluded or participation was discontinued. At this time, venous blood was also drawn for DNA isolation,
and demographic characteristics such as body weight, height, sex, race, or ethnic background were
collected. Detailed dietary restrictions and inclusion and exclusion criteria have been previously reported
and are outlined in the text in the supplemental material (58, 59). The trial was registered at Clinical
Trials.gov (http://www.clinicaltrials.gov) under identifier no. NCT00668395.

Study design. This open label study was conducted to evaluate efavirenz PK, pharmacogenetics, and
drug interactions after single and multiple doses of efavirenz. Here, we present data that relate to the PK
of a single 600-mg oral dose of efavirenz. Efavirenz PK following a single oral dose was measured during
a 24-h inpatient stay, followed by 3 outpatient visits over 6 days. On day 1, subjects were requested to
arrive in the morning (�8 a.m.) in the ICRC after overnight fasting. Vital signs and EKGs were obtained
for all subjects, and female subjects were confirmed to be nonpregnant by a urine pregnancy test. An
indwelling intravenous catheter was placed in an arm vein, and a predose (baseline) blood draw was
obtained. The subjects were then administered a single oral dose of efavirenz (Sustiva [Bristol-Myers
Squibb]; 600-mg tablet) with 240 ml water. One hour later, an oral drug cocktail (250 mg tolbutamide,
20 mg omeprazole, 150 mg caffeine, and 1 mg of midazolam syrup) was administered with water. Blood
samples (10 ml) were scheduled to be collected 0.5, 1, 1.5, 2, 2.5, 3, 4, 6, 8, 10, 12, 16, and 24 h after
efavirenz dosing. Plasma was separated by centrifugation within an hour of collection and immediately
stored at �80°C. Vital signs and an EKG were measured every 6 h during the 24-h inpatient stay at the
ICRC. Also, blood sugar was measured 0.5 h after tolbutamide administration and monitored if subjects
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exhibited low blood sugar. On subsequent days, additional venous blood samples were scheduled to be
collected at the ICRC (often in the morning) at 48, 72, and 144 h after efavirenz dosing.

Measurement of efavirenz and its metabolites. Plasma concentrations of efavirenz and its
metabolites were determined after enzymatic deconjugation. Plasma samples (250 �l) were mixed with
250 �l of 0.2 M sodium acetate (pH 5), 12.5 �l of 600 mM sodium azide, and 25 �l of �-glucuronidase
(1,000 U/ml) and then incubated at 37°C for 18 h on a shaker. After deconjugation, the internal standards
(30 �l of 1 �g/ml efavirenz-d4, 1 �g/ml chloropropamide, 1 �g/ml triazolam, and 1 �g/ml acetamino-
phen) were added and extracted with 250 �l of 0.1 M hydrochloric acid and 6 ml of ethyl acetate-hexane
(50:50, vol/vol). After shaking for 10 min and centrifugation at 3,600 rpm for 10 min (0°C), the organic
layer was removed and evaporated to dryness. The residue was reconstituted in 120 �l of mobile phase
A:B (50:50, vol/vol) from which 25 �l was injected onto the high-performance liquid chromatography–
tandem mass spectrometry (HPLC-MS/MS) system.

Analysis was performed on an API 3200 triple-quadrupole mass spectrometer (Applied Biosystem/AB
Sciex, Foster City, CA) equipped with a turbo ion spray source. The HPLC system consisted of two
LC-20AD pumps, an SIL-20AHT UFLC autosampler, a DGU-20A3 degasser, and a CBM-20A controller
(Shimadzu, Columbia, MD). Chromatographic separation was performed on a C8 column (250 by 4.6 mm,
5-�m particle size; Restek, Bellefonte, PA). Before and after each injection, the needle was washed with
acetonitrile-water (75:25, vol/vol). Chromatographic separation was performed using mobile phase A
(methanol– 0.1% formic acid; 1:99, vol/vol) and mobile phase B (methanol– 0.1% formic acid; 99:1, vol/vol)
delivered at 0.8 ml/min using a linear gradient of 25% B to 90% B between 0.01 min and 16 min, followed
by reequilibration to initial conditions between 16.01 min and 20.00 min. MS optimization was achieved
via adjustment of both the compound-dependent and instrument-dependent parameters for efavirenz,
8-hydroxyefavirenz (8-OH EFV), 7-hydroxyefavirenz (7-OH EFV), and 8,14-dihydroxyefavirenz (8,14-diOH
EFV) in negative mode using efavirenz-d4 as an internal standard. The analytes were optimized at a
source temperature of 550°C in negative mode, under unit resolution for quadrupoles 1 and 3, and were
given a dwell time of 60 ms and a setting time of 700 ms. Optimal gas pressures for all analytes, including
the internal standards in negative mode, were as follows: collision gas, 8 lb/in2; curtain gas, 20 lb/in2; ion
source gas 1, 55 lb/in2; ion source gas 2, 45 lb/in2; and ion spray voltage, �3,000 V. Multiple-reaction
monitoring at m/z of 313.97/244.01, 329.98/210.0, 329.98/257.89, 345.91/262.0, and 318.01/247.95 was
used to measure first and third quadrupole (Q1/Q3) transitions for efavirenz, 8-hydroxyefavirenz,
7-hydroxyefavirenz, 8,14-dihydroxyefavirenz, and efavirenz-d4, respectively, in negative mode. Data
acquisition and processing were performed using Analyst software. The upper and lower limits of
efavirenz quantification were 1,000 ng/ml and 1 ng/ml, respectively, with intraday and interday variabil-
ities of �10% and �20%, respectively.

DNA genotyping. Genomic DNA was extracted from whole blood with a DNA minikit (Qiagen,
Valencia, CA). Genotyping for variants of the CYP genes were performed using two platforms: TaqMan
assay reagent allelic discrimination kits according to the supplier’s instructions (Applied Biosystems,
Foster City, CA) as previously described (58) and/or the OpenArray platform (Applied Biosystems, Inc.,
Foster City, CA). The following variants were assayed: CYP2B6*2 (rs8192709), CYP2B6*4 (rs2279343),
CYP2B6*5 (rs3211371), CYP2B6*9 (rs3745274), CYP2B6*16 (rs28399499), CYP2B6*18 (rs28399499);
CYP2A6*2 (rs1801272), CYP2A6*9 (rs8192726), CYP2A6*12 (rs4803380); CYP2C8*2 (rs11572103), CYP2C8*3
(rs11572080, rs10509681); CYP2C9*2 (rs1799853), CYP2C9*3 (rs1057910); CYP2C19*2 (rs4244285),
CYP2C19*3 (rs4986893), CYP2C19*17 (rs12248560); CYP3A4 (rs2246709), CYP3A4 (rs35599367); CYP3A5*3
(rs776746), CYP3A5*6 (rs10264272), and CYP3A5*7 (rs41303343). The CYP2B6*6 allele consists of the
CYP2B6*4 (G-to-A) and CYP2B6*9 (T-to-A) variants on the same haplotype.

CYP nomenclature and predicted metabolizer status. Star alleles of CYP genes were designated
from the genotyping data in accordance with the Human Cytochrome P450 Allele Nomenclature
Database (http://www.cypalleles.ki.se/). The functional consequence of individual CYP2B6 star alleles was
defined based on the reported impact on in vitro metabolism of efavirenz and/or changes in efavirenz
PK (28, 35, 41), whereas the functional status of star alleles of the other CYP genes was determined based
on a consensus of known alterations in metabolism or PK of other selective substrates. For each CYP,
genotype-predicted categorical phenotypes were determined (e.g., ultrarapid, normal, intermediate, or
slow), and subjects were classified based on their number of reduced-function star alleles.

Population pharmacokinetic modeling. Population pharmacokinetic modeling was performed
using the first-order conditional estimation method with interaction (FOCE-I) implemented in NONMEM
7.3 (60). NONMEM was utilized with the Wings for NONMEM package (version 7) (61), Perl-speaks-
NONMEM (version 4.4.8) (62), Xpose (version 4) (63), and Pirana (version 2.9.4) (63). Data manipulation
and graphical analysis were performed using R (version 3.2.5) (64). Plasma concentrations were fit on a
linear scale, and concentrations below the lower limit of quantification (LLOQ) were excluded from
model evaluation because they comprised only 2 of the 1,132 plasma concentrations measured.

Pharmaco-statistical model development. (i) Base model development. The compartmental
model structure was developed through sequential evaluation of one, two, and three compartments,
with first-order absorption and first-order elimination from the central compartment. Efavirenz bioavail-
ability in humans is unknown due to a lack of intravenous formulation and was assumed to be 1 with
no interindividual variability. Pharmacokinetic parameters (�i) were assumed to be log-normally distrib-
uted with between-subject variability (BSV; �i) estimated as normally distributed with mean zero and
standard deviation of �i [� � N(0,�)]. Residual variability was modeled by considering additive and
proportional error terms individually and in combination. Several oral absorption models were evaluated
to describe the observed heterogeneity in absorption profiles, with both rapid and delayed profiles. To
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avoid overparameterization, error models were refined though stepwise elimination of random effects
for individual PK parameters.

(ii) Covariate model development. Following development of the base model, we evaluated
whether covariates explained and therefore reduced the unexplained intersubject variability in model
parameters. Observed (baseline total body weight, baseline height) and calculated (body mass index,
fat-free mass, fat mass) measures of body size and composition were evaluated, along with sex, age, and
ethnicity, for their influence on apparent oral clearance and apparent volume of distribution. We
additionally determined whether metabolizer status for CYP2B6, CYP2A6, CYP2C8, CYP2C9, CYP2C19,
CYP3A4, and CYP3A5 explained BSV in apparent oral clearance. CYP2B6, CYP2A6, CYP3A4, and CYP3A5
have been shown to contribute to efavirenz metabolism in vitro (19, 20) and were the primary genetic
covariates of interest, whereas CYP2C8, CYP2C9, and CYP2C19 were genotyped due to their effects on the
drug cocktail administered and thus served as negative controls. The fat-free mass (FFM; kg) of each
subject was estimated using total body weight (TBW; kg), height, and sex, as described by Janmahasatian
et al., and then the fat mass (FM; kg) was then calculated as the difference between TBW and calculated
FFM content (FM � TBW � FFM) (17). Additionally, normal fat mass (NFM; kg) was estimated to
determine the separate contributions of FM and FFM to the prediction of oral clearance [NFM � FFM �
Ffat � (TBW � FFM) (65). The estimated parameter Ffat accounts for the additional contribution of FM
versus FFM. Covariate selection was guided by observed covariate relationships between model param-
eter random effects and/or empirical Bayes parameter estimates; covariates with known or suspected
influence on PK parameters were specifically evaluated.

The influence of weight and body composition on disposition parameters was based on either linear
relationships of a centered covariate (equation 1) or allometric theory (equation 2) (66, 67):

P � PTV 	 ��sizei 
 sizeref� (1)

P � PTV � � sizei

sizeref
�exp

(2)

where P is the population PK parameter estimate for a subject(s) with size i, PTV is the population estimate
for a subject with the reference size (sizeref), � is the slope of the relationship between the centered
covariate and P, and exp is the allometric exponent, initially assumed to be 3/4 for apparent oral
clearance and 1 for the apparent volume of distribution. We additionally evaluated whether the data
supported alternative parameterization of allometric exponents (exp) by estimating parameter confi-
dence intervals (CIs) using bootstrap estimates. Exponents were fixed to the value assumed a priori if this
value fell within the bootstrap-estimated CIs.

A nonlinear centered model was evaluated to approximate the relationship between body mass
index (BMI) and apparent peripheral volume of distribution (Vp) (equation 3):

Vp � Vp,TV 	 e� � �BMI 
 BMIref� (3)

Binary categorical covariates (COVs) were coded as (0, 1) and evaluated using power (equation 4) and
independent (equation 5) models:

P � �0 �1
cov (4)

IF�COV � 0� P � �0 ELSE P � �1 (5)

where the population parameter estimate (P) equals �0 when the COV is 0 and �0�1 or �1 when the COV
is 1 (for equations 4 and 5, respectively). The independent model (equation 5) was used to evaluate
parameterization of different random effects among covariate groups. Gene-dose effects of CYP me-
tabolizer scores were evaluated using an extended power model (equation 6):

P � PTV � �
i�0

j
1

�i
GENOi (6)

where PTV represents the parameter estimate for subjects with normal metabolizer scores and j is the
number of metabolizer score groups (0,1,. . .,j). GENOi is an indicator variable that takes the value of 1 for
subjects assigned the ith genotype score (e.g., GENO0 equals 1 for slow metabolizer status, and GENO1

equals 1 for intermediate metabolizer status) and 0 otherwise. The equation 6 model was extended to
evaluate the joint influence of CYP2B6 and CYP2A6 metabolizer status, where PTV represents parameter
estimates for subjects assigned CYP2B6 and CYP2A6 normal metabolizer status, and GENOi takes the
value of 1 for each additional CYP2B6-CYP2A6 genotype combination and 0 otherwise. Combining CYP
metabolizer scores (e.g., PTV represents parameter estimates for subjects assigned intermediate or normal
metabolizer status and GENO0 equals 1 for slow metabolizer status) was compared with estimating
separate fixed effects for each score level by comparing objective function value (OFV) changes between
equations 6 and 7:

P � PTV � �
i�0

j
2

�i
GENOi (7)

Model evaluation and selection were guided by the following: (i) a decrease in the OFV between two
hierarchical models of at least 3.84 (� � 0.05, 1 df) or 5.99 (� � 0.05, 2 df), (ii) visual predictive checks
(VPCs), (iii) investigation of weighted residuals, and (iv) visual inspection of the fit between predicted and
observed individual concentration-time profiles. In addition, (v) elimination of trends in the relationship
between covariates and random-effect estimates and (vi) reduction in the magnitude of random effects
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were considered during covariate evaluation. Bin selection for VPC diagnostics was guided using the
automatic binning algorithm implemented in Perl-speaks-NONMEM.
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