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Abstract
Liver fibrosis is a reversible wound-healing process 
aimed at maintaining organ integrity, and presents 
as the critical pre-stage of liver cirrhosis, which will 
eventually progress to hepatocellular carcinoma in 
the absence of liver transplantation. Fibrosis generally 
results from chronic hepatic injury caused by various 
factors, mainly viral infection, schistosomiasis, and 
alcoholism; however, the exact pathological mechanisms 
are still unknown. Although numerous drugs have 
been shown to have antifibrotic activity in vitro  and in 
animal models, none of these drugs have been shown 
to be efficacious in the clinic. Importantly, hepatic 
stellate cells (HSCs) play a key role in the initiation, 
progression, and regression of liver fibrosis by secreting 
fibrogenic factors that encourage portal fibrocytes, 
fibroblasts, and bone marrow-derived myofibroblasts 
to produce collagen and thereby propagate fibrosis. 
These cells are subject to intricate cross-talk with 
adjacent cells, resulting in scarring and subsequent 
liver damage. Thus, an understanding of the molecular 
mechanisms of liver fibrosis and their relationships with 
HSCs is essential for the discovery of new therapeutic 
targets. This comprehensive review outlines the role 
of HSCs in liver fibrosis and details novel strategies to 
suppress HSC activity, thereby providing new insights 
into potential treatments for liver fibrosis.
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Core tip: This review discusses the molecular me
chanisms of liver fibrosis with respect to hepatic stellate 
cells (HSCs). In particular, we describe the functional 
significance of HSCs with respect to major events 
triggering fibrosis and novel therapeutic strategies to 
suppress the activity of activated HSCs.
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INTRODUCTION
Liver fibrosis is a complex fibrogenic and inflammatory 
process that results from chronic liver injury and 
represents an early step in the progression of liver 
cirrhosis. Cirrhosis is a major health problem worldwide, 
owing to the lack of effective treatment methods[1,2]. 
During hepatic fibrosis, continuous accumulation of 
extracellular matrix (ECM) extremely rich in collagen 
Ⅰ and Ⅲ leads to scar deposition and liver fibrosis[3,4]

. 
When left untreated, this condition can develop into 
cirrhosis and subsequent portal hypertension, hepatic 
encephalopathy, and/or liver failure, and lead to an 
increased risk of hepatocellular carcinoma (HCC), 
which can ultimately cause organ failure and death[2,4]. 
Liver transplantation is currently regarded as the 
only treatment method for cirrhosis and is generally 
inadequate[3]. During chronic liver disease, ongoing 
liver injury results in excessive ECM deposition with 
limited remodeling, which inevitably leads to scarring 
and fibrosis[5]. In comparison, the liver can quickly re-
establish its structural integrity in response to acute 
injury, even when a substantial portion of the organ is 
damaged[6].

Hepatic stellate cells (HSCs) localize to the peri
sinusoidal space between hepatocytes and sinusoidal 
endothelial cells and are the primary source of 
activated myofibroblasts and portal fibroblasts that 
drive the fibrogenic process[7]. Quiescent HSCs (qHSCs) 
mostly function as vitamin A reserves[8]. In response 
to liver injury, inflammatory mediators promote HSC 
activation and subsequent differentiation into myo
fibroblasts[9]. Activated HSCs (aHSCs) are a major source 
of collagen in the liver and can abundantly secrete 
ECM proteins, tissue inhibitors of metalloproteinases, 
and matrix metalloproteinases (MMPs) that elicit 
liver architecture remodeling[9,10]. Importantly, HSCs 
are responsible for as much as 80% of total fibrillar 
collagen Ⅰ in the fibrotic liver[8-11]; thus, aHSC depletion 
is critical for the resolution of fibrosis.

Based on these findings, we provide a comprehensive 
review summarizing the etiology and pathological 
characteristics of hepatic fibrosis, and detail the potential 
therapeutic targets for suppression of aHSC function.

ETIOLOGY AND PATHOLOGICAL 
CHARACTERISTICS OF HEPATIC 
FIBROSIS
Liver fibrosis is a complex process that results from 
various forms of chronic hepatic disease and is asso
ciated with excess hepatocellular death[2,12,13]. The 
main etiologies of liver fibrosis are schistosome and 
chronic viral hepatitis infection, nonalcoholic fatty 
liver disease (NAFLD), alcoholic liver disease (ALD), 
and cholestatic and autoimmune liver disease[1,14-17]. 
Liver fibrosis, which is characterized by the excessive 
deposition ECM proteins[18], involves both parenchymal 
and nonparenchymal hepatic cells, as well as infiltrating 
immune cells[3,19]. Furthermore, different organs, such 
as the adipose tissue, bile duct, intestine, and muscle, 
can also affect the development of liver fibrosis. 
Moreover, several essential signaling pathways have 
important roles in fibrosis. The complex interactions 
among these signaling pathways, diverse cells, and 
different organs contribute to the progression of 
liver fibrosis[20]. Upon fibrogenic initiation, qHSCs 
differentiate into aHSCs, upon which they lose the 
intracellular lipid droplets and acquire a myofibroblastic 
phenotype characterized by marked upregulation of 
a-smooth muscle actin (a-SMA, ACTA2), desmin (DES), 
and type Ⅰ collagen (COL1A1)[8-10]. The sustained 
buildup of collagens distorts the liver parenchyma 
and vascular architecture, resulting in impaired liver 
function, scar deposition, and liver fibrosis[1,2,12,14,17]. The 
initiation, progression, and resolution of liver fibrosis 
involving HSCs are present in Figure 1.

Viral and schistosome infection
Viral infections such as those caused by hepatitis B 
virus (HBV) and hepatitis C virus (HCV) induce hepatic 
inflammation and thereby contribute to the cyclical 
process of inflammation, necrosis, and regeneration[21]. 
Within this inflammatory microenvironment, continuous 
infiltration of immune cells and secreted inflammatory 
cytokines leads to liver injury, triggering a progressive 
cascade of hepatic lobule reconstruction that promotes 
liver fibrosis and cirrhosis[22].

Schistosomiasis is a major chronic disease that 
occurs in humans living in endemic regions, owing to 
substantial pathologic liver fibrosis caused by from an 
accumulation of parasitic eggs[23]. Ongoing antigenic 
stimulation from the trapped ova results in immune 
cell recruitment to the sites of infection, leading to 
the formation of periovular granulomas and eventual 
fibrosis[24]. Liver fibrosis often begins 6 wk after 
infection, when the Th2 immune response predominates 
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and subsequently subsides at 12 wk postinfection. 
The Th17 response has also been associated with 
severe hepatic inflammation; however, the function 
of B cells in schistosome-induced pathology remains 
controversial. Because immune cell-derived chemokines 
play a vital role in schistosome-induced pathology[25,26], 
one method to hamper disease progression could be 
by modulating chemokine production to limit hepatic 
eosinophil recruitment[27]. Importantly, although prazi
quantel therapy effectively kills adult Schistosoma, it 
has diminutive effects on liver fibrogenesis or portal 
hypertension[28,29]; thus, new strategies to treat schi
stosomiasis are urgently needed.

Alcohol
Excessive alcohol abuse causes steatohepatitis that 
can progress to ALD. Most patients are generally 
asymptomatic, and ALD is easily reversible when 
patients abstain from alcohol consumption. Otherwise, 
they will develop into liver fibrosis. Acetaldehyde is 
regarded as a major intermediate in alcohol-induced 
fibrogenesis[30,31], and recent studies have delineated 
the mechanisms through which transforming growth 
factor (TGF)-β/small mother against decapentaplegic 
(SMAD) signaling is enhanced by acetaldehyde[32]. 
Additionally, acetaldehyde-induced fibrogenesis is also 
thought to involve members of the basic transcription 
element binding protein[33,34], CAAT/enhanced-binding 
protein[35,36], and acetaldehyde-responsive element[37]. 
Cytochrome P450 2E1 (CYP2E1) protein is a member of 
the microsomal ethanol oxidizing system responsible for 
ethanol metabolism and is crucial for alcohol-induced 
fibrogenesis[38]. This mechanism is readily observed in 
hepatocyte and HSC cocultures with enhanced collagen 
Ⅰ protein synthesis resulting from CYP2E1-dependent 
reactive oxygen species generation[39]. Correspondingly, 
ethanol-mediated lipid peroxidation is effectively 

blocked in CYP2E1-/- mice[40], whereas oxidative stress 
and hepatic fibrogenesis is elevated in transgenic mice 
with CYP2E1 overexpression[41]. Moreover, the calcium 
regulatory protein osteopontin (OPN) has demonstrated 
protective effects in early alcohol-induced liver injury by 
binding lipopolysaccharide and blocking tumor necrosis 
factor-alpha (TNF-α) function in the liver[42]. OPN is 
also positively correlated with fibrosis in patients with 
ALD[43].

Nonalcoholic steatohepatitis
Nonalcoholic steatohepatitis (NASH) is a relatively 
common chronic liver disease with histological chara
cteristics similar to that of ALD[44]. NASH presents 
as balloon-like hepatocellular injury with or without 
hepatic fibrosis in liver biopsies[45] and is the intermediate 
between NAFLD and cirrhosis[46]. NASH occurs when 
sustained oxidative stress prevents the proliferation 
of mature liver cells, resulting in excess necrosis and 
an overgrowth of liver progenitor cells (oval cells)[47]. 
In addition, the inflammatory response to cellular 
necrosis induces the progressive release of platelet-
derived growth factor, TGF-β, TNF-α, and other 
inflammatory factors, such as interleukin (IL)-1, by 
resident immune cells[48]. These inflammatory signals 
result in the activation and proliferation of HSCs and 
induce differentiation of HSCs into myofibroblasts, 
further driving ECM synthesis and ultimately liver 
fibrosis[49].

Animal models of liver fibrogenesis
Liver fibrosis takes years to develop in most patients 
and results from an interplay of several risk factors, 
including HBV and HCV infection, alcohol abuse, and 
metabolic syndromes attributed to obesity, insulin 
resistance, and diabetes[50]. Accordingly, animal models 
used to study the pathophysiology of liver fibrosis, 
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Figure 1  Initiation, progression, and resolution of liver fibrosis involving hepatic stellate cells. Upon various types of chronic injury - including that caused by 
alcohol, viral and schistosome infection, nonalcoholic steatohepatitis (NASH), and other factors - hepatic stellate cells (HSCs) transdifferentiate from quiescent HSCs 
to activated HSCs, the latter of which secrete abundant extracellular proteins that contribute to liver fibrosis. Liver fibrosis is thought to be a reversible condition owing 
to the elimination of causative agents and different strategies of limiting HSC activation; however, they cannot totally return to a quiescent status of the naive HSCs. 
Instead, they exhibit a pre-activated intermediate condition with an increased sensitivity to injury. Thus, preventing recurrent chronic liver injury is of great importance 
in patients undergoing treatment for liver fibrosis. Untreated or relapsed fibrosis progresses to liver cirrhosis, which often requires hepatic transplantation.
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Taken together, these data indicate that Hic-5 is a 
novel therapeutic target and a potential marker of 
activated HSCs. Additionally, acyl-coenzyme A: 
cholesterol acyltransferase (ACAT) is comprised of 
two isoenzymes-ACAT1 and ACAT2-and functions as a 
catalyst to convert free cholesterol (FC) to cholesteryl 
esters[70]. FC accumulation has been shown to regulate 
HSC activation and the development of liver fibrosis 
by promoting Toll-like receptor 4 signal transduction. 
Because ACAT1 plays an essential role in regulating 
FC accumulation in HSCs[71], studies have focused 
on developing new ACAT1-directed therapeutic inter
ventions for the treatment of liver fibrosis. The roles of 
IL-30, Hic-5, and ACAT1 in liver fibrosis are presented 
in Figure 2.

Regulatory CD4+ T cells 
Regulatory T (Treg) cells function to modulate HCV-
dependent liver fibrosis by regulating the interaction 
between NK cells and aHSCs[72,73]. Specifically, Treg 
cells act in a cell-contact-dependent manner to reduce 
NK cell activity against HSCs and downregulate vital 
NKT-activating ligands on HSCs by secreting soluble 
IL-8 and/or TGF-β1[73]. This mechanism may also be 
present in fibrosis, resulting from other etiologies; 
however, further studies are needed to confirm this 
hypothesis.

Macrophages
Macrophages, which can be classified as M1 (classi
cally activated) macrophages and M2 (alternatively 
activated) macrophages, play dual roles in the pro
gression and resolution of liver fibrosis. Typically, 
M1 macrophages produce inflammatory cytokines, 
whereas M2 macrophages regulate inflammatory 
responses and tissue repair. The imbalance of M1 
and M2 macrophages mediates the progression and 
resolution of liver fibrosis[74]. During the early stages 
of liver injury, bone marrow-derived monocytes are 
extensively recruited to the liver and then differentiate 
into inflammatory macrophages (mostly M1 macro
phages) to produce pro-inflammatory and profibrotic 
cytokines, thereby promoting inflammatory responses 
and HSC activation. Afterwards, recruited macrophages 
switch their phenotypic (mostly M2 macrophages) to 
secrete MMPs, the main enzymes degrading ECM, to 
facilitate fibrosis resolution[20,75,76].

Role of signal transduction in the progression of liver 
fibrosis
Several intracellular signaling pathways are involved in 
the pathophysiology of liver fibrosis. In this section, we 
detail the functional significance of three key signaling 
axes in this process: Gas6/Axl, TGF-β/Smad, and 
target of Wnt signaling pathway (Figure 3).

Gas6/Axl pathway: The TAM (Tyro3, Axl, Mer) 
receptor ligand Gas6 is a vitamin K-dependent protein 
with an extremely high affinity for the Axl receptor. 

cirrhosis, and HCC should mimic the general disease 
patterns found in human counterparts.

Currently, in vivo models of liver fibrosis can 
be divided into five categories based on etiology: 
chemical, dietary, surgical, genetically modified, and 
infection[51]. The chemicals commonly used to cause 
hepatic lesions and induce liver fibrosis include ethanol, 
carbon tetrachloride (CCl4)[52], thioacetamide[53], 
dimethylnitrosamine[54], and diethylnitrosamine[55]. A 
number of specific diets, such as the methionine- and 
choline-deficient diet[56], high-fat diet[57], and choline-
deficient l-amino acid-defined diet[58], can be used 
to induce progression of NAFLD to hepatic fibrosis 
in experimental animals. Moreover, common bile 
duct ligation (BDL) can also lead to cholestatic injury 
and periportal biliary fibrosis[59]. In the past decade, 
multidrug resistance-associated protein 2-deficient 
(Mdr2-/-) mice[60] and Alms1foz/foz fat Aussie mice[61] have 
been used to study the functional relevance of specific 
signaling pathways in the formation of liver fibrosis 
and identify novel drug targets. Finally, infections with 
HBV[62] and Schistosoma parasites[63] are also popular 
models of liver fibrosis.

NOVEL THERAPEUTIC TARGETS IN 
LIVER FIBROSIS
Liver fibrosis was once deemed irreversible; however, 
early liver fibrosis is now managed by clinical treatment, 
and overwhelming evidence suggests that advanced 
fibrosis may likely be reversible once the injurious 
stimulus is removed[64]. Since aHSCs are the primary 
mediators of liver pathology in this process, several 
molecules required for HSC activation are considered 
potential therapeutic targets[9,64,65]. The following 
section details recent novel targets identified for the 
treatment of liver fibrosis through suppression of HSC 
activation.

Key molecules in liver fibrosis
Mitra and colleagues reported that IL-30 attenuates 
hepatic fibrosis by inducing natural killer group 2D 
(NKG2D)/ribonucleic acid export 1 crosstalk between 
aHSCs and natural killer T (NKT) cells and is therefore 
an ideal therapy for liver fibrosis. Mechanistically, 
IL-30 treatment promotes surface NKG2D expression 
on liver NKT cells to subsequently enhance their 
cytotoxic activity towards aHSCs, thereby inhibiting 
liver fibrosis[66]. Another molecule, hydrogen peroxide-
inducible clone-5 (Hic-5) is a TGF-β1-inducible focal 
adhesion protein that facilitates cell proliferation 
and ECM expansion in various organs[67]. Previous 
studies have shown that Hic-5 contributes to vascular 
restoration and restructuring[67,68]; however, a recent 
study revealed that Hic-5 expression also plays a 
critical role in attenuating fibrosis by enhancing TGF-
β-induced Smad2 phosphorylation via the downregula
tion of Smad7 in both human and mouse aHSCs[69]. 

Zhang CY et al . Liver fibrosis and hepatic stellate cells
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Gas6 is primarily expressed by Kupffer cells, whereas 
Axl is found in both macrophages and qHSCs in 
the normal liver[77,78]. Study has demonstrated that 
CCl4-induced liver fibrosis elicits Gas6/Axl pathway 
activation to promote HSC activation. Notably, Axl 
knockout disrupts this pathway, thereby attenuating 
hepatic fibrosis[78]. Clinical trials have also shown 
increased Gas6 and Axl serum levels in patients with 
HCV infection and ALD[78]. As such, targeting Axl may 
be a potential method to remediate liver fibrosis.

TGF-β/Smad signaling: TGF-β regulates ECM meta
bolism and tissue fibrosis through the overproduction 
of type Ⅰ collagen in both mice and humans. Recent 
studies have demonstrated that TGF-β/Smad signaling 
plays a crucial role in the progression of hepatic fibrosis 
caused by parasitic infection, including Schistosoma, 
Clonorchis sinensis, and Echinococcus multilocularis, as 
well as other etiological factors[79,80]. More specifically, 
TGF-β1 ligation to TGF-β type Ⅰ (TGFβRI) and type Ⅱ 
receptors induces Smad2/3 phosphorylation and its 
subsequent interaction with Smad4. The Smad2/3/4 
complex can then translocate to the nucleus and 
induce the expression of profibrotic genes, namely 

collagen type Ⅰ. Strikingly, Smad7 can block TGF-β 
signaling through various means[80-82], such as binding 
TGFβRI to inhibit the interaction-dependent activation 
of Smad2, collaborating with other effectors to induce 
TGFβRI degradation, and regulating the Wnt/β-catenin 
pathway to influence TGF-β-induced apoptosis[83]. 
Similarly, targeting of Smad7 enhances TGF-β pathway 
activation[84].

Wnt pathway: Several studies have demonstrated 
that aberrant Wnt/β-catenin signaling affects the 
progression of fibrotic disorders. Wnt comprises an 
evolutionarily conserved family of excreted lipid-
modified glycoproteins that can be classified into 
at least three signaling pathways: Necdin-Wnt, 
noncanonical (β-catenin-independent), and canonical 
(β-catenin-dependent). In the Necdin-Wnt pathway, 
HSC activation and differentiation require the down
regulation of peroxisome proliferator-activated 
receptor γ (PPARγ). Necdin is a melanoma antigen 
family protein preferentially expressed in aHSCs that 
promotes myogenic and neuronal differentiation while 
suppressing adipogenesis. Notably, Necdin silencing 
restores PPARγ-mediated Wnt pathway inhibition to 
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Figure 2  Roles of interleukin-30, hydrogen peroxide inducible clone 5, and cholesterol acyltransferase 1 in liver fibrosis.
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Figure 3  Roles of the Wnt, TGF-β/Smad, and Gas6/Axl signaling pathways in the progression of liver fibrosis.
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effectively reverse HSC activation[85,86]. In the canonical 
pathway, Wnt ligation to cell surface receptors elicits 
downstream signaling that stabilizes β-catenin, 
which can then translocate into the nucleus, bind T 
cell factor/lymphoid enhancer-binding factor (TCF/
LEF) promoter, and induce gene expression to exert 
biological effects[87,88]. Alternatively, noncanonical Wnt 
signaling occurs via the β-catenin-independent planar 
cell polarity and noncanonical Wnt/Ca2+ pathways. 
Thus, a collective understanding of Wnt signaling 
mechanisms may provide novel insights into the 
pathophysiology of liver fibrosis. A recent study also 
showed that DKK2 (a Wnt antagonist and target of the 
Wnt pathway) connects Sept4 (a subunit of the septin 
cytoskeleton expressed in qHSCs) and the activation 
of HSCs, thereby mediating the progression of liver 
fibrosis. The expression of DKK2 is high in primary 
cultured HSCs. However, DKK2 expression is reduced 
when Sept is not expressed in a mice model of CCL4-
induced fibrosis. The high expression of DKK2 in 
qHSCs inhibits Wnts and thereby affects downstream 
β-catenin signaling. This results in suppression of the 
Wnt signaling pathway, leading to increased expression 
of Sept4 and preventing HSC activation[87].

HAb18G/CD147: HAb18G/CD147 is induced by 
TGF-β1 stimulation and is highly expressed on sinusoidal 
aHSCs, where it colocalizes with a-SMA. Transient 
transfection of CD147 in LX-2 cells results in increased 
expression of mRNAs encoding α-SMA, TIMP-1, α1(I) 
collagen, and TGF-β1. In contrast, MMP-13 and MMP-2 
levels are markedly reduced, suggesting that HAb18G/
CD147 promotes HSC activation. Consistent with this, 
HAb18G/CD147-targeting antibodies block HSC acti
vation, thereby inhibiting liver fibrogenesis[89]. These 
data support the potential role for HAb18G/CD147 in 
liver fibrosis; however, further studies are needed to 
confirm these findings.

microRNAs and HSCs in liver fibrosis
Recently, microRNAs (miRNAs) have also been found 
to play multifaceted roles in hepatic fibrosis, including 
those in HSC activation and proliferation and production 
of ECM proteins[3,11]. Previous studies have indicated that 
human and murine miRNAs participate in liver fibrosis. 
For example, miR-199a, antisense miR-199a*, miR-
200a, and miR-200b are dramatically upregulated in a 
mouse model of liver fibrosis[90]. Conversely, the miR-29 
family is downregulated in aHSCs when compared with 
that in qHSCs, both in vivo and in vitro[91].

miR-133a is specifically downregulated in HSCs 
during fibrogenesis, but is overexpressed in primary 
murine HSC, resulting in attenuation of collagen 
expression[91]. Similarly, CCL4-induced miR-122 ex
pression is markedly lower in aHSCs and fibrotic liver 
tissue. Cell experiments have also shown that miR-
133a overexpression inhibits both LX2 and primary 
murine HSC proliferation and prevents the progression 

of liver fibrosis[92-94]. Furthermore, both miR-15b and 
miR-16 facilitate qHSC apoptosis by targeting Bcl-2 
and the caspase signaling cascade[95].

Promising therapies for liver fibrosis
Although several antifibrotic drug candidates have 
recently been evaluated, these drugs have failed 
to show increased therapeutic efficacy over those 
drugs currently used in the clinic, e.g., ursolic acid 
(UA), 24-nor-ursodeoxycholic acid (norUDCA), and 
resveratrol. UA is a pentacyclic triterpenoid compound 
with a wide spectrum of pharmacological activities 
found in various edible fruits and medicinal plants. 
Studies have demonstrated that UA induces apoptotic 
culture-activated HSC death due to inhibition of 
nuclear factor kappa B and AKT in HSCs, but not in 
isolated qHSCs in vitro. In addition, UA alleviates 
liver fibrosis induced by both BDL and chronic 
thioacetamide administration in vivo. As shown in 
Figure 4, the mechanism of UA-induced apoptosis 
may be attributed to its suppression of cell survival 
pathways and the activation of downstream caspases 
via the mitochondrial permeability transition[96].

The bile acid derivative norUDCA is a promising 
new treatment option for liver fibrosis that significantly 
reduces liver fibrosis in chronically infected Schistosoma 
mansoni mice by limiting T-cell proliferation and IL-13 
and IL-4 serum levels (Figure 4). Moreover, norUDCA 
has anti-inflammatory properties demonstrated by the 
low expression of MHC class Ⅱ on dendritic cells and 
macrophages after norUDCA treatment[28].

Finally, the natural polyphenol flavonoid resveratrol 
has a broad range of beneficial biological functions, 
including anti-inflammatory[97] and antioxidant[98] 
properties[99]. In addition, resveratrol is believed 
to ameliorate obesity-related complications by 
mimicking caloric restriction[100] through activation of 
key metabolic regulators, including NAD+-dependent 
deacetylase (SIRT1)[101], AMP-activated protein 
kinase[102], and nuclear factor erythroid-2 related factor 
2[103]. Furthermore, oxidative damage and inflammation 
are closely related to the HSC activation process. For 
example, SIRT1 activation inhibits the expression of 
muscle-related genes, such as MyoD[104]. Moreover, 
studies have demonstrated the beneficial effects of 
resveratrol in different models of liver steatosis[105-108]. 
Superoxide dismutase activity is necessary for the 
reduction of oxygen free radicals and protects against 
lipid peroxidation, thereby inhibiting HSC activation 
and limiting the progression of liver fibrosis[109]. The 
mechanisms through which resveratrol alleviates 
fibrosis are shown in Figure 4. Although resveratrol 
has been shown to have beneficial biological functions 
in the antifibrotic response, its efficacy in NAFLD is 
insignificant; indeed, a meta-analysis conducted by 
Zhang et al[110] indicated that resveratrol can only 
improve LDL and total cholesterol levels in patients with 
NAFLD.
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CONCLUSION
In this review, we outlined some major etiological 
and pathological characteristics of hepatic fibrosis 
and described several promising approaches for liver 
fibrosis therapy. We strongly believe that liver fibrosis 
will be cured through the combined application of these 
therapeutics; however, further studies are necessary 
to support this hypothesis.
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