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Whole Exome Sequencing (WES) is the application of the next-generation technology to determine the variations in the exome and
is becoming a standard approach in studying genetic variants in diseases. Understanding the exomes of individuals at single base
resolution allows the identification of actionable mutations for disease treatment and management. WES technologies have shifted
the bottleneck in experimental data production to computationally intensive informatics-based data analysis. Novel computational
tools and methods have been developed to analyze and interpret WES data. Here, we review some of the current tools that are
being used to analyze WES data. These tools range from the alignment of raw sequencing reads all the way to linking variants to
actionable therapeutics. Strengths and weaknesses of each tool are discussed for the purpose of helping researchers make more
informative decisions on selecting the best tools to analyze their WES data.

1. Introduction

Recent advances in next-generation sequencing technolo-
gies provide revolutionary opportunities to characterize the
genomic landscapes of individuals at single base resolution
for identifying actionable mutations for disease treatment
and management [1, 2]. Whole Exome Sequencing (WES) is
the application of the next-generation technology to deter-
mine the variations in the exome, that is, all coding regions
of known genes in a genome. For example, more than 85% of
disease-causing mutations in Mendelian diseases are found
in the exome, and WES provides an unbiased approach to
detect these variants in the era of personalized and precision
medicine. Next-generation sequencing technologies have
shifted the bottleneck in experimental data production to
computationally intensive informatics-based data analysis.
For example, the Exome Aggregation Consortium (ExAC)
has assembled and reanalyzed WES data of 60,706 unre-
lated individuals from various disease-specific and popu-
lation genetic studies [3]. To gain insights in WES, novel

computational algorithms and bioinformatics methods rep-
resent a critical component in modern biomedical research
to analyze and interpret these massive datasets.

Genomic studies that employ WES have increased over
the years, and new bioinformatics methods and computa-
tional tools have developed to assist the analysis and interpre-
tation of this data (Figure 1). The majority of WES computa-
tional tools are centered on the generation of aVariantCalling
Format (VCF) file from raw sequencing data. Once the VCF
files have been generated, further downstream analyses can
be performed by other computational methods. Therefore,
in this review we have classified bioinformatics methods
and computational tools into Pre-VCF and Post-VCF cate-
gories. Pre-VCF workflows include tools for aligning the raw
sequencing reads to a reference genome, variant detection,
and annotation. Post-VCF workflows include methods for
somatic mutation detection, pathway analysis, copy num-
ber alterations, INDEL identification, and driver prediction.
Depending on the nature of the hypothesis, beyond VCF
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Figure 1: Trends in Whole Exome Sequencing studies and tools by
querying PubMed (2011–2016).

analysis can also includemethods that link variants to clinical
data as well as potential therapeutics (Figure 2).

Computational tools developed to align raw sequencing
data to an annotated VCF file have been well established.
Most studies tend to follow workflows associated with GATK
[4–6], SAMtools [7], or a combination of these. In general,
workflows start with aligning WES reads to a reference
genome and noting reads that vary. The most common
of these variants are single nucleotide variants (SNVs) but
also include insertions, deletions, and rearrangements. The
location of these variants is used to annotate them to a specific
gene. After annotation, the SNVs found can be compared to
databases of SNVs found in other studies. This allows for the
determination of frequency of a particular SNV in a given
population. In some studies, such as those relating to cancer,
rare somaticmutations are of interest. However, inMendelian
studies, the germline mutational landscape will be of more
interest than somatic mutations. Before a final VCF file is
produced for a given sample, software can be used to predict
if the variant will be functionally damaging to the protein for
prioritizing candidate genes for further study.

Bioinformatics methods developed beyond the establish-
ment of annotated VCF files are far less established. In cancer
research, the most established types of beyond VCF tools
are focused on the detection of somatic mutations. However,
there are strides being made to develop other computational
tools including pathway analysis, copy number alteration,
INDEL identification, driver mutation predictions, and link-
ing candidate genes to clinical data and actionable targets.

Here, we will review recent computational tools in the
analysis and interpretation of WES data, with special focus
on the applications of these methods in cancer research.
We have surveyed the current trends in next-generation
sequencing analysis tools and compared their methodology
so that researches can better determine which tools are the
best for their WES study and the advancement of precision
medicine. In addition, we include a list of publicly available

bioinformatics and computational tools as a reference for
WES studies (Table 1).

2. Computational Tools in Pre-VCF Analyses

Alignment, removal of duplicates, variant calling, annotation,
filtration, and prediction are all parts of the steps leading up
to the generation of a filtered and annotated VCF file. Here
we review each one of these steps, as shown in Figure 2, and
compare and contrast some of the tools that can be used to
perform the Pre-VCF analysis steps.

2.1. Alignment Tools. The first step in any analysis of next-
generation sequencing is to align the sequencing reads to a
reference genome.The twomost common reference genomes
for humans currently are hg18 and hg19. Several aligning
algorithms have been developed including but not limited to
BWA [8], Bowtie 1 [9] and 2 [10], GEM [11], ELAND (Illu-
mina, Inc.), GSNAP [12], MAQ [13], mrFAST [14], Novoalign
(http://www.novocraft.com/), SOAP 1 [15] and 2 [16], SSAHA
[17], Stampy [18], and YOABS [19]. Each method has its own
unique features and many papers have reviewed the differ-
ences between them [20–22], and we will not review these
tools in depth here. The three most commonly used of these
algorithms are BWA, Bowtie (1 and 2), and SOAP (1 and 2).

2.2. Auxiliary Tools. Some auxiliary tools have been devel-
oped to filter aligned reads to ensure higher quality data for
downstream analyses. PCR amplification can introduce
duplicate reads of paired-end reads in sequencing data.These
duplicate reads can influence the depth of the mapped reads
anddownstreamanalyses. For example, if a variant is detected
in duplicate reads, the proportion of reads containing a
variant could pass the threshold needed for variant calling,
thus calling a falsely positive variant. Therefore, removing
duplicate reads is a crucial step in accurately representing
the sequencing depth during downstream analyses. Several
tools have been developed to detect PCR duplicates including
Picard (http://picard.sourceforge.net./), FastUniq [23], and
SAMtools [7]. SAMtools rmdup finds reads that start and
end at the same position, find the read with the highest
quality score, and mark the rest of the duplicates for removal.
Picard finds identical 5󸀠 positions for both reads in a mate
pair and marks them as duplicates. In contrast, FastUniq
takes a de novo approach to quickly identify PCR duplicates.
FastUniq imports all reads, sorts them according to their
location, and thenmarks duplicates.This allows FastUniq not
to require complete genome sequences as prerequisites. Due
to the different algorithms each of these tools use, these tools
can remove PCR duplicates individually or in combination.

2.3. Methods for Single Nucleotide Variants (SNVs) Calling.
After sequences have been aligned to the reference genome,
the next step is to perform variant detection in theWES data.
There are four general categories of variant calling strategies:
germline variants, somatic variants, copy number variations,
and structural variants. Multiple tools that perform one
or more of these variant calling techniques were recently
compared to each other [24]. Some common SNV calling

http://www.novocraft.com/
http://picard.sourceforge.net./
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Figure 2: Whole Exome Sequencing data analysis steps. Novel computational methods and tools have been developed to analyze the full
spectrum of WES data, translating raw fastq files to biological insights and precision medicine.

programs are GATK [4–6], SAMtools [7], and VCMM [25].
The actual SNV calling mechanisms of GATK and SAMtools
are very similar. However, the context before and after
SNV calling represents the differences between these tools.
GATK assumes each sequencing error is independent while
SAMtools believes a secondary error carries more weight.
After SNV calling GATK learns from data while SAMtools
relies on options of the user, Variant Caller with Multinomial
probabilistic Model (VCMM) is another tool developed to
detect SNVs and INDELs from WES and Whole Genome
Sequencing (WGS) studies using a multinomial probabilistic
model with quality score and a strand bias filter [25]. VCMM
suppressed the false-positive and false-negative variant calls
when compared to GATK and SAMtools. However, the
number of variant calls was similar to previous studies. The
comparison done by the authors of VCMM demonstrated
that while all three methods call a large number of common
SNVs, each tool also identifies SNVs not found by the other
methods [25]. The ability of each method to call SNVs not
found by the others should be taken into account when
choosing a SNV variant calling tool(s).

2.4. Methods for Structural Variants (SVs) Identification.
Structural Variants (SVs) such as insertions and deletions
(INDELs) in high-throughput sequencing data aremore chal-
lenging to identify than single nucleotide variants because
they could involve an undefined number of nucleotides. The
majority of WES studies follow SAMtools [7] or GATK [4–6]
workflows which will identify INDELs in the data. However,
other software has been developed to increase the sensitivity
of INDELdiscoverywhile simultaneously decreasing the false
discovery rate.

Platypus [26] was developed to find SNVs, INDELs, and
complex polymorphisms using local de novo assembly.When
compared to SAMtools and GATK, Platypus had the lowest
Fosmid false discovery rate for both SNVs and INDELs in
whole genome sequencing of 15 samples. It also had the short-
est runtime of these tools.However,GATKand SAMtools had
lower Fosmid false discovery rates than Platypus when find-
ing SNVs and INDELs inWES data [26]. Therefore, Platypus
seems to be appropriate for whole genome sequencing but
caution should be used when utilizing this tool with WES
data.

FreeBayes uses a unique approach to INDEL detection
compared to other tools. The method utilizes haplotype-
based variant detection under a Bayesian statistics framework
[27]. This method has been used in several studies in com-
bination with other approaches for the identifying of unique
INDELs [28, 29].

Pindel was one of the first programs developed to address
the issue of unidentified large INDELs due to the short length
of WGS reads [30]. In brief, after alignment of the reads to
the reference genome, Pindel identifies reads where one end
wasmapped and the otherwas not [30].Then, Pindel searches
the reference genome for the unmapped portion of this read
over a user defined area of the genome [30]. This split-
read algorithm successfully identified large INDELs. Other
computational tools developed after Pindel still utilize this
algorithm as the foundation in their methods for detecting
INDELs.

Splitread [31] was developed to specifically identify struc-
tural variants and INDELs in WES data from 1 bp to 1Mbp
building on the split-read approach of Pindel [30]. The
algorithms used by SAMtools and GATK limit the size of
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structural variants, with variants greater than 15 bp rarely
being identified [31]. Splitread anchors one end of a read
and clusters the unanchored ends to identify size, content,
and location of structural variants [31]. When compared
to GATK, Splitread called 70% of the same INDELs but
identified 19 more unique INDELs, 13 of which were verified
by sanger sequencing [31]. The unique ability of Splitread to
identify large structural variants and INDELs merits it being
used in conjunction with other INDEL detecting software in
WES analysis.

Recently developed indelMINER is a compilation of tools
that takes the strengths of split-read and de novo assembly
to determine INDELs from paired-end reads of WGS data
[32]. Comparisons were done between SAMtools, Pindel, and
indelMINER on a simulated dataset with 7,500 INDELs [32].
SAMtools found the least INDELs with 6,491, followed by
Pindel with 7,239 and indelMINER with 7,365 INDELs
identified. However, indelMINER’s false-positive percentage
(3.57%) was higher than SAMtools (2.65%) but lower than
Pindel (4.53%). Conversely, indelMINER did have the lowest
number of false-negatives with 398 compared to 589 and 1,181
for Pindel and SAMtools, respectively. Each of these tools has
their own strengths and weaknesses as demonstrated by the
authors of indelMINER [32]. Therefore, it can be predicted
that future tools developed for SV detection will take an
approach similar to indelMINER in trying to incorporate the
best methods that have been developed thus far.

Most of the recent SV detection tools rely on realigning
split-reads for detecting deletions. Instead of amore universal
approach like indelMINER, Sprites [33] aims to solve the
problem of deletions with microhomologies and deletions
withmicroinsertions. Sprites algorithm realigns soft-clipping
reads to find the longest prefix or suffix that has amatch in the
target sequence. In terms of the 𝐹-score, Sprites performed
better than Pindel using real and simulated data [33].

All of these tools use different algorithms to address the
problem of structural variants, which are common in human
genomes. Each of these tools has strengths and weaknesses in
detecting SVs.Therefore, it is suggested to use several of these
tools in combination to detect SVs in WES.

2.5. VCFAnnotationMethods. Once the variants are detected
and called, the next step is to annotate these variants.The two
most popular VCF annotation tools are ANNOVAR [34] and
MuTect [35] which is part of the GATK pipeline. ANNOVAR
was developed in 2010 with the aim to rapidly annotate
millions of variants with ease and remains one of the popular
variant annotation methods to date [34]. ANNOVAR can
use gene, region, or filter-based annotation to access over 20
public databases for variants annotation. MuTect is another
method that uses Bayesian classifiers for detecting and
annotating variants [34, 35]. MuTect has been widely used in
cancer genomics research, especially in The Cancer Genome
Atlas projects. Other VCF annotation tools are SnpEff [36]
and SnpSift [37]. SnpEff can perform annotation for multiple
variants and SnpSift allows rapid detection of significant
variants from the VCF files [37]. The Variant Annotation
Tool (VAT) distinguishes itself from other annotation tools
in one aspect by adding cloud computing capabilities [38].

VAT annotation occurs at the transcript level to determine
whether all or only a subset of the transcript isoforms of a
gene is affected. VAT is dynamic in that it also annotates
MultipleNucleotide Polymorphisms (MNPs) and can be used
on more than just the human species.

2.6. Database and Resources for Variant Filtration. During
the annotation process, many resources and databases could
be used as filtering criteria for detecting novel variants from
common polymorphisms. These databases score a variant by
its minor allelic frequency (MAF) within a specific popula-
tion or study. The need for filtration of variants based on this
number is subject to the purpose of the study. For example,
Mendelian studies would be interested in including common
SNVs while cancer studies usually focus on rare variants
found in less than 1% of the population. NCBI dbSNP data-
base, established in 2001, is an evolving database containing
both well-known and rare variants from many organisms
[39]. dbSNP also contains additional information including
disease association, genotype origin, and somatic and germ-
line variant information [39].

The Leiden Open Variation Database (LOVD) developed
in 2005 links its database to several other repositories so that
the user canmake comparisons and gain further information
[40]. One of the most popular SNV databases was developed
in 2010 from the 1000 Genomes Project that uses statistics
from the sequencing of more than 1000 “healthy” people of
all ethnicities [41].This is especially helpful for cancer studies,
as damaging mutations found in cancer are often very rare in
a healthy population. Another database essential for cancer
studies is the Catalogue of Somatic Mutations In Cancer
(COSMIC) [42]. This database of somatic mutations found
in cancer studies from almost 20,000 publications allows
for identification of potentially important cancer-related var-
iants. More recently, the Exome Aggregation Consortium
(ExAC) has assembled and reanalyzed WES data of 60,706
unrelated individuals from various disease-specific and pop-
ulation genetic studies [3]. The ExAC web portal and data
provide a resource for assessing the significance of variants
detected in WES data [3].

2.7. Functional Predictors of Mutation. Besides knowing if a
particular variant has been previously identified, researchers
may alsowant to determine the effect of a variant.Many func-
tional prediction tools have been developed that all vary
slightly in their algorithms. While individual prediction
software can be used, ANNOVAR provides users with scores
from several different functional predictors including SIFT,
PolyPhen-2, LRT, FATHMM,MetaSVM,MetaLR, VEST, and
CADD [34].

SIFT determines if a variant is deleterious using PSI-
BLAST to determine conservation of amino acids based on
closely related sequence alignments [43]. PolyPhen-2 uses a
pipeline involving eight sequence based methods and three
structure based methods in order to determine if a mutation
is benign, probably deleterious, or known to be deleterious
[44]. The Likelihood Ratio Test (LRT) uses conservation be-
tween closely related species to determine a mutations func-
tional impact [45]. When three genomes underwent analysis
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by SIFT, PolyPhen-2, and LRT, only 5% of all predicted
deleterious mutations were agreed to be deleterious by all
three methods [45]. Therefore, it has been shown that using
multiple mutational predictors is necessary for detecting a
wide range of deleterious SNVs. FATHMMemploys sequence
conservation within Hidden Markov Models for predicting
the functional effects of protein missense mutation [46].
FATHMMweighs mutations based on their pathogenicity by
the predicted interaction of the protein domain [46].

MetaSVM and MetaLR represent two ensemble meth-
ods that combine 10 predictor scores (SIFT, PolyPhen-2
HDIV, PolyPhen-2 HVAR, GERP++, MutationTaster, Muta-
tion Assessor, FATHMM, LRT, SiPhy, and PhyloP) and the
maximum frequency observed in the 1000 genomes popula-
tions for predicting the deleterious variants [47]. MetaSVM
and MetaLR are based on the ensemble Support Vector
Machine (SVM) and Logistic Regression (LR), respectively,
for predicting the final variant scores [47].

The Variant Effect Scoring Tool (VEST) is similar to
MetaSVM and MetaLR in that it uses a training set and
machine learning to predict functionality of mutations [48].
Themain difference in the VEST approach is that the training
set and prediction methodology are specifically designed for
Mendelian studies [48]. The Combined Annotation Depen-
dent Depletion (CADD) method differentiates itself by inte-
grating multiple variants with mutations that have survived
natural selection as well as simulated mutations [49].

While all of these methods predict the functionality of a
mutation, they all vary slightly in their methodological and
biological assumptions. Dong et al. have recently tested
the performance of these prediction algorithms on known
datasets [47]. They pointed out that these methods rarely
unanimously agree on if a mutation is deleterious. Therefore,
it is important to consider the methodology of the predictor
as well as the focus of the study when interpreting deleterious
prediction results.

3. Computational Methods for
Beyond VCF Analyses

After a VCF file has been generated, annotated, and filtered,
there are several types of analyses that can be performed
(Figure 2). Here we outline six major types of analyses that
can be performed after the generation of a VCF file, with
special focus on WES in cancer research: (i) significant
somatic mutations, (ii) pathway analysis, (iii) copy number
estimation, (iv) driver prediction, (v) linking variants to clin-
ical information and actionable therapies, and (vi) emerging
applications of WES in cancer research.

3.1. Methods to Determine Significant Somatic Mutations.
After VCF annotation, a WES sample can have thousands of
SNVs identified; however, most of them will be silent (syn-
onymous) mutations and will not be meaningful for follow-
up study. Therefore, it is important to identify significant
somatic mutations from these variants. Several tools have
been developed to do this task for the analysis of cancerWES
data, including SomaticSniper [50],MuTect [35], VarSim [51],
and SomVarIUS [52].

SomaticSniper is a computational program that compares
the normal and tumor samples to find out which mutations
are unique to the tumor sample, hence predicted as somatic
mutations [50]. SomaticSniper uses the genotype likelihood
model of MAQ (as implemented in SAMtools) and then
calculates the probability that the tumor and normal geno-
types are different. The probability is reported as a somatic
score which is the Phred-scaled probability. SomaticSniper
has been applied in various cancer research studies to detect
significant somatic variants.

Another popular somatic mutation identification tool is
MuTect [35], developed by the Broad Institute. MuTect, like
SomaticSniper, uses paired normal and cancer samples as
input for detecting somatic mutations. After removing low-
quality reads, MuTect uses a variant detection statistic to
determine if a variant is more probable than a sequencing
error. MuTect then searches for six types of known sequenc-
ing artifacts and removes them. A panel of normal samples
as well as the dbSNP database is used for comparison to
remove common polymorphisms. By doing this, the number
of somatic mutations is not only identified but also reduced
to a more probable set of candidate genes. MuTect has been
widely used in Broad Institute cancer genomics studies.

While SomaticSniper andMuTect require data from both
paired cancer and normal samples, VarSim [51] and Som-
VarIUS [52] do not require a normal sample to call somatic
mutations.Unlikemost programs of its kind,VarSim [51] uses
a two-step process utilizing both simulation and experimen-
tal data for assessing alignment and variant calling accuracy.
In the first step, VarSim simulates diploid genomes with
germline and somatic mutations based on a realistic model
that includes SNVs and SVs. In the second step, VarSim
performs somatic variant detection using the simulated data
and validates the cancer mutations in the tumor VCF. Som-
VarIUS is another recent computational method to detect
somatic variants in cancer exomes without a normal paired
sample [52]. In brief, SomVarIUS consists of 3 steps for
somatic variant detection. SomVarIUS first prioritizes poten-
tial variant sites, estimates the probability of a sequencing
error followed by the probability that an observed variant
is germline or somatic. In samples with greater than 150x
coverage, SomVarIUS identifies somatic variants with at least
67.7% precision and 64.6% recall rates, when compared with
paired-tissue somatic variant calls in real tumor samples
[52]. Both VarSim and SomVarIUS will be useful for cancer
samples that lack the corresponding normal samples for
somatic variant detection.

3.2. Computational Tools for Estimating Copy Number Alter-
ation. One active research area in WES data analysis is the
development of computational methods for estimating copy
number alterations (CNAs). Many tools have been developed
for estimatingCNAs fromWES data based on paired normal-
tumor samples such as CNV-seq [53], SegSeq [54], ADTEx
[55], CONTRA [56], EXCAVATOR [57], ExomeCNV [58],
Control-FREEC (control-FREE Copy number caller) [59],
and CNVseeqer [60]. For example, VarScan2 [61] is a com-
putational tool that can estimate somatic mutations and
CNAs from paired normal-tumor samples. VarScan2 utilizes
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a normal sample to find Somatic CNAs (SCNAs) by first
comparing Q20 read depths between normal and tumor
samples and normalizes them based on the amount of input
data for each sample [61]. Copy number alteration is inferred
from the log

2
of the ratio of tumor depth to normal depth

for each region [61]. Lastly, the circular segmentation (CBS)
algorithm [62] is utilized to merge adjacent segments to call
a set of SCNAs. These SCNAs could be further classified
as large-scale (>25% of chromosome arm) or focal (<25%)
events in the WES data [63].

Recently, ExomeAIwas developed to detect Allelic Imbal-
ance (AI) from WES data [64]. Utilizing heterozygous sites,
ExomeAI finds deviations from the expected 1 : 1 ratio be-
tween an A- and B-allele inmultiple tumor samples without a
normal comparison. Absolute deviation of B-allele frequency
from .05 is calculated and similar to VarScan2; the CBS
algorithm is applied to each chromosomal arm [62]. In order
to reduce the number of false positives, a databasewas created
with 500 (and counting) normal samples to filter out known
AIs. This represents a novel tool to analyze WES for the
detection of recurrent AI events without matched normal
samples.

A systematic evaluation of somatic copy number esti-
mation tools for WES data has been recently published
[63]. In this study, six computational tools for CNAs detec-
tion (ADTEx, CONTRA, Control-FREEC, EXCAVATOR,
ExomeCNV, and VarScan2) were evaluated using WES
data from three TCGA datasets. Using a SNP array as
the reference, this study found that these algorithms gave
highly variable results. The authors found that ADTEx and
EXCAVATOR had the best performance with relatively high
precision and sensitivity when compared to the reference set.
The study showed that the current CNA detection tools for
WES data still have limitations and called for more robust
algorithms for this challenging task.

3.3. Computational Tools for Predicting Drivers in Cancer
Exomes. Cancer is a disease driven by genetic variations and
copy number alterations. These genetic events can be clas-
sified into two classes, “driver” and “passenger” mutations.
Driver mutations are the key mutation that drive the devel-
opment of cancer and provide a survival advantage, whereas
passenger mutations are “by-stander” alterations that happen
to be altered in the primary cells but do not provide a survival
advantage. As the cancer exomes tend to have high muta-
tional burdens, identifying the “driver” mutations from the
“passenger” mutations is one of the key analyses in cancer
research. Several tools have been developed to find driver
mutations including but not limited toCHASM[65], Dendrix
[66], and MutSigCV [67].

CHASM (Cancer-specific High-throughput Annotation
of Somatic Mutations) uses random forest as the machine
learning approach to distinguish the difference between
driver and passenger mutations in cancer [65]. CHASM was
trained on the curated driver mutations obtained from the
COSMIC database (“positive examples”) and synthetic pas-
senger mutations generated according to the background of
base substitution frequencies observed in specific tumor

types (“negative examples”). CHASM can achieve high sen-
sitivity and specificity when discriminating between known
driver missense mutations and randomly generated missense
mutations when tested in real tumor samples. This method
has been one of the popular driver detection prediction tools
for cancer researchers and has been applied in various cancer
genomic studies.

Another common driver mutation tool is MutSigCV
developed to resolve the problem of extensive false-positive
findings that overshadow true driver mutations [67]. As the
size of cancer genomes sequenced has increased implausible
genes (such as TTN) have been falsely reported as being
related to cancer when in fact their large size just makes
the probability they would be mutated by chance increase
[67]. MutSigCV takes into account patient-specific mutation
frequency and spectrum as well as gene-specific background
mutation rates, expression level, and replication time. By
pooling all of this available data into one tool, MutSigCV has
become a standard tool used for driver mutation identifica-
tion in cancer studies.

De novo Driver Exclusivity (Dendrix) is a novel com-
putational tool to determine de novo driver pathways (gene
sets) from somatic mutations in patient data [66]. The main
goal of the Dendrix algorithm is to find gene sets with high
coverage and high exclusivity properties from the somatic
data.The high coverage property assumes most patients have
at least one driver mutation in the gene set, whereas the high
exclusivity property assumes that these driver mutations are
rarely mutated together in the same patient. Two algorithms
were developed in Dendrix, one based on a greedy algorithm
and one based on the Markov Chain Monte Carlo (MCMC)
algorithm, to measure sets of genes that exhibit both criteria.
WhenDendrix was applied to the TCGAdata, the algorithms
identified groups of genes that were mutated in large subsets
of patients and these mutations were mutually exclusive.This
tool provides an opportunity to analyze WES data to identify
driver pathways in cancer genomic studies.

3.4. Methods for Pathway Analysis. After candidate somatic
mutations have been identified; one common type of analysis
is to determine which pathways are affected by these muta-
tions. Common pathway resources and tools used for these
types of analysis include KEGG [68], DAVID [69], STRING
[70], BEReX [71], DAPPLE [72], and SNPsea [73].

KEGG represents one of the most popular databases
for pathway analysis. DAVID is a popular online tool for
performing functional enrichment analysis based on user
defined gene lists. STRING is the largest protein-protein
interactions database for querying and searching for inter-
actions between user defined gene lists. BEReX integrates
STRING, KEGG, and other data sources to explore biomedi-
cal interactions between genes, drugs, pathways, and diseases.
Both STRING and BEReX allow users to perform functional
enrichment analysis and the flexibility to explore the inter-
actions between user defined gene lists by expanding the
networks.

DAPPLE (Disease Association Protein-Protein Link
Evaluator) uses literature reported protein-protein interac-
tions to identify significant physical connectivity among the
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genes of interest [72]. DAPPLE hypothesizes that genetic
variation affects underlying mechanisms only detectable by
protein-protein interactions [72]. SNPsea is another pathway
analysis tool that requires specific SNP data [73]. SNPsea
calculates linkage disequilibriumbetween involved genes and
uses a sampling approach to determine conditions that are
affected by these interactions.

3.5. Computational Tools for Linking Variants to Treatments.
The ability to link variants with actionable drug targets is
an emerging research topic in precision medicine. Databases
such as My Cancer Genome have provided the framework
for these studies (https://www.mycancergenome.org/). My
Cancer Genome provides a bridge between genomic data and
clinical therapeutic treatments. Similarly, ClinVar provides
information on the relationship between variants and clinical
therapy [74]. By collecting both the variants and the clinical
significance related to these variants, ClinVar offers a database
for researchers to explore the significance of sequencing find-
ings in the clinical setting [74]. Pharmacological databases
such as PharmGKB [75], DrugBank [76], and DSigDB [77]
provide the link between drug and drug targets (variants).
For example, by querying a list of variants to one of these
databases, it allows users to identify actionable targets via
enrichment analysis for the repurposing of drugs.

Similarly, the ability to incorporate clinical data into
sequencing studies is vital to the advancement of person-
alized medicine. However, due to the lack of integration
between electronic health records (EHR) andmolecular anal-
ysis, this remains one of the challenges in translating WES
data analysis into clinical practice. Projects such as cBioPortal
provide a framework for incorporating sequencing data with
available clinical data [78]. New methods for addressing this
task are urgently needed to take advantage of the important
applications ofWES data within the clinic in order to advance
precision medicine.

4. WES Analysis Pipelines

WES data analysis pipelines integrate computational tools
and methods described in the previous sections in a single
analysis workflow. Here, we review three recent sequencing
pipelines SeqMule [79], Fastq2vcf [80], and IMPACT [81] that
assimilate some of the tools described in previous sections.

SeqMule stands out in part due to the use of five align-
ment tools (BWA, Bowtie 1 and 2, SOAP2, and SNAP) and
five different variant calling algorithms (GATK, SAMtools,
VarScan2, FreeBayes, and SOAPsnp) [79]. SeqMule contains
at least one feature that performs Pre-VCF analyses to
generate a filtered VCF file. SeqMule also generates an
accompanying HTML-based report and images to show
an overview of every step in the pipeline. Fastq2vcf also
performs the Pre-VCF analyses using BWA as an alignment
tool and variant calling by GATK, UnifiedGenotyper, Haplo-
typeCaller, SAMtools, and SNVer resulting in a filtered VCF
after implementation of ANNOVAR and VEP [80]. Fastq2vcf
can be used in a single or parallel computing environment on
variety of sequencing data.

Both SeqMule and Fastq2vcf pipelines focus on taking
raw sequencing data and converting it into a filtered VCF file.
IMPACT (Integrating Molecular Profiles with ACtionable
Therapeutics) WES data analysis pipeline was developed to
take this analysis a step further by linking a filtered VCF to
actionable therapeutics [81]. The IMPACT pipeline contains
four analytical modules: detecting somatic variants; calling
copy number alterations; predicting drugs against the dele-
terious variants; and tumor heterogeneity analysis. IMPACT
has been applied to longitudinal samples obtained from a
melanoma patient and identified novel acquired resistance
mutations to treatment. IMPACT analysis revealed loss of
CDKN2A as a novel resistance mechanism to the combina-
tion of dabrafenib and trametinib treatment and predicted
potential drugs for further pharmacological and biological
studies [81].

To compare the strengths and weaknesses between these
three WES pipelines, SeqMule allows the use of different
alignment algorithms in its pipeline whereas IMPACT and
Fastq2vcf only utilize BWA as the sequencing alignment
algorithm. SAMtools is the common tool used by IMPACT,
Fastq2vcf, and SeqMule to call variants. In addition, Fastq2vcf
and SeqMule employ GATK and other variant calling algo-
rithms for variants detection. Fastq2vcf and IMPACT both
annotate the variants withANNOVAR. Fastq2vcf also utilizes
VEP and IMPACT utilizes SIFT and PolyPhen-2 as the
primary variants prediction methods. For Post-VCF analysis,
IMPACT pipeline has more options as compared to SeqMule
and Fastq2vcf. In particular, IMPACT performs copy number
analysis, tumor heterogeneity, and linking of actionable
therapeutics to the molecular profiles. However, IMPACT
is only designed to be performed on tumor samples while
SeqMule and Fastq2vcf are designed for any WES dataset.
Therefore, it is advisable for the users to consider the analytic
needs to select the appropriateWES data analysis pipeline for
their research.

As recently discussed by Altman et al., part of the U.S.
Precision Medicine Initiative (PMI) includes being able to
define a gold standard of pipelines and tools for specific
sequencing studies to enable a new era of medicine [82].
Automated pipelines such as these will accelerate the analysis
and interpretation of WES data. Future development of data
analysis pipeline will be needed to incorporate newer and
wider tools tailored for specific research questions.

5. Conclusions

In summary, we have reviewed several computational tools
for the analysis and interpretation of WES data. These
computationalmethods were developed to generate VCF files
from raw sequencing data, as well as tools that perform
downstream analyses in WES studies. Each tool has specific
strengths and weaknesses, and it appears that using several
of them in combination would lead to more accurate results.
Currently, there are still challenges for bioinformaticians at
every step in analyzing WES data. However, the greatest
area of need is in the development of tools that can link
the information found in a VCF file to clinical databases
and therapeutics. Research in this area will help to advance

https://www.mycancergenome.org/
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precision medicine by providing user-friendly and informa-
tive knowledge to transcend the laboratory.
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