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The Pasteurella multocida capsular type A isolates can cause pneumonia and bovine respiratory disease (BRD). In this study,
comparative genomics analysis was carried out to identify the virulence genes in two different virulent P. multocida capsular type
A isolates (high virulent PmCQ2 and low virulent PmCQ6). The draft genome sequence of PmCQ2 is 2.32 Mbp and contains
2,002 protein-coding genes, 9 insertion sequence (IS) elements, and 1 prophage region. The draft genome sequence of PmCQ6 is
2.29 Mbp and contains 1,970 protein-coding genes, 2 IS elements, and 3 prophage regions. The genome alignment analysis revealed
that the genome similarity between PmCQ2 and PmCQ6 is 99% with high colinearity. To identify the candidate genes responsible
for virulence, the PmCQ2 and PmCQ6 were compared together with that of the published genomes of high virulent Pm36950
and PmHNO06 and avirulent Pm3480 and Pm70 (capsular type F). Five genes and two insertion sequences are identified in high
virulent strains but not in low virulent or avirulent strains. These results indicated that these genes or insertion sequences might
be responsible for the virulence of P. multocida, providing prospective candidates for further studies on the pathogenesis and the

host-pathogen interactions of P. multocida.

1. Introduction

Pasteurella multocida (P. multocida) is the etiologic agent
of bovine pneumonia and hemorrhagic septicemia in cattle
which has been estimated to cause huge economic losses. Five
capsule types are routinely identified in P. multocida (A, B,
D, E, and F) and each is generally associated with, but not
completely restricted to, a specific host [1]. P multocida has
the typical characteristics of an opportunistic pathogen that
is affected by various host and pathogen specific determinants
and can survive in the oral cavity and upper respiratory tract
of wild and domestic animals. In both, animals and humans,
P. multocida is often associated with chronic as well as acute
infections that can lead to significant morbidity (manifested
as pasteurellosis, pneumonia, atrophic rhinitis, hemorrhagic
septicemia and/or cellulitis, abscesses, and meningitis) and
mortality, particularly in animals [2, 3]. Nevertheless, pas-
teurellosis is still a relatively uncommon cause of mortality
in human, even though deaths due to pasteurellosis have

increased in recent years in the United States [4, 5], and
pasteurellosis in human is often due to bites or scratches by
cats or dogs [6, 7].

The first complete genome sequence of P. multocida was
Pm?70, isolated from avian species in 2001 [8]. Since then,
the complete or incomplete genomes of 57 P multocida
isolates have been sequenced, including at least ten complete
genomes from the species in the NCBI database. All of
the currently available P. multocida genomes are between
1.43Mbp and 2.44 Mbp in length and comprise a single
circular genome with a G+C content between 36.9% and
41%. The available data were used to identify a number of
important similarities and differences between these strains
and determine their virulence [9].

Several species-specific putative virulence factors, includ-
ing the capsular and virulence-associated genes, have been
proposed to play a key role in the interactions with the
host [10, 11]. P. multocida possesses a number of virulence
factors which include polysaccharide capsule, endotoxins or
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lipopolysaccharide (LPS), outer membrane proteins (OMPs),
fimbriae, exotoxins, multocidins or siderophores, extracel-
lular enzymes, plasmids, and the virulence-associated genes
(tbpA, pfhA, toxA, hgbB, hgbA, Fur, tonB, exbB, hgbB, nanH,
nanB, sodA, sodC, ompA, ompH, oma87, PlpB, fimA, hsf-
1, hsf-2, tadD, and ptfA) [1, 12, 13]. It is speculated that
the virulence factors expressed by P. multocida are likely
to play key roles in pathogenesis. Comparative genomics
provides an effective source for better understanding the
virulence of different isolated strains. In this study, genome
sequencing and comparative genomics analysis were carried
out to investigate the underlying virulence factors of the high
virulent and low virulent bovine P. multocida capsular type A
strains, PmCQ2 and PmCQ6, respectively.

2. Materials and Methods

2.1. Bacterial Strains and Culture Conditions. Two P. mul-
tocida isolates (PmCQ2 and PmCQ6) have been previously
isolated from the fatal pneumonia lungs of feedlot calves
at Gaojiazhen farms in Fengdu (Chongqing, China, lon-
gitude/latitude 107.70/29.89) from 2011 to 2012. Based on
morphological characteristics, biochemical properties, and
16SrRNA gene sequence analysis, the bacteria were identified
as P multocida. Further analysis with PCR amplification of P.
multocida species-specific gene Kmt-1 and serotype-specific
genes hyaD-hyaC, bcbD, dcbE ecb], and fcbD [16] indicated
that the isolates were P. multocida capsular type A, named
as PmCQ2 and PmCQ6, and the virulence of the two strains
determined by LD, in Kunming mice showed that PmCQ2 is
a high virulent strain and PmCQ6 is a low virulent strain with
2.2 x 10° CFU and 114 x 10® CFU, respectively [17]. Isolated
strains were maintained at —80°C in Martin Broth (MB) plus
10% glycerol. PmCQ2 and PmCQ6 were inoculated in 5mL
MB at 37°C overnight with shaking. The concentration was
determined by viable cell counting on Martin agar plates at
37°C for 24 h.

2.2. Genome Sequencing and Annotation. Genomic DNAs of
the two strains were isolated using the Qiagen DNA extrac-
tion kits. Genome sequencing was performed using an Illu-
mina MiSeq platform. A total of 6,394,560 and 525,022,200
paired-end 100 bp reads of each genome were assembled into
7 and 32 contigs for strains PmCQ2 and PmCQ6, respectively.
The sequences of PmCQ2 and PmCQ6 were assembled by
SOAPdenovo [18]. Assemblies were submitted to NCBI for
analysis. Open reading frames (ORFs) were annotated by
searching against the Nr, Swiss-Prot, and COG databases with
manually curation using BLASTP (e-value < le — 5) (Table
Sl in Supplementary Material available online at http://dx.doi
.org/10.1155/2016/4512493). The rRNA and tRNA genes were
identified using RNAmmer [19] and tRNAscan [20], respec-
tively. A comprehensive genome map containing coding and
noncoding genes, COG annotations, and overall G+C con-
tent was plotted using Perl-SVG [21].

2.3. Global Alignment Analysis. MUMmer is ideally suited
for aligning genomes when the genome sequences are very
similar and provides genome-wide sequence comparisons
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to determine the maximum unique matches between two
sequences [22]. Here, MUMmer and BLASTN (e-value of
le - 10) were applied for a detailed collinearity analysis of the
three bovine Pm genomes, PmCQ2, PmCQ6, and Pm36950
at nucleotide sequence levels. Pm36950 is also bovine P
multocida capsular type A strain and was obtained from
the NCBI Genebank and was used as the reference genome
sequence.

2.4. BLAST Score Ratio Analysis. Genes that were unique
to each strain were also identified using BLASTN. The
BLAST score ratio (BSR) method was used to compare
peptide identities within three genomes (PmCQ2, PmCQs,
and Pm36950) using a measure of similarity based on the
ratio of BLAST scores. The output of the BSR analysis enables
global visualization of the degree of proteome similarity
among genomes and enables the genomic synteny (conserved
gene order) between each genome pair to be assessed [23].
Pm36950 was used as a reference genome sequence. The BSR
was calculated by dividing the query score by the reference
score for each reference peptide. Following calculation of
the BSRs, the four quadrants were derived from a BSR
threshold value of 0.4, which was empirically determined
to represent approximately 30% amino acid identity over
approximately 30% of the peptide length and is a commonly
used threshold for peptide similarity [24]. The four quadrants
were determined for each of the query genomes and colored
accordingly: yellow, unique to the reference, PmCQ2 < 0.4,
and PmCQ6 < 0.4; red, common to all three, PmCQ2 > 0.4,
and PmCQ6 > 0.4; Green, common between PmCQ2 and
Pm36950, but absent in PmCQ6, PmCQ2 < 0.4, and PmCQ6
> 0.4; Blue, common between PmCQ6 and Pm36950, but
absent in PmCQ2, PmCQ2 > 0.4, and PmCQ6 < 0.4.

2.5. Virulence Factors. Prophage-associated gene clusters
were identified by PhiSpy [25]. Genomic islands (GIs) are
clusters of genes in prokaryotic genomes of probable horizon-
tal origin. GIs of P. multocida were predicted with IslandPick
[26]. Insertion sequences (ISs) of P. multocida were identified
by searching sequences against the IS Database (Table S1)
that collects all ISs of bacteria and archaea. ISFinder [27]
was implemented to launch BLAST with the e-value le — 10
to search the database. Membrane proteins generally include
transmembrane domains and were predicted by TMHMM
Server 2.0 [28]. Signal peptide, transmembrane domain, GPI-
anchor, and general subcellular localization were predicted
with SignalP v3.0 [29], TMHMM Server 2.0, GPI-SOM
[30], and PSORTD [31] to screen potential secretory proteins
that contain signal peptide and no membrane localization
signals. The virulence factor database (VFDB) is an integrated
and comprehensive online resource for curating information
about virulence factors of bacterial pathogens (Table S1).
Based on homologous analysis, some virulent factors (ISs,
GIs, VE secretory proteins, and membrane proteins) were
obtained in the sequenced strains. In combination with the
potential virulent genes of P. multocida and gene annotation
information, putative virulence genes for each strain were
presented.
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TABLE 1: Genome features of sequenced P. multocida strains.

Strains Capsular type Host Virulence Size (Mbp) Genes References
PmCQ2 A Bovine Highly virulent 233 2,002 This study
PmCQ6 A Bovine Lowly virulent 229 1,970 This study
Pm36950 A Bovine Highly virulent 235 2,182 [14]
PmHNO6 D Swine Highly virulent 2.41 2,292 [15]
Pm3480 A Swine Avirulent 2.37 2,242 NCBI database
Pm70 F Avian Avirulent 2.26 2,090 (8]

3. Results and PmCQ2 and PmCQ6 is 90%, 90%, and 99%, respectively.

3.1. Overview of the P. multocida PmCQ2 and PmCQ6
Genomes. The genome sequences of bothPmCQ2 and
PmCQ6 strains were successively sequenced by Illumina
MiSeq platform. Using Pm36950 as a reference strain,
PmCQ2 genome is 2.32Mbp in size with 39.12% G+C
content, containing 2,000 predicted coding regions, 4 rRNAs
operons, and 49tRNAs. PmCQ6 genome is 2.29 Mbp in
size with 40.09% G+C content, containing 1,969 predicted
coding regions, 1 rRNA operon, and 43 tRNAs. The single
circular genome maps of the two P. multocida genomes were
shown in Figure 1. There are no obvious species-specific
features of the coding density, and the G+C content is highly
conserved. Compared with some other P. multocida strains
carrying multiple plasmids that may either be cryptic or
carry antibiotic resistance genes, both PmCQ2 and PmCQ6
genomes do not contain any plasmids. Taken together, there
are only slightly differences in genome sizes, predicted gene
numbers, and G+C contents between PmCQ2 and PmCQ6.

3.2. COG Classification. The predicted protein sequences
were annotated to various COG categories. Some differences
in protein numbers among COG categories of PmCQ2 and
PmCQ6 were identified (including those listed as protein
numbers for PmCQ2 and PmCQ6, resp.): “energy pro-
duction and conversion” (109 and 111), “amino acid trans-
port and metabolism” (158 and 156), “nucleotide trans-
port and metabolism” (60 and 57), “carbohydrate transport
and metabolism” (165 and 166), “coenzyme transport and
metabolism” (89 and 86), “translation, ribosomal structure,
and biogenesis” (132 and 129), “transcription” (81 and 79),
“replication, recombination, and repair” (111 and 100), “cell
wall/membrane/envelope biogenesis” (145 and 158), “inor-
ganic ion transport and metabolism” (121 and 120), “general
function prediction only” (183 and 181), “function unknown”
(158 and 157), “signal transduction mechanisms” (42 and
44), and “intracellular trafficking, secretion, and vesicular
transport” (38 and 40) (Figure 2).

3.3. Global Alignment Analysis. The colinearity analysis at the
nucleotide level provides information on sequence insertion
or deletion [32]. By aligning the genome at the nucleotide
level, there was no significant differences among the large
segments between high virulent PmCQ2 and low virulent
PmCQ6, and the two strains revealed high colinearity with
Pm36950 (Figures 3(a)-3(c)). Direct comparison of the com-
plete nucleotide sequences using BLAST revealed the simi-
larity between PmCQ2 and Pm36950, PmCQ6 and Pm36950,

PmCQ2 and PmCQ6 showed higher homology as indicated
by matched CDS (Figure 3(d)). By BSR analysis, the protein
sequences shared a high degree of synteny among PmCQ2,
PmCQ6, and Pm36950, using Pm36950 as a reference strain
(Figure 4). However, some unique proteins were identified,
PmCQ2 and PmCQ6 (BLAST score ratio is less than 0.4).
There are 32 unique proteins in PmCQ2 genome (including
transposase 15200, elongation factor Tu-A-1/2, SrfC, IsrR,
TolA, and peptidase B) and only two unique proteins found
in PmCQ6 genome (Pasteurella filamentous hemagglutinin
protein and mercuric transport protein MerT). The relative
chromosomal locations of the unique proteins (red thick
marks) of PmCQ2 and PmCQ6 were shown in Figure 5.

Using a Venn diagram of three bovine P. multocida
strains, the majority of homologous gene groups and unique
gene groups were identified. The unique gene groups were
significantly different among three strains, containing 37, 29,
and 245 gene groups in PmCQ2, PmCQ6, and Pm36950,
respectively (Figure 5).

3.4. Virulence Factors. The pathogenicity of P multocida
is associated with different virulence factors. The major
virulence factors identified in P multocida are capsule
proteins, lipopolysaccharides, membrane proteins, and
secreted proteins. Here, together with genome sequences
of PmCQ2 and PmCQ6, published genome sequences of
high virulent strains (Pm36950 and PmHNO6) and avirulent
strains (Pm3480 and Pm70) from NCBI were selected for
comparative genomics analysis (Table 1). Comparing the
PmCQ2 and PmCQ6 genomes with the complete genome
sequences of Pm36950 (G+CA_000234745.1), PmHNO06
(G+CA_000255915.1), Pm3480 (G+CA_000259545), and
Pm70 (G+CA_000006825.1) using BLAST, a number of
virulence-associated genes were identified that were absent
or present in all of the comparison strains (Table 2).

A number of genes or gene clusters have been implicated
as important for virulence of P. multocida [9]. Some of these
genes encoding putative virulence factors are universally
present in all six P multocida genomes, including genes
encoding prophage, genomic islands, insertion sequences,
virulence factor, secretory proteins, and outer membrane
proteins.

By comparing the high virulent strains (PmCQ2,
Pm36950, and PmHNO06) with low virulent strain (PmCQ6)
and avirulent strains (Pm3480 and Pm70), unique genes
which were correlated with virulence and only presented
in high virulent strains were identified. For instance,
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FIGURE 1: Circular genome maps of PmCQ2 (a) and PmCQ6 (b) from inside to outside indicate the following: Circle 1, G+C skew; yellow
green, G+C skew > 0; purple, G+C skew < 0; Circle 2, G+C content (median represents the above average content, the outer circle is greater
than the average content, and the inner circle is less than the average content); Circle 3, rRNA genes distribution represented in scaffold
sequence; Circle 4, tRNA gene distribution represented in scaffold sequence; Circle 5, open reading frame (ORF) distribution, plus strand;

and Circle 6, multiple scaffold exhibition.
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FIGURE 2: Clusters of Orthologous Group annotations for the genomes of PmCQ2 and PmCQ6. Arabic colon-separated numbers in brackets

indicate matched proteins in PmCQ2 and PmCQé.

insertion sequence (transposase I1S200) only existed
in three high virulent strains, suggesting that IS200
elements are not conserved sequences and do not spread
among all P. multocida strains. IS605 and secreted protein
PmCQ2-2g0088 (ModB) and nonspecific tight adherence
protein D PmCQ2_3g0367 were presented only in PmCQ2
genome (Table 2).

In addition, genomic islands (GIs) are clusters of genes in
prokaryotic genomes and are probable horizontal origin. GIs
of Pm70, Pm3480, Pm36950, and PmHNO06 were predicted
with IslandPick. Homology analysis of these GIs with the
draft genomes of PmCQ2 and PmCQ6 was carried out using
ORTHOMCLL4 (BLAST p value le — 5, percent identity
cutoff 60%, and percent match cutoff 60%). The result
showed that transcriptional regulator PmCQ2_7g0006 and
hypothetical proteins PmCQ2_5¢0013 and PmCQ2_5g0025
are present in high virulent strains (PmCQ2 and PmHNO06)
but absent in low virulent strain PmCQ6 and the avirulent
strains (Pm70 and Pm3480).

Taken together, comparative genomics analysis supplies
essential information for understanding the virulence of
different capsular type (A, D, and F) and different host origin
(bovine, avian, and swine) strains. Five unique genes and
two insertion sequences were identified only in high virulent
strains, providing candidate virulence factors for further
studies on the pathogenesis of different P. multocida strains
(Table 3).

4. Discussion

Moreover, comparative genomic analysis allows the identifi-
cation of core genes and/or disease-specific factors. The first

complete P. multocida genome was sequenced from strain
Pm70 in 2001, from which 104 putative virulence-associated
genes were identified [8]; this facilitated new approaches for
studying the pathogenesis of P. multocida. Until now, the
complete and incomplete genomes of 57 P. multocida have
been sequenced in NCBI database. In this study, two bovine
P multocida capsular type A genomes (high virulent PmCQ2
and low virulent PmCQ6) were sequenced. Comparative
genomics analysis was performed among PmCQ2, PmCQ6,
and four other P. multocida genomes (Pm36950, PmHNO6,
Pm3480, and Pm70) from NCBI. Some virulence genes
were identified among different virulent strains; five genes
and two insertion sequences were only identified in high
virulent strains, which might be responsible for the virulence
differences among high virulent, low virulent, and avirulent
strains.

The genome sequences of high virulent PmCQ2 and
the low virulent PmCQ6 have high similarity, but the
virulence of two strains is significantly different. It could
be speculated that the unique genes may play a key role
in virulence. Compared with PmCQ6, the five genes and
two insertion sequences are predicted virulence-associated
genes in PmCQ2 and other high virulent strains. Further
studies to construct mutant strains targeting these genes
would be of great importance to prove their contributions to
virulence. Besides, PmCQ2 has more than 30 other unique
genes that might also orchestrate the virulence differences
of PmCQ2 and PmCQ6. These genes include recombinase,
phage-related genes, phage N-6-adenine-methyltransferase,
phage terminase, and prophage integrase.

Based on homology analysis, prophage-associated genes,
GIs, ISs, secretory proteins, and membrane proteins were
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FIGURE 3: The global alignment analysis of three bovine Pm capsular type A genomes. Aligned segments are represented as dots or line. The
alignment was generated by the mummerplot script and the Unix program gnuplot. (a) PmCQ2 and PmCQ6 genome sequences are given
on the x- and y-axis, respectively. (b) Pm36950 and PmCQ2 genome sequences are given on the x- and y-axis, respectively. (¢) Pm36950
and PmCQ6 genome sequences are given on the x- and y-axis, respectively. Dot plot indicted the alignment blocks of two genome alignment
sequences; red and blue indicted the forward and the reverse sequence, respectively. (d) Direct comparison of the three nucleotide sequences
using BLAST. The vertical coordinates are the number of genes. Percentage of genetic similarity is indicated by color coding.

screened for different virulence-associated genes among
different virulent strains. Insertion sequences usually only
carry genes of transposon sequences for the transposition
in bacteria and can also induce a variety of genomic
rearrangements; they also play an important role in bacterial
host specificity and virulence [33, 34]. Transposase 1S200
was found in three high virulent isolated strains encoding
the 7 genes (PmCQ2_1g0197, PmCQ2_1g0267, PmCQ2_1g0316,
PmCQ2.1g0378, PmCQ22g0113, PmCQ2.4g0323, and
PmCQ2_4g0359), but IS200 was not present in the low
virulent strains (PmCQ6, Pm70) or the avirulent strain
(Pm3480). The IS200 elements may adapt to different hosts
in closely related genera but stochastic loss can appear in
some low virulent or avirulent strains. According to previous
reports, IS200-related transposons may have already existed

in remote stages of bacterial evolution, such as Salmonellae,
and IS200-based methods have been described for the
identification of certain Salmonella serovars [35]. The
function and host range of transposase 1S200 in P. multocida
still need to be further studied.

PmCQ2_2g0088 has been suggested to encode a subfamily
of ATP-binding cassette (ABC) transporters that have a
possible role in remodeling the cell envelope and entry of the
pathogen into nonphagocytic cells [36]. Bacterial ABC trans-
porters are essential for the uptake of nutrients, including rare
elements such as molybdenum [37]. ABC transporters are
integral membrane proteins that actively transport molecules
across cell membranes [38], and these three proteins are
coded by modA, modB, and modC genes, respectively. The
ModA, ModB, and ModC proteins are very similar in various
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PmCQ2 and PmCQ6 versus Pm36950
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FIGURE 4: The distribution diagram of BLAST score ratio (BSR)
between PmCQ2, PmCQ6, and Pm36950. Pm36950 was obtained
from NCBI and used as a reference genome sequence. The color
coding is as follows: yellow: PmCQ2 < 0.4 and PmCQ6 < 0.4; red:
PmCQ2 > 0.4 and PmCQ6 > 0.4; green: PmCQ2 < 0.4 and PmCQ6
> 0.4; blue: PmCQ2 > 0.4 and PmCQ6 < 0.4.
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FIGURE 5: Venn diagram illustrating the number of putative proteins
associated with each organism and the number shared with the
intersecting organism. Red thick marks on each circle represent the
location of the unique proteins (BLAST score ratio less than 0.4)
on the PmCQ2 and PmCQ6 genome. Chromosomal comparison:
jacinth, PmCQ2; blue, PmCQ6; green, Pm36950.

organisms (Escherichia coli, Haemophilus influenzae, Azoto-
bacter vinelandii, and Rhodobacter capsulatus) [39]. In this
study, PmCQ2_2¢g0088 (ModB) is only present in virulent
PmCQ2 but absent in PmCQ6. PmCQ2_2g0088 contains
a signal peptide and a SBP_bac_1I structural domain. The
SBP-box gene family is specific to plants and encodes a
class of zinc finger-containing transcription factors with a
broad range of functions [40]. However, the function of

International Journal of Genomics

the ModB protein family has not been clearly established;
PmCQ2_2¢0088 might affect the virulence of strain and needs
to be further studied as a candidate virulence factor.

The present study revealed that P. multocida strains carry
different virulence genes which may indicate variation in
the pathogenicity. It could be speculated that the specific
genes of different strains play the most important role
for the difference of pathogenicity. By extensive genomics
and proteomics analysis, the intensive study on virulence
genes provides deeper understanding of host specificity and
pathogenesis and also provides insights into the host-microbe
interactions and the immunologic mechanism, contributing
to the development of novel vaccines.
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