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Summary

Drug resistance in protein targets is an increasingly common phenomenon that reduces the 

efficacy of both existing and new antibiotics. However, knowledge of future resistance mutations 

during pre-clinical phases of drug development would enable the design of novel antibiotics that 

are robust against not only known resistant mutants, but also against those that have not yet been 

clinically observed. Computational structure-based protein design (CSPD) is a transformative field 

that enables the prediction of protein sequences with desired biochemical properties such as 

binding affinity and specificity to a target. The use of CSPD to predict previously unseen 

resistance mutations represents one of the frontiers of computational protein design. In a recent 

study (1), we used our OSPREY (Open Source Protein REdesign for You) suite of CSPD 

algorithms to prospectively predict resistance mutations that arise in the active site of the 

dihydrofolate reductase enzyme from methicillin-resistant Staphylococcus aureus (SaDHFR) in 

response to selective pressure from an experimental competitive inhibitor. We demonstrated that 

our top predicted candidates are indeed viable resistant mutants.

Since that study, we have significantly enhanced the capabilities of OSPREY with not only 

improved modeling of backbone flexibility, but also efficient multi-state design, fast sparse 

approximations, partitioned rotamers for more accurate energy bounds, and a computationally 

efficient representation of molecular-mechanics and quantum-mechanical energy functions. Here, 

using SaDHFR as an example, we present a protocol for resistance prediction using the latest 

version of OSPREY. Specifically, we show how to use a combination of positive and negative 

design to predict active site escape mutations that maintain the enzyme’s catalytic function but 

selectively ablate binding of an inhibitor.
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1 Introduction

Antibiotic resistance is an unfortunate consequence of evolutionary pressures on drug 

targets. In particular, selective pressures from competitive inhibitors that target enzymes 

elicit single nucleotide polymorphisms that give rise to amino acid changes that preserve 

catalytic function in the target but disrupt inhibitor binding. Dihydrofolate reductase 

(DHFR) in Staphylococcus aureus is a clinically important example of this mode of 

resistance. A single amino acid polymorphism in DHFR confers resistance to trimethoprim, 

a commonly prescribed antibiotic (2). This and other drug-resistant strains – collectively 

referred to as methicillin-resistant Staphylococcus aureus (MRSA) – cause pneumonia as 

well as skin, bloodstream, and surgical site infections. Additional mutations in MRSA 

DHFR (SaDHFR) result in even higher levels of drug resistance.

Successfully predicting resistance-conferring SaDHFR mutations before they emerge can 

enable the development of more robust inhibitors. However, because 20 amino acids can 

occur at every residue position, the combinatorially large number of candidate sequences 

that must be evaluated for resistance far exceeds the capabilities of current experimental 

methods. Fortunately, computational structure-based protein design (CSPD) is a practical 

alternative strategy to predict drug resistance over a large set of mutations.

OSPREY (Open Source Protein REdesign for You) (3, 4, 5, 6, 7, 8, 9, 10) is a state-of-the-

art, free, and open-source suite of computational protein design algorithms. To date, a 

number of research groups have successfully used OSPREY to perform biomedically 

important protein designs. For example, we previously used OSPREY to predict escape 

mutations in SaDHFR that confer resistance to a lead inhibitor (11). More recently, we used 

OSPREY to predict escape mutations that grant SaDHFR resistance to a different 

experimental inhibitor, compound 1; we showed that two novel, predicted mutants (V31L 

and V31G) were selected in resistance selection experiments along with an additional 

compensating mutation (F98Y) (1). Additionally, we used OSPREY to alter the specificity 

of Gramicidin S Synthetase A (12, 13), to design epitope-specific HIV antibody probes (14), 

to design peptides to inhibit the interaction between the protein CAL and cystic fibrosis 

transmembrane conductance regulator (CFTR) (15), and to screen inhibitors of a leukemia-

associated protein-protein interaction (16). Furthermore, the Vaccine Research Center 

(VRC) used OSPREY to design HIV antibodies that are easier to induce (17). In (18), we 

collaborated with the VRC to use OSPREY to design broader and more potent anti-HIV 

antibodies. Finally, Bailey-Kellogg and colleagues used OSPREY to optimize stability and 

immunogenicity of therapeutic proteins (19, 20, 21).

OSPREY is based on the following principles:
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a. Accurate modeling of flexibility in the protein (backbone and side-chains) 
and ligand captures conformational changes induced by amino acid 
mutations. Other CSPD algorithms typically represent amino acid side-

chain rotational isomers (rotamers) as discrete points in χ-angle space, 

resulting in sub-optimal design predictions (5, 7). OSPREY overcomes the 

limitations imposed by discrete rotamers by implementing continuous 

rotamers: continuous regions of χ-angle space that more accurately reflect 

empirically-observed side-chain placements (3, 5, 15). In contrast to 

protein designs using discrete rotamers, those using continuous rotamers 

find lower energy conformations and different sequences, leading to more 

accurate biological predictions (5, 7).

b. Ensemble-based design enables more accurate predictions of binding free 
energy. Traditional protein design methods focus on locating the global 

minimum energy conformation (GMEC). However, a protein in solution 

exists not as a single low-energy structure but as a thermodynamic 

ensemble of conformations. Since a thermodynamic ensemble of low-

energy conformations governs protein-ligand binding (22), models that 

only consider the GMEC may incorrectly predict binding (15). OSPREY 

improves upon GMEC-based protein design by using the K * algorithm (3, 

4), which efficiently approximates the association constant, Ka, of a 

protein-ligand complex using structural ensembles. In particular, K * only 

considers the most probable low-energy conformations and discards the 

high energy conformations that are rarely populated by either the protein 

or the ligand.

c. Mathematical guarantees of accuracy. Because CSPD algorithms must 

search vast sequence and conformation spaces, computational complexity 

remains a limiting factor in protein design. Accordingly, CSPD programs 

must rely on a simplified input model, which defines a computationally 

tractable simplification of the protein design space. Briefly, the input 

model consists of the initial protein structure(s), the permitted set of 

mutations to the wild type structure, the allowed protein flexibility, and an 

energy function to rank the generated conformations. Nevertheless, protein 

design remains NP-hard (23). Because of this complexity, heuristic search 

methods based on stochastic optimization, such as Monte Carlo (24, 25), 

are often used. However, these methods cannot guarantee to find the 

lowest energy conformations nor sequences. In contrast, OSPREY uses 

provable algorithms to determine the lowest energy conformations 

satisfying the input model. As a consequence, OSPREY determines 

protein sequences that satisfy the design objective with mathematical 

guarantees of accuracy (up to the accuracy of the input model). Crucially, 

this means that discrepancies between experimental results and predictions 

by OSPREY are attributable solely to errors in the input model; when 

using OSPREY any such discrepancies are substantially easier to resolve 

by making corrections to the input model. On the other hand, the causes of 
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erroneous design predictions are much more difficult to ascertain when 

using heuristic methods.

Below, we describe the specific application of OSPREY to predict novel, viable resistance 

mutations that arise in SaDHFR in response to our novel propargyl-linked antifolate 

inhibitor, compound 1 (Fig. 1A) (1, 26). The combination of positive and negative design (to 

maintain native substrate binding and to abrogate inhibitor binding, respectively) in 

OSPREY is sufficient to predict novel escape mutations in this system (Fig. 1B–C). We use 

this specific example to illustrate the more general problem of predicting resistance in drug 

targets in other systems. These extensions may require the modeling of backbone flexibility 

(6), multi-state specificity (8), faster energy functions (10), or efficient sparse 

approximations (9), all of which are available in OSPREY.

We begin with a detailed description of the input model for OSPREY’s positive and negative 

design steps. The input model consists of 3D structures (determined by nuclear magnetic 

resonance, X-ray crystallography, or homology modeling), the allowable set of mutations, 

protein and ligand flexibility parameters, and an energy function (Fig. 2A–B). To predict 

candidate resistance mutations (i.e., those that bind SaDHFR’s natural substrate but not 

compound 1 (Fig. 1A)), we perform positive (Fig. 2A) and negative (Fig. 2B) designs using 

structures of SaDHFR:dihydrofolate:NADPH and SaDHFR:compound 1:NADPH, 

respectively. Since crystal structures of these complexes were unavailable, we created the 

respective homology models from (2) and PDB ID 3FQC (27). Having constructed these 

models, we considered a sequence space consisting of the most prevalent modes of 

mutational resistance: single nucleotide polymorphisms to active site residues (28). These 

residues are also subject to OSPREY’s flexibility model, which specifies the empirically 

determined set of energetically favorable protein side-chain and ligand rotational isomers in 

a rotamer library (29). For improved prediction accuracy, OSPREY’s continuous rotamer 

model extends this rigid definition of a rotamer to a bounded, yet continuously flexible 

region of side-chain conformation space (5). Ligands (dihydrofolate and compound 1), 

which are also modeled using continuous rotamers, are further allowed rigid body rotational 

and translational degrees of freedom within the active site. Together, the 3D structures, 

allowable mutations, and protein and ligand flexibility parameters define the conformation 

space for all candidate resistant mutants. The fourth component of the input model, a 

computationally-efficient all-atom residue-pairwise energy function, is used to evaluate 

structures in this conformation space. Several energy functions are available in OSPREY (7), 

but usually, and for this example, the energy function consists of the Amber96 (30) energy 

function for van der Waals, electrostatic, and dihedral energies and the EEF1 solvation 

model (31).

Having presented the components of the input model, we now describe the use of OSPREY 

to predict novel SaDHFR escape mutations. For each mutation defined in the input model, 

OSPREY performs a positive design step to predict the mutant’s binding affinity for 

SaDHFR’s natural substrate (dihydrofolate) and a negative design step to predict its affinity 

for compound 1. Mutants with both tight binding affinity for dihydrofolate and poor binding 

affinity for compound 1 are selected as the best candidate mutants. We discuss OSPREY’s 

procedure to predict binding affinity below.
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Positive design and negative design are performed and scored separately for each candidate 

mutant using the iMinDEE (5), A * (3, 32), and K * (3, 4, 15) algorithms in OSPREY (Fig. 

2C). In a pre-processing step, the iMinDEE algorithm (Fig. 2D) efficiently prunes rotamers 

that are provably incompatible with the ensemble of lowest energy conformations. 

Importantly, iMinDEE extends the provable guarantees of the original dead-end elimination 

algorithms (33, 34) to OSPREY’s continuous rotamer model, allowing both biophysically 

accurate protein modeling and an exponential reduction in the size of the conformation 

space. Subsequently, the A * algorithm (Fig. 2E) enumerates the remaining conformations in 

gap-free energetically-increasing order, starting from the global minimum energy 

conformation (GMEC). The K * module (Fig. 2F) of OSPREY approximates a Boltzmann-

weighted partition function, q, from this energetically-ordered ensemble, S, of 

conformations:

where Es is the energy of conformation s ∈ S, T is the temperature in Kelvin, and R is the 

gas constant. To efficiently approximate the full partition function q defined over all 

conformations in S, K * halts A * conformation enumeration when the partial partition 

function q*, computed from the ensemble of lowest energy conformations in S, is provably 

within a factor ε of q. The user specifies ε ahead of time as part of the input model. In 

practice, K * achieves a provably accurate ε-approximation to q using only a small fraction 

of the lowest energy conformations in S. Subsequently K * approximates the association 

constant, Ka, for a protein-ligand complex as the ratio of ε-approximated partition functions 

for the bound and unbound states:

where PL, P, and L represent the protein-ligand complex, the unbound protein, and unbound 

ligand, respectively. For each candidate mutant, separate positive and negative design K * 

scores are computed (Fig. 2G, Top). Since a higher K * score denotes tighter predicted 

binding affinity, a resistant mutant would have a high positive design score (for 

dihydrofolate) and a low negative design score (for compound 1). Therefore, mutants were 

ranked by their ratio of positive to negative design scores. Mutants with both a higher rank 

than the wild type and a good positive design score relative to the wild type were considered 

candidate resistant mutants. Among this set of mutants, a higher ratio of scores indicates a 

greater degree of predicted resistance to compound 1 (Fig. 2G, Middle). On the other hand, 

mutants such as L20F, which have high positive to negative design score ratios but low 

positive design scores, are not considered viable, due to low predicted affinity for 

dihydrofolate. The top-ranked predicted resistant mutants according to our protocol were 

recommended for creation and experimental testing.

In summary, we combined positive and negative protein design with the state-of-the-art 

algorithms in OSPREY to predict viable mutations in SaDHFR that confer resistance to our 
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potent competitive inhibitors (1, 26). Table 1 shows predictions and experimental 

characterizations for wild type SaDHFR (Sa(WT)DHFR) and OSPREY’s four top-ranked 

resistance mutations. Each of these mutants (V31L, V31I, L5I, and L5V) had not only 

higher positive to negative design K * score ratios than Sa(WT)DHFR, but also a comparable 

or tighter predicted binding affinity for dihydrofolate than Sa(WT)DHFR. To test our top 

resistance predictions, we created these SaDHFR SNP mutants using site-directed 

mutagenesis. An evaluation of Michaelis–Menten kinetics confirmed that our top four 

predicted mutant enzymes are catalytically competent, exhibiting small losses in k cat/KM. 

Furthermore, the resistance of our top four mutants, as measured by fold loss in Ki relative 

to the wild type, correlates perfectly with our predicted K * ratio rank (see (1) for details).

Since these predictions were made in (1), we have substantially improved OSPREY’s 

capabilities with the following algorithmic enhancements: improved backbone flexibility 

(6), multi-state specificity (8), fast sparse approximations (9), partitioned rotamers for 

improved energy bounds (35), and a computationally efficient representation of molecular-

mechanics and quantum-mechanical energy functions (10). In the following Materials and 

Methods sections, with this system as an example, we present a protocol to predict the same 

SaDHFR escape mutations using the most recent release of OSPREY. The Methods section 

describes how to install and set up OSPREY (Section 3.1), how to perform positive and 

negative design in OSPREY (Section 3.2), how to predict resistant mutants using OSPREY’s 

positive and negative design scores (Section 3.3.1), and how to visualize the PDB files that 

represent OSPREY’s structural ensemble predictions (Section 3.3.2). Importantly, the 

paradigm described here is applicable to the prediction of novel escape mutations to any 

antibacterial, antiviral, or antineoplastic drug. In all these cases, the combination of positive 

and negative design in OSPREY can be used to model selective pressure by inhibitors on 

other protein targets.

2 Materials

2.1 Operating System Environment

1. An operating system that supports the Java programming language.

2. Java Runtime Environment (JRE) 7.0 or later.

3. Python version 2.7 (required for post-processing scripts).

2.2 Input Files

The input files can be downloaded at: http://www.cs.duke.edu/donaldlab/Supplementary/

mimb2015/OSPREY-V2.2B-MIMB2015.zip and consist of the following:

1. Homology model for positive design: structure of SaDHFR in complex 

with dihydrofolate, SaDHFR:DHF:NADPH (see Notes 1, 2, 3, and 4).

1In this example, we modeled the inputs for both the positive and negative design steps from structures of related ligands bound to 
SaDHFR. Other 3D protein structures (i.e., determined by NMR and X-ray crystallography) are also viable input structures for 
OSPREY.
2A structure of dihydrofolate (DHF) or compound 1 bound to SaDHFR was not available when the original predictions were made. As 
a result, the bound complex of SaDHFR:DHF:NADPH (positive design) was modeled on the coordinates of a single mutant 
Sa(F98Y)DHFR bound to folate and NADPH (2). (The structure upon which the model is based was not deposited in the Protein Data 
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2. Homology model for negative design: structure of SaDHFR in complex 

with compound 1, SaDHFR:compound 1:NADPH (see Notes 1, 2, 3, and 
4).

3. Two expanded amino acid rotamer libraries:

LovellRotamer-wt-pos.dat and LovellRotamer-wt-neg.dat

4. Two generic rotamer libraries for non-amino acids:

GenericRotamers-fol.dat and GenericRotamers-pye.dat

5. Shell scripts necessary to run software.

6. A Python script to analyze the output.

7. Other default data files also found in the OSPREY software package.

2.3 OSPREY Suite of Algorithms

1. OSPREY 2.2 software package, available at http://www.cs.duke.edu/

donaldlab/osprey.php

2.4 Other Software

1. PyMOL 1.6 or later, available at http://www.pymol.org/

2. AmberTools (see Note 3), available at http://ambermd.org/AmberTools14-

get.html

3 Methods

3.1 OSPREY Installation

1. Download the OSPREY version 2.2 suite of protein design algorithms 

(Section 2.3.1).

Bank.) The structure for SaDHFR:compound 1:NADPH (negative design) was modeled using the bound structure of a related 
SaDHFR inhibitor (PDB ID 3FQC, (27)).
3It is often necessary to alleviate steric clashes in the input structures prior to running OSPREY. This is achieved by performing an 
energy minimization step using AmberTools (See Materials Section 2.4.2). This process is detailed in the Antechamber tutorial: http://
ambermd.org/tutorials/basic/tutorial4b/
4To parameterize a non-protein compound in the input structure into an OSPREY-compatible format, replace the antechamber 
command in the Antechamber Tutorial with the following command:

 # antechamber -i x.pdb -fi pdb -o x.prepi -fo prepi -c bcc -s 2 

and append the contents of output file x.prepi (where x is the base name of the .pdb file containing only the coordinates of the non-
protein compound), starting from This is a remark line, to the file all_nuc94_and_gr.in, which is part of 
OSPREY’s input model. Next, create a file named

 GenericRotamers.dat 

to store rotamers for the compound. To determine rotamers for the compound, open the structure in Pymol and use the Wizard > 
Measurement tool in PyMOL (see Materials Section 2.4.1). Add rotamers in the format specified in the OSPREY manual (see 
Note 8). Reference this file in System.cfg using the grotFilei keyword. 
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2. After downloading the OSPREY software package from the above source, 

unzip the file to a desired location using the following command:

 # tar -xvfz OSPREY.tar.gz 

3. Next, add the third-party libraries provided with OSPREY to your 

classpath:

 # libpath=/whatever/OSPREY/lib # export CLASSPATH=$CLASSPATH:

$libpath/architecture-rules-3.0.0-M1.jar:$libpath/commons-

logging-1.1.1.jar:$libpath/colt-1.2.0.jar:$libpath/commons-

math3-3.0.jar:$libpath/commons-beanutils-1.6.jar: $libpath/

jdepend-2.9.1.jar:$libpath/commons-collections-2.1.jar:

$libpath/joptimizer.jar:$libpath/commons-digester-1.6.jar:

$libpath/junit-3.8.1.jar: $libpath/commons-io-1.4.jar:

$libpath/log4j-1.2.14. jar:$libpath/commons-lang-2.5.jar:

$libpath/xml-apis-1.0.b2.jar 

4. Now, change directories to the OSPREY directory and create a new 

directory, bin.

5. Finally, change directories to the src directory and run the following 

command:

 # javac -d ../bin *.java 

3.2 Design

In this section, we describe how to run positive and negative design in OSPREY. Nine active 

site residues were chosen to be continuously-flexible within 9° of the rotamers in the 

Penultimate rotamer library (29) and mutable up to one nucleotide substitution: 

L5{L/V/I/R/Q}, V6{V/A/L/I/F/D/G}, L20{L/V/I/F/S}, L28{L/V/M/W/F/S}, 

V31{V/A/I/F/L/D/G}, T46{T/A/R/I/K/S}, I50{I/V/L/M/F/N/S/T}, L54{L/R/Q/V}, and 

F92{F/V/L/I/Y/S/C}. We also apply this flexibility model to rotamers of the ligands (i.e. 

dihydrofolate and compound 1), whose motions also include rigid body translations and 

rotations in the active site. To empirically determine a ligand rotamer library for compound 

1, we began by modeling roughly 10,000 of its binding conformations to SaDHFR. Next, we 

used OSPREY’s MinDEE/A* algorithm (3) to determine the lowest energy binding 

conformations beneath a steric threshold. This process yielded 1,660 binding poses for 

compound 1 (see GenericRotamers-pye.dat in the OSPREY negative design directory 

in Section 3.2.1). The collection of mutable and flexible residues, including the ligands, 

resulted in a total of 47 sequences. This set of sequences is used in the following positive 

and negative designs.

3.2.1 Obtaining Input Files for Design

1. Download the required files for this section, described in Section 2.2.

2. Extract the file to create the project directory:
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 # unzip OSPREY-V2.2B-MIMB2015.zip 

The base directory created is OSPREY-V2.2B-MIMB2015. Its sub-directory, OSPREY-

INPUT, is the parent directory for the positive design directory, OSPREY-INPUT/pos-

design, and the negative design directory, OSPREY-INPUT/neg-design.

3.2.2 Running Positive Design in OSPREY—This section describes how to run the 

provided scripts (Section 2.2.5) to complete the positive design. The PDB file pos-

design.pdb (Section 2.2.1) consists of all amino acids within an 8 Å radius of 

dihydrofolate, DHF (see Note 5).

1. Change to the directory where the files for positive design are located:

 OSPREY-INPUT/pos-design 

2. Run the provided shell script for positive design.

 # ./runPositiveDesign.sh 

3.2.3 Running Negative Design in OSPREY—This section describes how to run the 

provided scripts (Section 2.2.5) to complete the negative design. The PDB file neg-

design.pdb (Section 2.2.2) consists of all amino acids within an 8 Å radius of compound 

1, PYE (see Note 5).

1. Change to the directory where the files for positive design are located:

 OSPREY-INPUT/negative-design 

2. Run the provided shell script for negative design.

 # ./runNegativeDesign.sh 

3.3 OSPREY Output

3.3.1 Predicting Resistance from the Ratio of OSPREY Positive to Negative 
Design Scores—This section describes how to rank sequences by their predicted 

resistance to compound 1. A python script is provided to complete this process (Section 

2.2.5).

1. Move to the OSPREY-INPUT directory.

2. Run the provided Python script:

 # python summarizeResults.py 

Each row of output is formatted as follows: mutation, positive design score (log scale), 

negative design score (log scale), and ratio of design scores (log scale). The mutations are 

ordered by increasing order of score ratios. So, the mutation in the last line of the output has 

the highest positive to negative design ratio. (See Note 6 for the interpretation of a positive 

5To create an 8 Å shell of a protein for your own designs, use PyMOL (see Materials Section 2.4.1).
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or negative design K * score of 0.) From this list, the top candidate resistant mutants are 

those with both a high positive design score (i.e. high predicted binding affinity for 

dihydrofolate relative to the wild type) and a high positive to negative design score ratio (see 

Note 7).

3.3.2 Structural Analysis of OSPREY Output—The script in Methods Section 3.3.1 

ranks sequences by increasing order of positive to negative design score ratios. Candidate 

resistant mutants, which have high positive design scores and high score ratios, can be 

identified visually in this list. Below, we describe how to view the lowest energy structures 

from each sequence.

After completing positive and negative design (Methods Sections 3.2.2 & 3.2.3) OSPREY 

outputs the PDB files for the top ten conformations for each sequence. This section 

describes these PDB files and how to view them. Each PDB file name takes on one of the 

following formats:

              n_aaaaaaaaa_0_m.pdb n_X_1_m.pdb. n_aaaaaaaaaX_2_m.pdb 

            

where n is an index assigned to each sequence and m is a three digit number ranking one 

sequence’s set of ten conformations from lowest to highest energy. Each string of a’s 

corresponds to an amino acid sequence (e.g., LVLLVTILF). X represents the non-amino acid 

ligand (i.e., dihydrofolate or compound 1). The first format corresponds to SaDHFR 

unbound to the ligand (either dihydrofolate for the positive design or compound 1 for the 

negative design). The second format corresponds to the ligand unbound to SaDHFR. Finally, 

the third format corresponds to SaDHFR in complex with the ligand.

1. Change directories into OSPREY/pos-design/ksConfs This directory 

contains all of the PDB files output for the positive design (Methods 

Section 3.2.2).

2. Open and view the PDB files using PyMOL (Materials Section 2.4.1). 

Several files can be opened and viewed simultaneously.

3. Change directories into OSPREY/neg-design/ksConfs This directory 

contains all of the PDB files output for the positive design (Methods 

Section 3.2.3).

6Resistance (i.e. positive to negative design ratio) rankings in which either the positive or negative design K * score is 0 are handled 
specially. Mutations for which only the negative design score is 0 receive a score ratio of infinity. Mutations for which either only the 
positive design score is 0 or both positive and negative design scores are 0 receive a design ratio of 0. 
7A candidate resistant mutant has both a high positive design score (indicating of high predicted binding affinity for dihydrofolate) 
and a low negative design score (denoting low predicted binding affinity for compound 1). Mutants with a high positive to negative 
design score ratio but a low positive design score (such as L20F) relative to the wild type are not considered viable, as they are 
predicted to bind dihydrofolate poorly.
8To perform your own protein designs using OSPREY, please refer to the user manual found in the OSPREY software download from 
Sections 2.3 & 3.1.
9The results presented in (1) were performed using OSPREY 1.1a. This can lead to slightly different results than those in the newer 
version of OSPREY. To reproduce the results in (1) exactly, please download the code from: http://www.cs.duke.edu/donaldlab/
Supplementary/mimb2015/OSPREY-V2010-MIMB2015.zip
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4. Open and view the PDB files using PyMOL (Materials Section 2.4.1). 

Several files can be opened and viewed simultaneously.
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Figure 1. 
Positive design to maintain SaDHFR:dihydrofolate binding and negative design to 

destabilize SaDHFR:compound 1 binding using OSPREY. (A) Compound 1, an 

experimental SaDHFR inhibitor. (B) OSPREY positive design objective. OSPREY predicts 

mutations (pink) of SaDHFR (gray) that maintain binding of dihydrofolate (green) in the 

SaDHFR active site. These mutations allow SaDHFR to preserve its catalytic activity. The 

co-factor NADPH is shown in black. (C) OSPREY negative design objective. OSPREY 

predicts mutations that destabilize the binding of an inhibitor (compound 1) to SaDHFR. 

OSPREY predicts SaDHFR candidate escape mutations that bind dihydrofolate but 

selectively disrupt binding of compound 1.
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Figure 2. 
Processing of positive and negative design input models in OSPREY. (A) Input model for 

positive design. The 3D structure is a model of SaDHFR bound to dihydrofolate and 

NADPH. (B) Input model for negative design. The 3D structure is a model of SaDHFR 

bound to compound 1 (Fig. 1A) and NADPH. (C) Pruning, search, and ensemble scoring 

algorithms in OSPREY. (D) iMinDEE continuous rotamer pruning removes rotamers that 

provably do not belong to the ensemble of lowest energy conformations. (E) A * 

conformation enumeration generates an ensemble of conformations in a gap-free, 

energetically increasing order. (F) K * ensemble scoring approximates Boltzmann-weighted 

partition functions for the bound and unbound states and subsequently approximates the 

association constant, Ka, with mathematical guarantees of accuracy relative to the input 

model. (G) Prediction of resistance mutations in OSPREY. (Top Left) Positive design K * 

scores, , generated by OSPREY for each sequence. (Top Right) Negative design K * 

scores, , generated by OSPREY for each sequence. (Middle) A ratio of the positive 

design score to the negative design score, , for each sequence. (Bottom) Sequences 

are sorted in decreasing order of K * score ratios. The top predicted mutants, which have the 

highest ratio of scores, are evaluated experimentally.
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