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Abstract
The flight performance of birds is strongly affected by the dynamic state of the 
atmosphere at the birds’ locations. Studies of flight and its impact on the movement 
ecology of birds must consider the wind to help us understand aerodynamics and bird 
flight strategies. Here, we introduce a systematic approach to evaluate wind speed 
and direction from the high-frequency GPS recordings from bird-borne tags during 
thermalling flight. Our method assumes that a fixed horizontal mean wind speed 
during a short (18 seconds, 19 GPS fixes) flight segment with a constant turn angle 
along a closed loop, characteristic of thermalling flight, will generate a fixed drift for 
each consequent location. We use a maximum-likelihood approach to estimate that 
drift and to determine the wind and airspeeds at the birds’ flight locations. We also 
provide error estimates for these GPS-derived wind speed estimates. We validate our 
approach by comparing its wind estimates with the mid-resolution weather reanalysis 
data from ECMWF, and by examining independent wind estimates from pairs of birds 
in a large dataset of GPS-tagged migrating storks that were flying in close proximity. 
Our approach provides accurate and unbiased observations of wind speed and 
additional detailed information on vertical winds and uplift structure. These precise 
measurements are otherwise rare and hard to obtain and will broaden our understanding 
of atmospheric conditions, flight aerodynamics, and bird flight strategies. With an 
increasing number of GPS-tracked animals, we may soon be able to use birds to inform 
us about the atmosphere they are flying through and thus improve future ecological 
and environmental studies.

K E Y W O R D S

animal movement, environmental drivers, meteorological measurements, migration

1Department of Migration and Immuno-
Ecology, Max Planck Institute for 
Ornithology, Radolfzell, Germany
2Department of Biology, University of 
Konstanz, Konstanz, Germany
3Department of Civil, Environmental and 
Geodetic Engineering, The Ohio State 
University, Columbus, OH, USA

Correspondence
Gil Bohrer, Department of Civil, 
Environmental and Geodetic Engineering, 
The Ohio State University, Columbus, OH, 
USA.
Email: bohrer.17@osu.edu

Funding information
German Aerospace Center (DLR); Institute 
of Meteorology and Climate Research 
Atmospheric Environmental Research (IMK-
IFU) MICMoR visiting researcher fellowship; 
Jacob and Lena Joels Memorial Foundation 
Visiting Professor in the Life and Medical 
Sciences Fund; Hebrew University in 
Jerusalem; US National Science Foundation, 
Grant/Award Numbers: IOS-1145952, 
1564380; NASA ABoVE, Grant/Award 
Number: NNX15AT91A

O R I G I N A L  R E S E A R C H
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Martin Wikelski1,2 | Andrea Flack1,2

1  | INTRODUCTION

The world that animals traverse is constantly changing. Whether it is 
ocean currents, vegetation greenness, or wind patterns, these dynam-
ics of the environment shape animal movement decisions at global and 
regional scales (Berthold, 2001; Nathan et al., 2008). A variety of stud-
ies explore the interaction between the environment and movement 

decisions using large-scale remote sensing, climatic, and land use 
datasets (Bartlam-Brooks, Beck, Bohrer, & Harris, 2013; Bohrer, Beck, 
Ngene, Skidmore, & Douglas-Hamilton, 2014; Bohrer et al., 2012; 
Dodge et al., 2014; Dragon, Monestiez, Bar-Hen, & Guinet, 2010; 
Sapir et al., 2011). Flying animals in particular can increase their ground 
speed, or reduce travel distance and energetic costs by responding to 
the changing atmosphere (Chapman et al., 2010; Deppe et al., 2015; 
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Flack et al., 2016; Gill et al., 2009; Kranstauber, Weinzierl, Wikelski, 
& Safi, 2015; Schmaljohann, Liechti, & Bruderer, 2009). In particular, 
large, long-distance migrants have served as model systems to explore 
the relationship between flight performance and weather conditions 
(Chevallier et al., 2010; Klaassen, Strandberg, Hake, & Alerstam, 2008; 
Shamoun-Baranes et al., 2006; Vardanis, Klaassen, Strandberg, & 
Alerstam, 2011).

Here, we introduce a method to estimate wind speed and direction 
from thermalling behavior of birds. We apply and test it using freely 
migrating white storks (Ciconia ciconia). Thermalling refers to a ste-
reotypic flight maneuver during which birds gain altitude by circling 
in columns of warm rising air (i.e., “thermals”). The energy gained from 
climbing thermals depends on the strength and depth of the avail-
able thermal uplift (Shamoun-Baranes, Leshem, Yom-Tov, & Liechti, 
2003). When examining a GPS track, the records represent the sum 
of the animal movement vector (heading and speed) and the wind 
vector (Richardson, 1990). In a hypothetical wind-free environment, 
high-resolution records of thermalling behavior will describe short 
track segments in the shape of closed loops representing the bird’s 
movement relative to the air. In real-world environments, wind adds 
a component to the movement vectors and thus distorts these closed 
loops in the resulting GPS track that depicts the movement relative to 
the ground (Figure 1). Using these distorted ground-movement tracks, 
it is possible to reconstruct both the air movements of birds and the 
movements of the air itself, that is, the wind. Previous studies have 

used patterns of thermal soaring to estimate lateral winds displacing 
birds and gliders (Ákos, Nagy, & Vicsek, 2008; Lerch, 2004; Treep et al., 
2016). Here, we further develop this approach in a systematic fashion: 
We use maximum-likelihood optimization to minimize the error in wind 
estimate over short segments representing individual thermal loops; 
we derive and validate error estimates; follow explicit assumptions 
about the bird’s flight patterns and identify their potential effects on 
the error or bias of the resulting wind estimate; and point out how our 
method can be generalized to other behavioral patterns and tracking 
technologies. We use a large tracking study of storks and data from an 
atmospheric reanalysis to validate our approach. Finally, we demon-
strate that the resulting observations can be useful both for studying 
the structure of the atmosphere and the flight behavior of storks.

2  | MATERIAL AND METHODS

2.1 | Wind estimation theory—general approach

Consider a bird flying horizontally at a constant autocorrelated airspeed 
in a spatially uniform and temporally constant wind field. The instanta-
neous ground speed of such a bird depends on its heading relative to 
the wind. Thus, wind causes variation in ground speed, corresponding 
with the changes in heading. For example, flight at constant airspeed 
at a direction directly opposite to the wind will result in lower ground 
speed compared with flight in the same airspeed but along the wind 

F IGURE  1 Airspeed, wind speed, and the resulting ground speed derived from a GPS track. (a) In idealized windless conditions, the track of a 
bird circling through a thermal column, as illustrated . (b) The vectors that connect subsequent positions correspond to the individual movement 
steps of the bird, or, if we divide it by the time for each step, they represent the bird’s airspeed vector. (c) Side wind (black vectors) displaces 
the bird in each movement step. (d) When combining the bird’s movement vectors (airspeed) and the wind vectors (wind speed), we obtain the 
movement steps of a bird flying under the influence of side wind (ground speed). (e) An observed GPS track (the stork “Lucky.” Sept 1, 2014, 3 
p.m.) of a stork, which is displaced by wind while circling. (f) The same track compensated for wind by subtracting a constant wind displacement 
vector per circle. In all panels, color gradient (yellow to red) indicates time from the beginning of the thermalling event

50 m 50 m

(a) (b) (c) (d)

(e) (f)
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direction. Hence, theoretically, if ground speed is known and there are 
sufficient changes in flight heading (but not flight airspeed), we can 
determine the wind speed and direction from the bird’s flight track. 
In the example above, the wind velocity component in the axis paral-
lel to the flight can be determined by simply subtracting the ground 
speeds of the two flight tracks in opposing directions. More generally, 
if we can assume that over a short track segment both airspeed and 
wind speed are constant, then changes in flight heading will generate 
variation in the apparent ground speed. We can determine the wind 
speed as the vector that when subtracted from each ground speed 
vector will result in constant airspeed (Figure 1). In reality, however, 
air and wind speed are not constant, and location and speed measure-
ments recorded through GPS include an error. Therefore, it is impos-
sible to accurately determine wind speed from a single GPS measure-
ment. Nevertheless, here we show that it can be approximated using a 
maximum-likelihood approach, which minimizes the residual variance 
of speed over short track segments during thermalling.

To do so, we assume that during thermalling a flying stork tries 
to move in a circle with a constant airspeed. While it may get pushed 
away from that constant circling speed by small-scale turbulent air 
movements, it will gradually return to it.

2.2 | Formulation

We define G=

[
���⃗g�
1
,… ,���⃗g�

n

]
 as a sample of an observed sequence of 

GPS instantaneous ground speed vectors measured on a flying bird 
at a constant sampling rate Δt (In this study, we used Δt = 1 [s]) and 
locations i. The observed ground speed vectors consist of x- and  
y-components, ��⃗g�

j
= (g�

i,x
,g�
i,y
), representing the locations along the east–

west and north–south directions, respectively. We assume that 
→

g′
i
 

include some independent measurement errors that follow a circularly 
symmetric bivariate normal distribution with variance σ2

g
. Thus, the true 

ground speed vectors are defined as: ��⃗gi= ��⃗g�
i
−N(σ2

g
I), where I is the 2 × 2 

identity matrix. We further assume a constant horizontal wind vector, 
w⃗= (wx,wy). By definition, the bird’s true air-speed vector, 

→

ai= (ai,x,ai,y) is:

The scalar airspeed, ai, is defined using the vector-length operator, that 
is, ai=‖��⃗ai‖. We model ai as a first-order autoregressive process, AR(1), 
with mean, a, representing the bird’s assumed constant airspeed, and 
unexplained and small-scale variance due to turbulence, σ2

a
, such that 

ai = (1−ϕ)a + ϕai−1 + N(σ2
a
), where N is a mean-zero Gaussian ran-

dom distribution and ϕ (0 ≤ ϕ ≤ 1) is an autocorrelation coefficient. 
Substituting the observed ground speed vector into the definition of 
airspeed, we obtain: 

By reorganizing equation (2) and assuming that the GPS error σg 
is small relative to ai, we obtain the following approximation for air-
speed, ãi:

Thus, we can approximate the true airspeed by ãi, an AR(1) process 
with mean a, unexplained variance σ2≡σ

2
a
+σ

2
g
(1−ϕ

2), and autocor-
relation coefficient, ϕ, such that

We can derive the negative log likelihood of observing the 
sequence of GPS ground speed vectors, G, given wind w⃗ as

where constant terms were omitted. By setting the derivative of the 
likelihood function with respect to the wind speed vector approaching 
zero, we obtain the maximum-likelihood estimator for mean airspeed:

Using this estimator and applying Bessel’s correction for sample 
size, that is, multiplying by 

[
n∕

(
n−1

)]
, and assuming that ã≈a, we get 

an estimator for the variance term in equation 5:

and obtain:

Because the first two terms and the factor n/σ2 are independent of 
the wind speed vector, we can calculate the likelihood estimate for the 
unknown wind vector by minimizing the unexplained variance in airspeed 
s2

(
G,w⃗

)
:

By re-inserting the estimated wind vector ŵ into the expression 
s2

(
G,w⃗

)
, we get an estimate for the variance in airspeed from the 

observed variance in the wind speed estimates:

which we insert into the expression for the likelihood function 
(equation 8) to obtain

(1)��⃗ai≡ (��⃗gi− w⃗).

(2)��⃗ai=
��⃗g�
i
−N(σ2

g
I)− w⃗

(3)ai=
‖‖‖(
��⃗g�
i
− w⃗)−N(σ2

g
I))
‖‖‖≈ ãi+N(σ2

g
).

(4)

⎡
⎢
⎢
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ãi= (1−ϕ)a+ϕ�ai−1+N(σ2)

var(ãi)=
σ
2

1−ϕ2

(5)

l(G,w⃗)=− log
(
P(�α1))

∏n

i=2
P
(
ãi|�ai−1

))

=
1

2

{
nlog(σ2)− log (1−ϕ

2)

+
1

σ2
[(α̃1−a)2(1−ϕ

2)+
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i=2
(α̃i−

[
(1−ϕ)a+ϕ�αi−1

]
)2]

}

(6)

â=
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1+ (n−2)(1−ϕ)+1
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(7)
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(9)
ŵ=argmin

w⃗

[s2(G,w⃗)].

(10)σ̂
2
= s2[G,�w]
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By taking the inverse of the Hessian of this expression with respect 
to ŵ, we get the covariance matrix which characterizes the error of the 
wind estimate ŵ:

2.3 | Calculation of flight characteristics

Utilizing the wind estimates (equation 9), we can further calculate 
various properties of flight and airspeed. In order to calculate those 
properties of the kth GPS fix, we choose an integer m and con-
sider a track segment of length n = 2m + 1 centered at that kth fix 
(G=[g⃗k−m ,… , g⃗k,… , g⃗k+m]). All angles are in radians and normalized to 
[
−π,π

]
.

For each track segment, we obtain mean airspeed â (equation 6), 
by setting w⃗= ŵ; the magnitude of the unexplained deviation in air-
speed is calculated as 

√
s2(G,ŵ) (equation 10). Also for each segment 

around point k, mean vertical ground speed, gzk, is calculated as

where zk is the GPS height at point k. Change in heading between two 
consecutive GPS fixes, Δθi, is defined as the angle between the air-
speed vectors (g⃗i− ŵ) and (g⃗i+1− ŵ); the cumulative change in heading 
can then be defined as Δθcum≡∑k+n−1

i=k−n
Δ�i. Assuming that the bird is 

flying in a perfect circle at constant airspeed, we calculate the mean 
angular rate in radians, ω, the circle radius, r, and the time per full cir-
cle, Δtc, are:

Using the fact that in a balanced turn the centripetal acceleration 
is âω= (L∕m) sin (β) and the gravitational acceleration g= (L∕m) cos (β), 
where L is the lift, m the bird mass, and β the banking angle, we obtain 
estimates for the banking angle:

and the lift acceleration:

We use the estimated airspeed â, the lift acceleration L/m, and 
default aerodynamic properties of storks (Eder, Fiedler, & Neuhäuser, 
2015) to calculate the drag acting on the bird and its sink rate rela-
tive to the air. We define drag coefficient, CD, induced drag coefficient, 
CD,i, the noninduced drag coefficient, CD,ni, lift coefficient, CL, and total 
drag, D, following (Eder et al., 2015):

where K is the induced drag factor, AR is the wing aspect ratio, ρ the air 
density, and S the wing area. To obtain a rough estimate of total drag, 
D (equation 20, Pennycuick, 2008), we used default parameters for 
soaring storks from (Eder et al., 2015): CD,ni = 0.033, K = 0.81, S = 0.57 
[m/s2], AR = 7.21, m = 3.63 [kg] and ρ = 1.15 [m/s2].

The loss rate of kinetic energy caused by drag is Ekin = Dâ. This 
means that a bird maintaining constant airspeed has to gain kinetic 
energy from potential energy and consequently sinks relative to the 
surrounding air mass at a rate of

where ga = 9.81 [m/s2] is Earth’s gravity and mga is the bird’s weight. By 
subtracting az from the mean vertical ground speed, we yield an esti-
mate of the mean vertical wind speed, or thermal strength, ŵz= âz−g�

z
.

Wind estimation was performed in Java™ using the Nelder–Mead 
Simplex optimization algorithm (Nelder & Mead, 1965) and the numer-
ical derivation procedure implemented in the apache-commons-
math-3 package, version 3.4.1. All other statistics were calculated in 
R, version 3.2.0 (https://www.r-project.org/).

A library of functions in R that calculates wind speed, thermal 
strength, uplift strength, and thermalling circle radius using our newly 
introduced method is available through the R package “moveWind-
Speed” (https://cran.r-project.org/package=moveWindSpeed), which 
supplements the R “move” package (https://cran.r-project.org/web/
packages/move/index.html).

2.4 | Data selection

Our wind estimation method depends on changes in flight heading. 
In theory, it is not limited to circular thermal soaring, but will work 
for any observation period during which a consecutive sequence of 
more than one point represents a movement pattern with a constant 
turn angle.

Here we leveraged on the fact that during thermalling flight we 
can assume that birds turn at a constant rate at least over a single 
thermalling “circle.” We therefore restricted the analysis to circling 
events in a thermal, that is, birds flying in either closed or stretched 
circles (illustrated in Figure 1) while having a positive mean upward 
vertical velocity. First, we identified circling events using a preliminary 
wind estimate that ignores the effects of temporal autocorrelation 
(ϕ = 0). We selected sequences of 19 subsequent GPS points sampled 
at 1 [Hz] (18 [s] is the 95% quantile of observed time per full circle, 
16.32 [s], plus a small margin. See Table 1). We then determined the 
turning angles between these subsequently wind-compensated speed 

(11)
l(G,w⃗)=

1

2

{
nlog(σ̂2)− log (1−ϕ

2)+
n

σ̂2
s2(G,w⃗)

}

(12)
∑

=

(
n

2σ̂2

d2

dw⃗2
s2(G,ŵ)

)−1

(13)gzk =

(
zk+m−zk−m

)
(
n−1

)
Δt

(14)ω=

Δθcum

Δtcum
; r=

â

ω
; Δtc=

2π

ω

(15)β= tan−1
(
âω

g

)

(16)L

m
=

√
g2+ â2ω2

(17)CD=CD,i+CD,ni,

(18)CD,i=

KC2
L

πAR

,

(19)CL=L
2

ρâ2S
,

(20)D=CD

ρâ2S

2
,

(21)âz=
Dâ

mga

https://www.r-project.org/
https://cran.r-project.org/package=moveWindSpeed
https://cran.r-project.org/web/packages/move/index.html
https://cran.r-project.org/web/packages/move/index.html
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vectors. A track segment was classified as a circling event when all 
angles had the same sign and the sums of angles before and after the 
central point each exceeded 180°. After removing sequences that 
were overlapping in time, we obtained 24,495 circling events from 60 
storks, representing 170 hr of circling time.

Next, to determine a nontrivial autocorrelation coefficient ϕ of 
those 24,495 circling events, we calculated the log likelihood of ϕ as 
the sum of the maximum log likelihoods and maximized over ϕ. We 
obtained an estimate of ϕ̂ = 0.47. The average log likelihood across all 
circling events for ϕ=ϕ̂ was 1.94 points higher than for ϕ = 0. Using 
ϕ=ϕ̂ (instead of ϕ = 0), we re-evaluated our classification of circling 
events, resulting in 24,495 circling events (i.e., 20 previously classified 
circling events were rejected). Finally, we estimated wind speed, air-
speed, vertical speed, circling radius, time per full circle, and banking 
angle for each circle (see Methods for details and Table 1 for a sum-
mary of the results).

2.5 | Validation of wind estimates

Our wind estimate depends on the assumption of independent, 
random, small-scale airspeed variation. However, if this assumption is 
false, our estimates would be biased. For example, airspeed variations 
within a thermalling circle may become highly autocorrelated in a way 
that will bias our estimate if the bird varied its airspeed within each 
circle depending on its flight direction relative to the wind. To evaluate 

the accuracy of our estimates and the extent to which it was affected 
by variation of flight behavior within a thermalling circle, we compared 
the estimated wind conditions of two birds flying closely together 
within the same thermal. Next, we checked for behavioral adjustments, 
which could violate the assumptions of our model (e.g., variation of 
flight speed, or banking angle as a function of direction within each 
thermalling circle) by looking at the wind properties of different sec-
tions of the same circle. Finally, we compared our estimates with wind 
estimates from a weather reanalysis dataset.

2.5.1 | Two birds soar in the same thermal

Given the lack of direct independent measurements of wind speed 
at the birds’ locations, we compared pairs of independent wind esti-
mated from two birds flying nearby to evaluate the accuracy of our 
approach. Consider wind estimates ŵ1 and ŵ2 derived from the tracks 
of two birds (bird1 and bird2, respectively) circling at close proxim-
ity to each other in the same thermal column. We assume that they 
encounter the same true mean wind speed. If we further assume 
that our wind estimates are statistically independent and their cor-
responding error estimates Σ1 and Σ2 are correct, their difference vec-
tor (ŵ2− ŵ1) has a distribution 

(
N
(
Σ1+Σ2

)
+T

)
, where T is a random 

variable accounting for turbulence-driven difference in wind speed. 
We assume that T is circularly symmetric bivariate with mean zero and 
variance σ2

T
. Therefore, (ŵ2− ŵ1) is bivariate normally distributed with 

mean zero and variance Σ1+Σ2+ Iσ2
T
 and can be decomposed into two 

independent random variables dmajor, dminor along the eigenaxes of the 
error covariance matrix Σ1 + Σ2, with distributions N

(
σ
2
major

+σ
2
T

)
 and 

N
(
σ
2
minor

+σ
2
T

)
, respectively, where σ2

major
 and σ2

minor
 are the eigenval-

ues of the covariance matrix Σ1 + Σ2. In other words, the difference 
vector ŵ2− ŵ1 can be decomposed into two observed “partial devi-
ances” {dmajor,dminor} with variances {(σ2

major
+σ

2
T
),(σ2

minor
+σ

2
T
)}. Thus, a 

set of n independent pairs of estimates {ŵ1,ŵ2}i can be represented 
as a set of 2n independent partial deviances di with associated distri-
bution N(σ2

est,i
+σ

2
T,i
). We excluded from the analysis individual circling 

events for which the estimated variance in airspeed (equation 10) 
was larger than 1.0 [m/s] because they represent a poor model fit 
and unreliable wind speed estimates. We classified the final dataset 
of pairwise circling events into three categories defined by their dis-
tances to each other: (1) 0–25 m; (2) 25–50 m; and (3) 50–100 m. This 
allowed us to quantify the effect of interindividual distances on the 
differences in our wind speed estimates. We selected pairs randomly 
from each distance category, such that any stork was part of only one 
pair at any time point. For each pair, we calculated the difference vec-
tor between the two wind estimates and decomposed it into its x- and 
y-components with their corresponding variance estimates. Thus, we 
represented n independent pairs of wind estimates as 2n independ-
ent partial deviances. Next, we split the partial deviances from each 
distance category into four groups of equal size based on the esti-
mated variances (equation 10) and for each of these groups calculated 
the mean observed variance and the corresponding 95% confidence 
interval. For each distance category, we fitted a linear function to the 
relationship between observed and predicted variance (Figure 2).

TABLE  1 Summary statistics (columns showing different 
quantiles) of flight characteristics, determined from thermalling flight 
(n = 24,495 circling events)

5% 25% 50% 75% 95%

Wind speed 
[m/s]

0.50 1.38 2.47 4.18 7.21

Mean 
airspeed 
[m/s]

8.32 8.93 9.37 9.83 10.56

Standard 
deviation 
of airspeed 
[m/s]

0.26 0.36 0.46 0.59 0.84

Mean 
vertical 
speed over 
ground 
[m/s]

0.04 0.48 0.92 1.49 2.52

Mean sink 
speed 
relative to 
air [m]

0.71 0.73 0.75 0.78 0.83

Circling 
radius [m]

15.71 18.32 20.31 22.38 25.48

Time per full 
circle [s]

10.98 12.49 13.65 14.79 16.32

Banking 
angle 
[degrees]

19.75 21.94 23.76 25.88 29.14
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2.5.2 | Variation of airspeed within 
a thermalling circle

Behaviorally driven variation of flight speed and direction during ther-
malling flight could violate our assumption of random error distribu-
tion around the mean wind speed. This may occur, for example, if a 
bird’s airspeed was higher in the upwind section, compared to the 
downwind section within each thermalling circle. To estimate the 
potential sensitivity of our method to such behaviorally driven bias, 
we considered a bird that changed its heading at a constant rate ω 
and varies its airspeed a according to its orientation relative to the 
wind direction δ, with a constant speed component a0 and a speed 
amplitude of ac:

For such a bird the airspeed component in the wind direction, 
a(δ) cos δ could be averaged over the entire circle using an integral 
average approach as:

This biases the wind estimate in that direction by approximately 
-ac/2.

Periodic variation in airspeed while gliding would also cause 
changes in vertical speed, as airspeed variation corresponds to a 
transformation of potential to kinetic energy (i.e., height vs. speed). 
According to our model, we can make the following statements: For 
a circling time of 13 [s]≈4π [s], the maximal and minimal rates of 
airspeed change would be ± 1

2
acω≈±

1

4
ac; and while flying at an air-

speed of 10[m/s], a bird would lose approximately 1 [m] of height 
to increase its airspeed by 1 [m/s]. Thus, biasing the wind estimate 
by an amount of ac/2 through periodic variation in airspeed within 
the thermalling circle would cause a variation in vertical speed with 
about the same amplitude ≈ ac/2. Here, we used our observations 
of white storks to test whether such variation in vertical airspeed 
had occurred and indicated that our estimates might have been 
biased.

2.5.3 | Comparison with wind estimate from weather 
reanalysis data

There were no direct wind measurements that could be used 
for independent evaluation of the accuracy of our wind estima-
tion approach, as airborne wind measurement providing data 
at high elevations above ground are not common. Nonetheless, 
weather reanalysis models use large datasets of balloon, satel-
lite, and ground station observations to consistently interpolate 
wind speed in space (horizontally throughout the models’ region, 
and vertically across elevations) and time. Reanalysis models’ 
data are widely accepted as the best available substitute for 
direct weather observations and are used globally for weather 
prediction. We used the Environmental-Data Automated Track 
Annotation server to obtain wind speed data from The European 
Centre for Medium-Range Weather Forecasts (ECMWF) Global 
ERA-Interim Daily Mid-Resolution Reanalysis (see details in sec-
tion ENVIRONMENTAL DATA ANNOTATION below) for 23,921 
disjoint circling events. We calculated the hourly average wind 
speed and direction for each bird with observed circling events 
to prevent pseudoreplication. We calculated these means for 
both observed wind from the circling data and for annotated wind 
speed estimates from the ECMWF dataset. We used the correla-
tion between our wind speed estimates and ECMWF’s to evalu-
ate the accuracy of our wind estimates. We used vector correla-
tion (Crosby, Breaker, & Gemmill, 1993) to check for agreement 
between ECMWF and track-estimated wind. The correlation’s sig-
nificance was calculated using simulations using 1,00,000 random 
resamples.

2.6 | Study species and track measurements

We equipped juvenile white storks (Ciconia ciconia) with high-
resolution, solar GSM-GPS-ACC loggers. We focused our track-
ing efforts on a small stork colony in the South of Germany 
(47°45′10.8″N, 8°56′2.4″E), which consisted of 22 nests. In 
total, 61 juveniles, the colony’s entire offspring, were equipped 
with high-resolution, solar GSM-GPS-ACC loggers (e-obs GmbH; 
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F IGURE  2 Pairs of birds circling nearby (assumingly in the same 
thermal) in opposite directions were used to evaluate the error 
estimate of our wind estimation method. Cocircling birds were 
classified into one of three groups based on distance class (<25, 
<50, <100 m, indicated at the right of each curve). Next, we split 
the partial deviances from each distance category into four groups 
of equal size based on the estimated variances (equation 10) and 
calculate the mean observed and predicted variances, σ2. The 
observed variance was estimated from the variation between the 
paired wind estimates of birds within each group. Error bars mark the 
95% confidence interval
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Munich, Germany) 1 week prior to fledging. Birds were fitted with 
a tag during June and July 2014. High-frequency GPS measure-
ments were reported for each bird during the fall migration sea-
son, until September 2014. Tagging permit number G-13/28 was 
issued by Regierungspräsidium Freiburg (Federal State of Baden-
Württemberg, Germany).

The transmitters (weight 54 [g]) were attached using a Teflon–
nylon harness (weight ~12 [g]). The total weight of transmitter 
and harness was 66 [g], corresponding to approximately 2% of 
the mean body mass of white storks (Creutz, 1985). We recorded 
GPS locations for 18 [hr] a day (between 4:00 and 22:00 local time 
at the natal grounds). Each fix consisted of geographic position 
and elevation in WGS84 coordinates, speed and heading, as well 
as error estimates for position and speed. GPS speed and head-
ing were converted to Cartesian coordinates. The GPS was set to 
provide high-frequency (1 [s]) observations for 5 min. Every 15 min 
positions have a positional accuracy of ± 3.6 [m] (i.e., when station-
ary, 50% of fixes remain within a radius of 3.6 [m] within 24 hours). 
Data were stored onboard the device until downloaded via a UHF 
radio link from a distance of approximately 300 [m] (Holland, 
Wikelski, Kümmeth, & Bosque, 2009). The data were then stored 
in the Movebank database (Kranstauber et al., 2011). The data that 
were used for this study are part of the “MPOI white stork life-
time tracking” data (Flack et al., 2016) and are available through the 
Movebank Data Repository (Weinzierl et al., 2017).

2.7 | Environmental data annotation

We used the Environmental-Data Automated Track Annotation 
(Env-DATA) system (Dodge et al., 2013) to annotate the track-
ing data with ambient atmospheric observations and with ground 
elevations. Env-DATA is a service of Movebank (www.movebank.
org, Kranstauber et al., 2011), an open, online system for manage-
ment, archiving, analysis, and sharing of animal movement data. The 
European Centre for Medium-Range Weather Forecasts (ECMWF) 
Global ERA-Interim Daily Mid-Resolution Reanalysis dataset (http://
www.ecmwf.int/en/research/climate-reanalysis/era-interim, Dee 
et al., 2011) was accessed to annotate the tracks with wind veloc-
ity. We obtained the wind speed at different pressure levels and 
interpolated it first horizontally at each pressure level to the bird’s 
location using a bilinear interpolation between the reported wind 
speeds at the four ECMWF grid locations surrounding the bird. 
Second, we interpolated vertically between the two pressure levels 
adjacent to the bird’s elevation above ground using a linear inter-
polation. We assume that given the short distances between the 
pressure levels and the typical flight height, the linear interpolation 
would not result in a significant error. We did not use more com-
plex interpolation methods as those require knowledge of the sur-
face roughness and heat flux and would introduce additional error. 
Ground elevation for each observed track point was obtained from 
NASA ASTER GDEM dataset (https://asterweb.jpl.nasa.gov/gdem.
asp, Tachikawa, Hato, Kaku, & Iwasaki, 2011). The flight elevation 
was evaluated by converting GPS-obtained height above ellipsoid to 

height above sea level and then subtracting the annotated ground 
elevation.

2.8 | Implementations

We conduct two implementation studies to showcase our approach’s 
potential to produce meaningful data for studying, analyzing and 
modeling the flight behavior of birds, and to provide otherwise hard-
to-obtain observations of the wind conditions throughout the atmos-
pheric boundary layer.

2.8.1 | Vertical variation in airspeed in a thermal

Thermals have a limited and relatively small (tens to hundreds of 
meters) size. Therefore, birds need to bank at an angle that is deter-
mined by the radius of the circle and their own flight speed (equa-
tion 24) in order to stay in a zone with strong uplift. Identifying the 
choice of bank angle and flight speed as a function of thermalling 
radius size, strength, and elevation informs about the bird’s flight 
behavior and could be used to identify its strategy and skill for 
detecting thermals and maintaining uplift throughout thermal flight 
at a large range of elevations (e.g., Harel, Horvitz, & Nathan, 2016; 
Harel, Duriez, et al., 2016; Sherub, Bohrer, Wikelski, & Weinzierl, 
2016).

We selected 18,086 disjoint circling events with a mean vertical 
ground speed above 0.5 [m/s] and calculated the circle radius (equa-
tion 14), banking angle (equation 15), and lift coefficient (equation 16). 
We grouped data according to circle radius (group size = 2 [m], groups 
with <10 elements omitted). To determine the relationship between 
airspeed and banking angle, we fitted linear models using quantile 
regression with τ = 0.5 (median).

2.8.2 | Observations of vertical profiles of 
wind speed and detection of the elevation of the 
atmospheric boundary-layer top

Wind measurements at elevations of more than 10 meters above 
ground (the typical height of a meteorological ground station) 
are rare, spatially sparse and temporally intermittent, because 
they can only be conducted only from tall towers, weather bal-
loons, and aircrafts. Here, we show that bird-borne observations 
(especially those conducted by several birds flying nearby in the 
same environment) can be used as an alternative source for such 
information.

We combined the wind estimates from all thermalling individuals in 
a flock. We defined groups of nearby points (i.e., individual “thermals”) 
by rasterizing the longitude × latitude plane into squares of 0.1° × 0.1° 
and the time axis into 15-minute intervals. We calculated wind speed 
and thermal uplift and related them to height above ground and aver-
aged these for all birds within each individual “thermal” to produce a 
vertical profile of wind speed and uplift strength throughout the ther-
mal column.

http://www.movebank.org
http://www.movebank.org
http://www.ecmwf.int/en/research/climate-reanalysis/era-interim
http://www.ecmwf.int/en/research/climate-reanalysis/era-interim
https://asterweb.jpl.nasa.gov/gdem.asp
https://asterweb.jpl.nasa.gov/gdem.asp
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3  | RESULTS

3.1 | Validation of wind estimates

3.1.1 | Pairwise comparison of 
independent estimates

To validate our wind estimates and evaluate their error distribu-
tions, we used circling events in which two birds flew in close 
proximity to each other, assuming that both birds encountered the 
same true mean wind speed. Each of these pairwise wind estimates 
is considered as an independent measurement of the same wind. 
We only evaluated wind estimates of pairs flying in opposite direc-
tions (i.e., clockwise and counterclockwise in the same thermal) so 
as to reduce the influence of behavioral coordination (i.e., follow-
ing behavior) on the independence of the pair of estimates. These 
were further classified to three groups according to the distance 
between the pair of birds. Our results demonstrated that wind 
estimates differed more when birds were further apart from each 
other. Also, the observed difference in wind speed estimates grew 
with the estimated error (Figure 2). For validating the error esti-
mates, we assumed that the results from shortest distance category 
(Category I, <25 m) minimized the difference in wind conditions 
encountered by the two birds. Based on the slope and the inter-
cept of the linear relationship between the observed and predicted 
variation of speeds within pairs, we can assume that two birds 
encountered slightly different wind conditions (intercept = 0.06), 
but a slope of 1.0 indicates that the covariance matrices obtained 
from the maximum-likelihood estimation were accurate (Figure 2). 
To get a direction-independent error estimate, we calculated the 
95% CI in the direction with maximum error (i.e., along the major 
axis of the eigen-decomposition of each covariance matrix). We 
found that 95% of all CIs were within ± 0.87[m/s], and 50% within 
±0.47[m/s].

3.1.2 | Behavioral variation in different sections of 
a circle

Behaviorally driven variation in flight speed and direction within a cir-
cling event might violate our assumption of a random error distribu-
tion around the mean wind speed. To determine whether this was the 
case in our dataset of stork-borne observations, and to estimate the 
potential error that may result from such an effect, we analyzed the 
wind speed estimate as a function of the bird’s heading relative to the 
wind (Figure 3).

If the birds behaved differently in the upwind versus the down-
wind sides of the thermalling circle, we would expect that the birds 
consistently spend more time flying at one side of the circle or fly 
faster when orientated upwind or downwind. However, we did not 
find evidence for either of these two predictions. Figure 3 shows that 
the time spent in different orientations varied by less than two per-
cent. Similarly, the mean estimated airspeed deviation from the circle 
mean changed by less than 0.035 [m/s] (not shown).

3.1.3 | Comparison of wind estimate with 
independent atmospheric data

There was a high correlation between track-estimated and ECMWF 
wind vectors (Figure 4, r2 = .469, P < .001). The average magni-
tude (vector length) of the difference between the two vectors was 
1.471. The average ECMWF wind speed was 2.347 [m/s] and the 
track-estimated one was 1.913 [m/s]. A linear regression between 
the ECMWF and track-estimated wind speeds (intercept = 1.17, 
slope = 0.62) indicated a systematic bias between the two wind esti-
mates, whereas the track-observed wind speed tended to be higher 
than the ECMWF estimate when the wind was strong, and lower 
when the wind was very weak.

4  | DISCUSSION

Here, we introduced and tested a new approach that uses short, high-
resolution GPS segments of thermalling birds to obtain estimates of 
wind speed and direction. By examining a large set of pairs of inde-
pendent wind estimates from two white storks circling in close prox-
imity in the same thermal, we determined that our approach provided 
wind estimates with an accuracy of about half a meter per second 
(Figure 2). A comparison with wind estimates from the ECMWF 
weather reanalysis dataset showed a systematic bias between the 
two wind estimates, where ECMWF estimates provided less extreme 
values (i.e., lower when wind was strong, higher when wind was 
weak) than the wind observed from the bird tracks. But because the 
ECMWF provided spatially averaged wind predictions along a gridded 

F I G U R E   3 Normalized frequency (mean = 1) of bird heading 
relative to wind direction [degrees]. The variation around the mean 
is very small (<|1.5%|) indicating that all directions are sampled 
equally and, therefore, that the observed storks did not preferentially 
spend more or less time in the upwind part of the circle relative to 
downwind (or any other circle segment)
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space with a resolution of roughly 25 × 25 [km2], this type of bias was 
expected. At such resolution, fast perturbations of the wind were aver-
aged out leading to lower mean wind speed compared to point meas-
urements at a particular spot that may capture such local extremes. 
Similarly, when the wind was very weak at a particular location and 
time, averaged predictions might overestimate the actual wind speed. 
Given that the mean wind field is scale dependent, the consistent bias 
between the bird-borne and ECMWF wind estimate did not indicate a 
problem in any of the datasets, as this bias was related to a mismatch 
in the scales which these two data sources represent. We therefore 
claim that a good correlation between the two data sources confirms 
the quality of both, as it would be very hard to demonstrate such a 
high fit between two independently estimated datasets if one or both 
had large random errors.

Recently, Treep et al. (2016) estimated wind properties from tag-
based high-frequency GPS data of soaring vultures. Although the wind 
estimation approach by Treep et al. (2016) produces acceptable esti-
mated for wind speed, their approach works under the assumption of 
constant wind speed and turning angle over two thermalling circles, 
as it analyses the drift rate from one circle centroid to the next. Our 
approach relaxes this assumption to a single thermalling circle (and in 
theory, even less than that) allowing a more extensive use of datasets 

because it enables the analysis of shorter thermalling events that could 
not be used by the approach of Treep et al. (2016). Furthermore, our 
new method demonstrated a more accurate fit to wind direction than 
previous approaches; and it calculates the variance of the estimate 
around a circle, which can be used as an error estimate for quality 
control of the resulting wind estimates.

A good understanding of the relationship between bird move-
ments and meteorology may emerge as a valuable source of needed 
meteorological information. Measurements of vertical wind profiles 
are still scarce because they require airborne observations (Shannon, 
Young, Yates, Fuller, & Seegar, 2002b). The most common of such air-
borne measurement, conducted by weather balloons (radiosondes), 
are typically launched only twice a day in designated spots (e.g., air-
ports, meteorological stations). Vertical profiles of wind speed provide 
important data for flight and weather predictions, and for forcing and 
evaluation of atmospheric models.

Using our approach, we demonstrated the potential application by 
producing a detailed characterization of the vertical profile of wind 
conditions in a thermal column. Using the storks as sensors, we were 
able to illustrate different boundary-layer structures from a selection 
of thermals (Figure 5). For example, a sharp increase in wind speed at 
an elevation of 950 [m] above aground, corresponding with a sharp 

F IGURE  4 The frequency distribution 
of the difference between the track-
estimated wind direction and the wind 
direction from the ECMWF data. Color 
indicates the averaged wind speed 
between the ECMWF and track estimates. 
At low wind speeds, there is low agreement 
on the wind direction but as soon as 
the wind speed increases there is a high 
agreement between the two wind estimate 
approaches. The number of observations: 
n = 570. Significance P < .001
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decrease in thermal strength, indicated that the capping inversion at 
the top of the atmospheric boundary layer was roughly at that eleva-
tion (Figure 5, 3rd column). Boundary-layer height is a critical meteo-
rological variable and is diagnosed by all meteorological models but 
rarely measured directly. Our result shows that in addition to improv-
ing our understanding of atmospheric conditions, this new approach 
also provides valuable data for the study of flight behavior and proper-
ties. A recent study observed that adult griffon vultures adjust their air-
speed and heading within a thermalling circle to achieve higher climb 

rates (Harel, Horvitz, et al., 2016). Because our method assumes a ran-
dom error distribution around the mean wind speed, such behavioral 
variation could potentially bias our wind estimate due to an autocor-
related within-circle error structure. However, our findings show that 
in white storks this type of behavioral variation within a thermalling 
circle is small and does not bias our wind speed estimates (Figure 3). 
Nonetheless, our method is valid for any flight segment with consis-
tent turning angle and is not limited to full thermal circles. Therefore, 
our assumption of a random error distribution around the mean wind 

F I G U R E   5 Vertical structure of different thermals: Stork-track derived wind speed and thermal strength from the same thermal are shown 
on top of each other. Red lines are smoothed by calculating group averages from 10 subsequent points. Blue crosses in the upper row are wind 
speeds from ECMWF. Sample sizes (number of thermalling circles) are, from left to right: 214; 192; 131; 81; and 84. Numbers of storks per 
group: 21; 26; 24; 25; and 12 
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speed could be relaxed from the entire thermalling circle to a prede-
termined fraction of it (e.g, half a circle) as long as the observation fre-
quency supports at least three wind estimates within a circle section. 
We recommend that for analyzing thermalling flight of species such 
as vultures, which were observed to display variation in flight behav-
ior around a thermal, two independent estimates of wind speed—one 
from the upwind and one from the downwind half of the thermalling 
circle—should be calculated. Such an approach will also result in two 
estimates for airspeed. For cases in which the rotation speed of the 
air column is much weaker than the horizontal wind speed, the wind 
speed estimates from the opposing side of the thermal are expected 
to represent the outcome of behavioral flight strategy around the 
thermal, and will differ in birds that display such behavior.

Similarly, here we examined whether and how storks adjust their 
behavior when circling in differently sized thermals. We showed that in 
smaller circles storks flew slower, thereby reducing the need to bank, 
but they still banked more than in larger circles (Figure 6). In theory, 
such increased banking angle requires the bird to generate more lift 
(equations 14 and 15), whereas the reduced flight speed tends to 
reduce lift (equation 16). Thus, birds flying in smaller circles needed to 
increase the amount of lift created per squared airspeed substantially, 
that is, increase their lift coefficient, by, for example, changing wing 
posture or angle of attack. By being able to study the difference in 
upwind and downwind circling airspeed between individuals, we can 
increase our knowledge on interindividual variation in thermalling-
flight skill (Harel, Horvitz, et al., 2016). Such detailed information on 
variation in flight skills between individuals of different age, experi-
ence or origin is difficult to obtain but it is key for understanding life 
history decision, survival and population dynamics (Sergio et al. 2015, 

Rotics et al. 2016) or differences between individuals of allopatric spe-
cies (Friedemann et al., 2016). It can also inform us about the flight 
strategies of individuals as they overcome large geographic barriers, 
such as the Himalaya Mountains (Sherub et al., 2016).

5  | CONCLUSIONS

We provide a numerically robust approach for calculation of wind 
velocities from bird-borne data collected from high-resolution GPS 
tags. Our approach also quantifies the uncertainty in the approxima-
tion of the observed wind speed. We show that the bird’s behavior, 
which hypothetically may bias our calculation, does not violate our 
assumptions, and is therefore not a source of consistent bias. The 
results from this analysis and similar bird-borne wind measurements 
provide key information for understanding the birds’ flight behavior 
during thermalling.

Despite the global availability of large datasets that provide direct 
and indirect observations about the environment (Dodge et al., 2013; 
Pettorelli, Safi, & Turner, 2014), measuring small-scale environmen-
tal variables, and particularly those that change rapidly (e.g., wind, 
turbulence and their altitudinal profiles; the depth of the atmospheric 
boundary layer; and patterns of ocean currents, salinity, and sea-ice 
cover), still proves a challenge, even more so in remote areas (Harris 
& Browning, 2013). Recent examples show that tracked animals can 
directly act as sensors of their surroundings by providing possibil-
ities to estimate environmental conditions based on the animal’s 
behavior using information from animal-borne tags that record the 
animals’ location, speed, and acceleration (Charrassin et al., 2008; 

F IGURE  6 Circling behavior. (a) 
Storks flew faster in larger thermalling 
circles, which represent either 
larger thermals, or thermalling flight 
farther away from the centre of the 
thermal (intercept = 6.73 ± 0.04, 
slope = 0.13 ± 0.001, n = 18,073). (b) 
Smaller thermalling circles require larger 
banking angles, but intermediate and 
large thermalling circles do not affect 
the banking angle. (c) Lift coefficient 
is reduced in larger thermalling 
circles (intercept = 2.23 ± 0.01, 
slope = −0.042 ± 0.001, n = 18,073). (d) 
The distribution of thermalling circle radii 
throughout our dataset
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Shamoun-Baranes, Bouten, Camphuysen, & Baaij, 2011; Shannon, 
Young, Yates, Fuller, & Seegar, 2002a; Shannon et al., 2002b; Treep 
et al., 2016). By utilizing the ever-increasing number of high-resolution 
animal movement data, we may soon be able to monitor inaccessible 
areas or weather phenomena that are otherwise difficult to observe 
(Kays, Crofoot, Jetz, & Wikelski, 2015). Our study and analysis 
approach demonstrate that wild free-flying birds can provide import-
ant high-resolution data about the vertical structure of wind and uplift 
in the atmospheric boundary layer.
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