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Abstract
Despite wide applications of high-throughput biotechnologies in cancer research, 
many biomarkers discovered by exploring large-scale omics data do not provide satis-
factory performance when used to predict cancer treatment outcomes. This problem 
is partly due to the overlooking of functional implications of molecular markers. Here, 
we present a novel computational method that uses evolutionary conservation as 
prior knowledge to discover bona fide biomarkers. Evolutionary selection at the mo-
lecular level is nature’s test on functional consequences of genetic elements. By prior-
itizing genes that show significant statistical association and high functional impact, 
our new method reduces the chances of including spurious markers in the predictive 
model. When applied to predicting therapeutic responses for patients with acute my-
eloid leukemia and to predicting metastasis for patients with prostate cancers, the 
new method gave rise to evolution-informed models that enjoyed low complexity and 
high accuracy. The identified genetic markers also have significant implications in 
tumor progression and embrace potential drug targets. Because evolutionary conser-
vation can be estimated as a gene-specific, position-specific, or allele-specific param-
eter on the nucleotide level and on the protein level, this new method can be extended 
to apply to miscellaneous “omics” data to accelerate biomarker discoveries.
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1  | INTRODUCTION

In the past two decades, high-throughput biotechnologies have 
greatly accelerated cancer research and become an indispensable 
component in scientific and clinical practices. “Omics” data combined 
with advanced computational modeling, hold promise in discovering 
novel biomarkers to help improve cancer medicine (Kristensen et al., 
2014). However, models constructed from global molecular profiles 
often consist of a large number of biomarkers that have no obvious 

functional relevance to the biological processes under investigation 
(Berger, Peng, & Singh, 2013). These biomarkers are usually selected 
based on statistical association, which is pestered with false-positive 
results in large-scale analysis. Inclusion of these excessive markers 
renders a model prone to overfitting (Cawley & Nicola, 2010; Liu 
et al., 2014; Ludwig & Weinstein, 2005; Sham & Purcell, 2014). In 
fact, biomarkers discovered by mining these “omics” data often show 
unsatisfactory performance when used to assist disease diagnosis, 
prediction of cancer outcomes, or identification of therapeutic targets 
(Brooks, 2012; Kulasingam, Pavlou, & Diamandis, 2010; Kwon et al., 

http://creativecommons.org/licenses/by/4.0/
mailto:liliu@asu.edu
mailto:jpye@umich.edu


     |  69Liu et al.

2012; Massuti, Sanchez, Hernando-Trancho, Karachaliou, & Rosell, 
2013). Thus, many researchers advocate informed analysis that com-
bines biological knowledge, such as functional annotations and bio-
logical pathways, with computational modeling to interpret “omics” 
data, hoping to identify bona fide biomarkers to facilitate biomedical 
research (Chen et al., 2009; Hill et al., 2012; McDermott et al., 2013).

Cancer is an evolutionary disease (Greaves & Maley, 2012), but 
cancer biomarker discovery rarely integrates evolutionary selection. 
Sequence conservation inferred from genomes of evolutionarily di-
verse species represents a valuable resource of biological knowledge. 
As mutations disrupting critical molecular functions have been consis-
tently purified from the species pool over eons, sequences of function-
ally important genes remain conserved across species. The expression 
of conserved genes is also under more stringent regulation than 
variable genes (Liao & Zhang, 2006; Podder & Ghosh, 2010). Thus, 
evolutionary conservation has been used as an effective indicator of 
functional importance (Kumar, Dudley, Filipski, & Liu, 2011; Kumar, 
Sanderford, Gray, Ye, & Liu, 2012; Pei & Grishin, 2001). Evolutionary 
conservation has left comprehensible signatures in cancers. It has been 
shown that proto-oncogenes and tumor suppressor genes are among 
the most highly conserved genes (Shilo & Weinberg, 1981). A majority 
of somatic cancer driver mutations interrupt positions that do not tol-
erate germline mutations (Dudley et al., 2012). Therefore, evolution-
ary conservation of genetic elements can provide valuable guidance to 
cancer biomarker discovery by eliminating spurious markers that show 
fortuitous statistical associations but little biological relevance.

Not all conserved genes contribute to carcinogenesis and cancer 
progression, and not all cancer genes are evolutionarily conserved 
(Ballard-Barbash et al., 2012). Applying evolutionary conservation 
on cancer biomarker discovery also requires simultaneous consider-
ation of statistical association to achieve high predictive power. In 
this study, we present a computational method that uses evolutionary 
conservation as prior knowledge within a machine learning framework 
to assist biomarker selection. We applied this new method to predict 
therapeutic responses in patients with acute myeloid leukemia (AML) 
and to predict metastasis in prostate cancers. The results show that 
evolution-informed models enjoy high predictive accuracy using only 
a few functionally important biomarkers, thus ameliorated the risk of 
overfitting. We further show that the identified genetic markers are 
involved in tumor progression and embrace potential drug targets. 
These experiments demonstrate that evolution-informed modeling 
successfully improves biomarker selection to go beyond statistical as-
sociation and seek biological implications.

2  | MATERIALS AND METHODS

2.1 | Cancer datasets

We first developed this method to participate in the DREAM 9 acute 
myeloid leukemia (AML) Challenge (Noren et al., 2016). A total of 31 
teams from around the world, including our team, participated in this 
challenge. Provided by the challenge organizers and available from their 
official website (https://www.synapse.org/#!Synapse:syn2455683/

wiki/64007), this dataset consisted of 291 patients who were newly 
diagnosed with AML and received induction therapy. Treatment out-
comes were recorded as complete response or resistance to induc-
tion therapy. Each patient was measured on 40 clinical covariates 
describing demographic, cytogenic, mutation status, and the results of 
several standard blood tests. Proteomic data were available for each 
patient sample obtained prior to treatments. The proteomic features 
represent levels of 231 total or phosphorylated proteins, focusing 
on proteins involved in apoptosis, cell cycle, and signal-transduction 
pathways. Seventy-nine of these proteins have confirmed roles in 
oncogenesis and cancer progression (i.e., cancer driver genes), as an-
notated by the Cancer Gene Consensus list in the COSMIC database 
(Forbes et al., 2015). The goal was to predict if a patient will have a 
complete response or resistance to chemotherapy using clinical and 
proteomic markers. Of the total 291 patient samples, the DREAM or-
ganizer provided 191 samples to us for biomarker selection and model 
training. The other 100 samples were depleted of treatment outcome 
labels and used for blind testing.

The second cancer dataset was downloaded from NCBI GEO 
database (accession number: GSE10645). This dataset consisted of 
401 patients who were diagnosed with prostate cancer and received 
prostatectomy (Nakagawa et al., 2008). Treatment outcomes were re-
corded as metastatic recurrence after surgery or no evidence of dis-
ease progression within 5 years. However, all patients have increased 
level of prostate-specific antigen (PSA) that is routinely used to moni-
tor disease recurrence. For each patient, a panel of 1,021 oncogenes, 
tumor suppressor genes, and genes in their associated pathways was 
interrogated using Agilent custom gene expression microarrays. In 
particular, 604 genes on this panel have previously been associated 
with prostate cancer progression. No clinical covariate was available 
for these patients. The goal was to predict metastatic recurrence using 
genetic markers.

2.2 | Estimate evolutionary conservation

Using the Fitch algorithm (Kumar et al., 2012), we computed the 
absolute substitutional rate (r) of each position in a human protein 
sequence. Given a human protein, we retrieved multiple sequence 
alignments of its orthologs in 46 species available from the UCSC 
Genome Browser (Fujita et al., 2011). These species form a TimeTree 
that contains representatives from all major groups of vertebrates 
(Fig. 1). These species include 10 primates, 13 placental mammals, 
three nonplacental mammals, and nine other vertebrates that collec-
tively represent over 500 million years of evolutionary history. The 
branch length between two species was set to their divergence time 
obtained from the TimeTree database, in the unit of million years 
(Hedges, Dudley, & Kumar, 2006). The total branch length of this 
TimeTree is 5.8 billion years. For each position in the alignments, a 
new tree was created containing only taxa that do not have a gap at 
this position. The evolutionary time span, t of a position equals to the 
sum of branch lengths in this new tree. The number of substitutions 
s is the count of different amino acids at this position. We computed 
absolute substitution rate r = 1000 × s/t in the unit of substitution/
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billion years. For a protein of length L, the evolutionary rate (R) was 
estimated as the average r over all positions (R= 1

L

∑L

i=1
ri).

2.3 | Evolution-­informed modeling

The purpose of evolution-informed modeling is to prioritize evolu-
tionarily conserved and thus functionally important genes during bio-
marker discovery (i.e., feature selection in the machine learning field). 
The selected biomarkers are then used to build a predictive model (i.e., 
classification). It can be achieved by employing (i) a deliberately de-
signed weighting schema, (ii) an effective feature selection algorithm, 
and (iii) a robust classification model.

2.3.1 | Composite weighting schema

Because fast evolutionary rate indicates low conservation, we used 
its reciprocal (1/R) as the evolutionary weight (WE). For clinical co-
variates, there is no meaningful score of evolutionary conservation. 
Because clinical features tend to have higher predictive power than 
molecular features in general (Falini, Nicoletti, Martelli, & Mecucci, 
2007; Thiede et al., 2006; Walter, Othus, Burnett, et al., 2015; Walter, 
Othus, Paietta, et al., 2015), we assigned the maximum value of all 
WEs in the dataset to clinical features. To assess statistical signifi-
cance, we performed a Student’s t test for each feature between two 
clinical outcome classes (poor outcome as the positive class, good out-
come as the negative class). In the presence of multiple classes, other 
statistical tests such as F test can be used. p values from these tests 
were transformed via negative logarithm (−log(p)) and used as the sta-
tistical weight (WS). For each feature i, the final weight was the sum 

of evolutionary weight and statistical weight (Wi = WEi + WSi). In this 
study, we assumed equal contribution of evolutionary conservation 
and statistical association to the final weights. However, their rela-
tive contributions can be adjusted based on the understanding of a 
specific cancer phenotype.

2.3.2 | Feature selection

Within a cancer dataset, we first normalized each clinical and molecu-
lar feature by computing z-scores that have a distribution with a mean 
of 0 and a standard deviation of 1. Let a feature matrix fij denote the 
normalized values of the ith features for the jth sample (Fig. 2A). We 
then transformed this feature matrix by multiplying Wi for each fea-
ture. This weighted feature matrix fij

w was subjected to feature selec-
tion (Fig. 2B). In particular, we used the l1-norm regularized logistic 
regression, as implemented in the SLEP package (Liu, Ji, & Ye, 2009). 
Our purpose is to solve the following problem:

where yj and fj
w are the class label and the weighted feature vector for 

the jth sample, respectively, c is a constant corresponding to the inter-
cept in a linear model, λ is the regularization parameter, and x is the 
solution. By assigning higher weights to evolutionarily conserved and/
or statistically significant features, we increased the absolute value of 
fj

w. In fact, the formulation is (1) is equivalent to the following problem:

In equation (2), a larger penalty is imposed on features with a small 
weight. Consequently, the solution will favor the features with a large 
weight.

In equation (1) and (2), the calculation of x requires the selection of 
the most appropriate regularization parameter (λ), which dictates the 
number of features selected (receiving nonzero x values). To reduce 
such dependence, we employed a stability selection method. In par-
ticular, 100 bootstraps were performed to identify features that are 
consistently selected in more than 50% of runs of the algorithm with 
different λ values.

2.3.3 | Classification

A classification model was constructed with selected features 
(Fig. 2C). In this step, the unweighted feature matrix fij was used to 
avoid biases. The classification model was a random forest with 50 
trees, as implemented in the TreeBagger function in Matlab (version 
R2013a). While we chose to use random forest for classification, other 
linear or nonlinear algorithms can be employed as well.

2.3.4 | Bootstrapping

To avoid bias caused by the imbalance of class size (García, Sánchez, 
Mollineda, Alejo, & Sotoca, 2007), we wrapped a bootstrapping 
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F IGURE  1 TimeTree of the 46 species used in computing 
evolutionary parameters. Branch length is proportional to species 
divergence times obtained from the TimeTree database (Hedges et al., 
2006)
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process around the above feature selection and classification steps. 
Specifically, a subset of equal numbers of samples was randomly se-
lected from each class. This number was determined as 90% of sam-
ples in the under-represented class. For each bootstrap, a classification 
model was obtained, which is called a submodel. By repeating this pro-
cedure 100 times, an ensemble of 100 submodels were produced.

2.3.5 | Prediction

To classify an unknown sample, 100 predictions were made, one 
from each submodel. The final prediction was derived by computing a 

confidence score, which equals to the percentage of submodels that 
predict the sample as the positive class label (Fig. 2D).

2.3.6 | Performance evaluation

We used balanced accuracy (BAC, defined as the average of true-
positive rate and true-negative rate) and area under the receiver op-
erating characteristic (AUROC) to assess the predictive accuracy of 
a model. These two parameters are robust to the imbalance of class 
size, and thus commonly used and well documented (García et al., 
2007; Noren et al., 2016).

F IGURE  2 Graphical representation of the workflow of evolution-informed modeling. (A) Input matrix. Each row represents a sample, 
with positive samples (i.e., with poor clinical outcomes) labeled as “1” and negative samples (i.e., with good clinical outcomes) labeled as “0.” 
Each column represents a feature, as indicated by different symbols. (B) Feature selection. Subsets of the input data are generated using 
under-sampling that randomly chooses equal numbers of positive and negative samples. For each subset, feature values are transformed 
with composite weights. Feature selection is then applied on the weighted features. Using stability selection and sparse logistic regression, 
informative features are selected. Open symbols represent un-weighted features. Solid symbols represent weighted features. (C) Classification 
model. For each subset, un-weighted values of selected features are used to build a random forest classifier (a submodel). Collectively, these 
submodels comprise the ensemble model. (D) Prediction. For an unknown sample, each submodel produces a predicted label. The majority rule 
is used for the final prediction. The percentage of submodels that predict the sample as the positive class label is used as the confidence score of 
the final prediction
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3  | RESULTS

3.1 | Predict therapeutic responses in acute myeloid 
leukemia

We first examined the distributions of evolutionary weights and sta-
tistical weights in the AML training dataset that consisted of 191 pa-
tient samples. Both showed left skewness (Fig. 3A,B), indicating that 
most proteins were not functionally critical and not statistically as-
sociated with the treatment outcome. Therefore, only a small number 
of biomarkers were present (i.e., sparse solution). We then applied the 
new method to build an evolution-informed model. When evaluated 
on the held-out testing samples that consisted of 100 unseen patient 
samples, our evolution-informed model achieved the highest perfor-
mance among a total of 31 participating teams from around the world, 
with balanced accuracy of 77.9% and AUROC of 0.796. The runner-
up had a slightly lower AUROC (0.783) but much lower balanced ac-
curacy (72.8%) (Noren et al., 2016).

To further understand the impact of evolutionary weighting on 
feature selection and classification accuracy, we compared four differ-
ent models (Me+s, Me, Ms, and M0), in which composite weight, only 
evolutionary weight, only statistical weight or no weight was used 
during feature selection, respectively. The rest of the algorithm was 
kept the same. Our results showed that Me+s achieved the highest 
performance, with up to 11.0% increase on balanced accuracy and 
0.102 increase on AUROC as compared to other models (Fig. 3C,D). 
Interestingly, Ms that used only statistical weight showed the low-
est performance. In an effort to understand this, we split the training 

dataset into two random subsets and performed a Student’s t test 
within each subset. The correlation of p-values between these two 
subsets was only moderate (coefficient = .37), reflecting high noise 
level in proteomic data. Therefore, algorithms that solely rely on statis-
tical associations to choose biomarkers from “omics” data may suffer 
from over-fitting, as reported by other studies as well (Liu et al., 2014). 
Evolutionary information, as demonstrated in our method, can help 
effectively reduce the noise level and prioritize genes that are biolog-
ically important.

Applying weights during feature selection also helped reduce the 
complexity of the model, as measured by the number of features in-
cluded in each submodel (Fig. 3E). In the feature selection step, fea-
tures that were selected in >50% bootstrapping runs with a wide range 
of regularization parameters are regarded as important and informa-
tive. Under this setting, Me+s achieved an accuracy of 77.9% with an 
average of 30 features in each submodel. Contrarily, in M0, the accu-
racy dropped to 68% and the average number of features increased to 
43 in each submodel. These excessive features are likely false-positive 
markers. The fact of significantly fewer features achieving significantly 
higher accuracy demonstrates the power of using evolutionary and 
statistical weights to assist feature selection and classification for pre-
dicting AML outcomes.

Several studies showed that clinical features were more infor-
mative than proteomic features in predicting AML outcomes (Cilloni 
et al., 2008; Gulley, Shea, & Fedoriw, 2010; Moon et al., 2010; Noren 
et al., 2016), which was also reflected in our model. Among the most 
frequently used features that were included in more than 80% of sub-
models, only two are proteomic (Fig. 3F, Table S1). However, these 

F IGURE  3 Evolution-informed 
modeling to predict treatment outcomes 
for AML patients. Distributions of 
evolutionary weights (A) and statistical 
weights (B). Balanced accuracy (C) and 
AUROC (D) value of models that uses 
composite weight, only evolutionary 
weight, only statistical weight and no 
weight. (E) Distribution of the number of 
features in each submodel when composite 
weight (solid line) or no weight is used 
(broken line). Number of features is an 
indicator of the complexity of a model. (F) 
Number of submodels in which a clinical 
feature (black bars) or a proteomic feature 
(gray bars) is included. Plot consists of 85 
features that were included in at least one 
submodel when composite weight is used
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two proteins, namely PIK3CA and GSK3, both have strong implica-
tions in AML therapies. PIK3CA is a well-known proto-oncogene (Zhu 
et al., 2012). The PIK3CA signaling pathway is a drug target in treating 
several hematologic malignancies (Jabbour, Ottmann, Deininger, & 
Hochhaus, 2014). GSK3 plays a role in the control of several regu-
latory proteins including the proto-oncogene JUN, and in the WNT 
and PI3K signaling pathways that are critical in tumor progression. 
Recently, GSK3A has been suggested as a potential target for treat-
ing AML (Banerji et al., 2012). Selection of these two potential drug 
targets without knowing such information in prior demonstrated that 
evolution-informed modeling is capable of identifying biomarkers that 
are computationally powerful and biologically meaningful as well. It is 
also worth noting that both PIK3CA and GSK3 are conserved proteins 
although they are not the most conserved ones in this assay. Similarly, 
their statistical associations are significant but not among the top 
ones either. Therefore, evolutionary and statistical weights do not 
over-dominate the selection of features. This gave us the desired ef-
fect on the feature selection process, in which functional importance 
and statistical significance are emphasized, but other factors, such as 
minimization of classification errors, still play essential roles.

3.2 | Predict metastasis in prostate cancer

In this study, we applied the evolution-informed modeling and evalu-
ated its performance by followed a strict cross-validation procedure. 
Specifically, we randomly chose 80% of the samples for training and 
used the other 20% for independent testing. This procedure was re-
peated 10 times, and the averages of balanced accuracy and AUROC 

values estimated from the test datasets were reported. For each it-
eration, we built an Me+s model that incorporated evolutionary and 
statistical weights, and an M0 model that did not employ any weight. 
In addition to finding the optimal model with the highest prediction 
accuracy, this dataset allowed us to examine the performance of mod-
els with varying complexity, as measured by numbers of features in-
cluded. We found that Me+s achieved the largest improvement over 
M0 when the models are the simplest (Fig. 4A,B). If only 10–20 genes 
were allowed for each submodel, Me+s had 4% higher accuracy (paired 
t(19) = 4.95, p = 4.5 × 10−5) and 4% higher AUROC values (paired 
t(19) = 4.08, p = 3 × 10−3) than M0. The improvement became insig-
nificant when the complexity of a model increased and reached 40 
genes in each submodel. While the best performance of Me+s is similar 
to that of M0 (balanced accuracy: 70.8% vs. 70.1%, AUROC: 0.721 vs. 
0.731), M0 used twice as many features as Me+s (number of features 
included in each submodel: 40 vs. 20).

We further examined genes used in models with the best perfor-
mance. Summarized over all submodels, 128 and 319 unique genes 
were included in at least one submodel in the top-performing Me+s 
model and in the top-performing M0 model, respectively. Most genes 
(80%) in Me+s were also present in M0, while M0 contained 217 addi-
tional genes (Fig. 4C). Compared to all genes assayed, these additional 
genes are less conserved (t test on log(evolutionary rate), t(396) = 3.11, 
p = .002, Fig. 4D) and have weaker statistical associations (t test on log(p 
value), t(499) = 3.30, p = .001, Fig. 4E). Because including them in the 
predictive models negatively affected the accuracy, they are probably 
irrelevant to the metastasis phenotype. Indeed, GeneOntology analysis 
(Mi et al., 2016) showed that these additional genes are not enriched 

F IGURE  4 Evolution-informed 
modeling to predict metastasis for prostate 
cancers. Balanced accuracy (A) and AUROC 
values (B) for evolution-informed models 
(solid lines) and for un-weighted models 
(broken lines) that include various numbers 
of features. Average values with standard 
errors are plotted. * and ** indicate 
significant difference with t test p value 
<.05 or <.01, respectively. (C) Venn diagram 
of proteins included in the top-performing 
evolution-informed model and in the top-
performing uninformed model. Box plots to 
compare the distributions of evolutionary 
rate (D) and statistical significance (E) 
between all proteins, proteins included in 
the top-performing evolution-informed 
model, proteins included in the top-
performing uninformed models, and 
proteins unique to the top-performing 
uninformed model. ** indicates significant 
difference with t test p value <.01
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in any biological process. Contrarily, genes in Me+s have higher conser-
vation (t test on log(evolutionary rate), t(150) = −5.33, p = 10−7) and 
stronger statistical association (t test on log(p value), t(144) = −10.1, 
p = 10−18). They are significantly enriched in biological processes that 
have been previously implicated in metastasis and tumor progression, 
such as DNA repair, cell cycle, and DNA metabolism (Table S2).

4  | DISCUSSION

As one of the leading causes of morbidity and mortality in the modern 
world, cancer has become a major problem in public health. Accurate 
prediction of a patient’s response to treatment and prognosis can 
greatly assist clinicians to choose appropriate therapy and help im-
prove patient care. High-throughput biotechnologies have generated 
a large amount of “omics” data that can be used for this purpose. 
However, the high noise level in these data impairs the usage in iden-
tifying reliable biomarkers. Further, the number of samples tested in 
an “omics” study is usually several orders of magnitudes smaller than 
the number of molecular features measured, which makes tradition-
ally derived statistical models prone to overfitting. In fact, our analy-
sis showed that statistical scores tended to describe random error 
or noise instead of the true underlying relationship in omics data. 
Consequently, these models are hard to interpret and lack generaliza-
tion capability.

To reduce the noise, we studied the possibility of using evolu-
tionary conservation to prioritize functionally important genes as 
predictive biomarkers. Evolutionary selection at the molecular level is 
nature’s test on functional impact of genetic elements (Kimura, 1983). 
Compared to other functional annotations, such as functional do-
mains and pathways that vary across tissue and developmental stages, 
sequence conservation is directly associated with functional conse-
quence and rigorously tested over eons of evolutionary history (Pei & 
Grishin, 2001). In this study, we developed a mathematical framework 
that favorably includes conserved genes for biomarker discovery. By 
applying this new method to predict treatment outcomes for a he-
matological cancer (AML) and for a solid tumor (prostate cancer), we 
demonstrated that evolution-informed models indeed improved the 
prediction accuracy on cancer outcomes. This helps eliminate irrele-
vant features that are often included due to stochastic factors. Thus, 
more reliable biological inferences can be made using features se-
lected in the evolution-informed procedure.

Gene expression profiles and protein expression profiles modeled 
in this study are molecular changes downstream of genomic alter-
ations. Genomic aberrations play critical roles in carcinogenesis and 
fuel tumor heterogeneity in and between patients. Such high molec-
ular heterogeneity forms the foundation of diverse clinical outcomes 
and other cancer phenotypes, as well as makes hunting of cancer 
driver mutations very challenging (Heng, 2015). Our previous study 
showed that frequently observed cancer mutations are enriched at 
evolutionarily conserved positions (Dudley et al., 2012). Thus, evolu-
tionary conservation estimated at the nucleotide level may help pri-
oritize cancer driver mutations. This suggests that genomic profiles, 

transcriptomic profiles and proteomic profiles of patients with cancer 
can be integrated and prioritized simultaneously under a common evo-
lutionary framework.

Another aspect of cancer evolution is subclonal evolution within a 
tumor (Greaves & Maley, 2012). An increasing number of studies have 
reported that drug resistance and disease relapse in various types of 
cancers are attributed to expansion of preexisting or newly emerged 
subclones (Burrell & Swanton, 2014; Ding et al., 2012; Landau, Carter, 
Getz, & Wu, 2014). Given the highly dynamic characteristic of sub-
clones, similar challenges exist in identifying driver subclones as in 
identifying driver mutations. As cancer is a disease of evolution that 
accumulates genetic mutations while it progresses, it is attractive to 
use mutational load to prioritize subclones. However, we may also 
argue that functional impact of a subclone is more informative than 
mutational load. In this sense, species-level evolutionary conservation 
can be used to derive a composite weight that represents aggregated 
functional impact of all mutations in a subclone. Integrating evolu-
tionary signatures on species level and on individual level would be a 
promising and exciting new direction of research.

Meanwhile, biomarker discovery shall not leave out clinical co-
variates that have been associated with cancer treatment outcomes 
in numerous studies. One difficulty we encountered in incorporating 
clinical covariates in evolution-informed modeling was the calculation 
of meaningful and distinctive priorities for them. Currently, we rely on 
statistical weights computed from the training data, which do not re-
flect the rich domain knowledge. In the future, we will consider deriv-
ing scores from meta-analysis, which may serve as a better surrogate 
of prior knowledge aggregated from existing studies. By integrating 
multisource omics data and clinical features and comparing evolution-
ary contributions and statistical contributions to clinical outcomes, 
we will gain new insights into the causes of cancer formation and 
progression.
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