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Abstract

Background—Type-2 diabetes mellitus (T2DM) accelerates cognitive aging and increases risk 

of Alzheimer’s disease. Rodent models of T2DM show altered synaptic plasticity associated with 

reduced learning and memory. Humans with T2DM also show cognitive deficits, including 

reduced learning and memory, but the relationship of these impairments to the efficacy of 

neuroplastic mechanisms has never been assessed.

Objective—Our primary objective was to compare mechanisms of cortical plasticity in humans 

with and without T2DM. Our secondary objective was to relate plasticity measures to standard 

measures of cognition.

Methods—A prospective cross-sectional cohort study was conducted on 21 adults with T2DM 

and 15 demographically-similar non-diabetic controls. Long-term potentiation-like plasticity was 

assessed in primary motor cortex by comparing the amplitude of motor evoked potentials (MEPs) 

from single-pulse transcranial magnetic stimulation before and after intermittent theta-burst 

stimulation (iTBS). Plasticity measures were compared between groups and related to 

neuropsychological scores.

Results—In T2DM, iTBS-induced modulation of MEPs was significantly less than controls, 

even after controlling for potential confounds. Furthermore, in T2DM, modulation of MEPs 10-
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min post-iTBS was significantly correlated with Rey Auditory Verbal Learning Task (RAVLT) 

performance.

Conclusion—Humans with T2DM show abnormal cortico-motor plasticity that is correlated 

with reduced verbal learning. Since iTBS after-effects and the RAVLT are both NMDA receptor-

dependent measures, their relationship in T2DM may reflect brain-wide alterations in the efficacy 

of NMDA receptors. These findings offer novel mechanistic insights into the brain consequences 

of T2DM and provide a reliable means to monitor brain health and evaluate the efficacy of clinical 

interventions.
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INTRODUCTION

The brain is a target organ in type-2 diabetes mellitus (T2DM) [1]. T2DM affects the central 

nervous system through neuronal toxicity of hyper- and hypoglycemia episodes, 

microvascular insults, impaired glucose, and insulin transfer and resistance [2, 3]. 

Presumably as a consequence of this damage, T2DM accelerates cognitive decline [4] and 

increases risk of dementia [5, 6]. Cognitive dysfunction in T2DM has been linked to 

inflammation and altered vasoreactivity [7]. Even in the absence of vascular complications, 

T2DM can alter synaptic plasticity in the mouse hippocampus resulting in cognitive deficits 

[8], and mice with T2DM are less likely to recover from stroke due to impaired neuroplastic 

mechanisms [9]. To our knowledge, no study has directly assessed the mechanisms of brain 

plasticity or their behavioral significance in humans with T2DM.

Cortical reactivity and plasticity can be measured noninvasively in the human motor cortex 

using transcranial magnetic stimulation (TMS; Fig. 1). Operational definitions of reactivity 
and plasticity can be found in the Materials and Methods; collectively they refer to the 

process of comparing the motor responses to individual TMS pulses at baseline with those 

obtained after a repetitive TMS intervention such as theta-burst stimulation (TBS) [10]. 

TMS-TBS measures have identified age-related changes in plasticity across the lifespan in 

healthy individuals [11] and revealed altered neuroplastic mechanisms in autism spectrum 

disorders [12], traumatic brain injury [13], and Alzheimer’s disease (AD) [14].

Intermittent TBS (iTBS), which assesses NMDA receptor (NMDAR)-dependent [15] long-

term potentiation (LTP)-like plasticity [16], was used to directly investigate whether the 

mechanisms of brain plasticity are abnormal in T2DM. As the motor system is not 

specifically affected in T2DM, altered cortico-motor plasticity measures should reflect 

brain-wide declines in the efficacy of neuroplastic mechanisms. Further, if global changes in 

brain plasticity are driving deficits in cognitive performance, we measures obtained in the 

motor cortex should be associated with neuropsychological performance, especially on 

measures of learning and memory that are also NMDAR-dependent [17].
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MATERIALS AND METHODS

Human participants

In a prospective observational cohort study, adults (50–80 y) with and without T2DM were 

recruited through the Joslin Diabetes Center or responded to flyers posted around Beth Israel 

Deaconess Medical Center. 83 adults were enrolled, including individuals with well-

controlled hypertension and hypercholesterolemia, but excluding significant heart disease 

(heart attack or stroke). 17 were subsequently excluded for a Mini-Mental State Examination 

(MMSE) score <27, Geriatric Depression Scale (GDS) score >10, resting tremor, or 

receiving medications contraindicated for TMS [18]. Seven controls were excluded for 

indications of prediabetes: glycosylated hemoglobin (HbA1c) >5.6% or fasting glucose 

>100 mg/dL. Two T2DM patients were excluded for HbA1c >10%, indicating uncontrolled 

T2DM. From saliva-based genotyping, 11 individuals with an APOE-ε4 or BDNF-Met 
allele were excluded as these polymorphisms have been shown to alter TBS-based measures 

of plasticity [19, 20]. A further 10 participants were excluded or withdrew consent for 

various reasons, including inability to fit in the scanner, discomfort sitting, pending surgery, 

or failure to show up for study visits. The final cohort consisted of 21 adults with T2DM and 

15 demographically-similar controls (Table 1). Most T2DM patients controlled their 

diabetes with Metformin and the median time since diagnosis was 10 years (range: 2–18 

years).

The local Institutional Review Board approved the study. All participants provided written 

informed consent prior to enrollment according to the Declaration of Helsinki and received 

monetary compensation upon completion.

Neuropsychological testing

A 30-item MMSE, 50-item Wechsler Test of Adult Reading (W-TAR), 15-item GDS, and 

78-point activities of daily living (ADL) inventory were administered to characterize general 

neurocognitive status in the two groups. Additional tests were chosen to assess cognitive 

domains previously shown [21] to be impaired in T2DM: psychomotor processing speed 

was assessed with the Digit Symbol Substitution Test (DSST; number of correct 

substitutions in 90 sec); executive function was measured using the Trail Making Test 

(difference in time to complete Parts A & B); working memory was assessed with the Digit 

Span Backwards task (number of correctly-completed trials); and verbal learning and 

memory was assessed with a 10-item Rey Auditory Verbal Learning Test (RAVLT; percent 

of correctly recalled words across the five learning trials and after a 30-min delay) [22]. The 

RAVLT in particular was chosen as it is an NMDAR-dependent [17] measure of cognitive 

plasticity that is sensitive to prodromal dementia [23].

Magnetic resonance imaging

A T1-weighted anatomical magnetic resonance imaging scan was obtained in all participants 

on a 3T scanner (GE Healthcare, Ltd., UK) using a 3D spoiled gradient echo sequence: 162 

axial-oriented slices for whole-brain coverage; 240-mm isotropic field-of-view; 0.937-mm × 

0.937-mm × 1-mm native resolution; flip angle = 15°; TE/TR ≥2.9/6.9 ms; duration ≥432 s. 

Cortical reconstruction and automatic segmentation were performed with Freesurfer (version 
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6.0, http://surfer.nmr.mgh.harvard.edu/). Cortical thickness, calculated as the shortest 

distance between the pial and white matter surfaces [24], was measured for the primary 

motor cortex (precentral gyrus and central sulcus) in the left hemisphere using a subject-

independent probabilistic atlas [25].

Electromyography

To measure the amplitude of TMS-induced MEPs, Ag-AgCl surface electrode-pairs (Ambu 

A/S, Denmark) were placed on the belly and tendon of the right first dorsal interosseous 

(FDI) and a ground on the right ulnar styloid process (Fig. 1A).

Transcranial magnetic stimulation

All parameters used in the study conformed to current recommended guidelines for the safe 

application of TMS endorsed by the International Federation of Clinical Neurophysiology 

(IFCN) [18]. Following IFCN guidelines [26], resting motor threshold (rMT) and active 

motor threshold (aMT) were measured individually and used to set the intensity of 

subsequent stimulation. MEP trials were randomly jittered (5000–6000 ms) to avoid train 

effects. A Navigated Brain Stimulation system (Nexstim Plc, Finland) was used to identify 

the hand region of the primary motor cortex and ensure consistent targeting throughout the 

experimental session (Fig. 1A). We operationally define reactivity as the average amplitude 

of motor evoked potentials (MEPs) elicited by suprathresh-old single-pulse TMS, and 

plasticity as the change in reactivity induced by subthreshold TBS [10].

Paired-pulse TMS

Neuronavigated paired-pulse TMS was applied using a handheld monophasic figure-of-eight 

focal coil (Nexstim Plc, Finland). Three protocols were utilized: short-interval intracortical 

inhibition (SICI; 80%-rMT conditioning pulse, 120%-rMT test pulse, 3-ms interval), 

intracortical facilitation (ICF; 80%-rMT conditioning pulse, 120%-rMT test pulse, 12-ms 

interval); and long-interval intracortical inhibition (LICI; 80%-rMT conditioning pulse, 

120%-rMT test pulse, 100-ms interval) [27, 28]. A preceding block of single TMS pulses at 

120% rMT provided a measure of unconditioned cortico-motor reactivity. Each block 

consisted of 50 trials and individual MEP amplitudes >2.5 SD from the mean were excluded. 

Measures of SICI, LICI, and ICF were calculated as the percent change of the conditioned 

MEPs from the unconditioned block.

Theta-burst TMS

Neuronavigated iTBS was applied to participants using a handheld passive-cooling fluid-

filled figure-of-eight coil attached to a MagPro X100 stimulator (MagVenture A/S, 

Denmark). Intensity was 80% aMT. The pattern was a two-second train of biphasic bursts 

(three pulses at 50 Hz) repeated every 200 ms. Trains were repeated 20 times with an eight-

second inter-train interval (600 pulses, 192 seconds). This protocol has been shown to 

potentiate cortico-motor reactivity for up to 40 minutes in healthy individuals [10, 29].

Figure 1B depicts the timeline of the TMS experimental session. Prior to iTBS, participants 

received three blocks of 30 pulses at 120% rMT The peak-to-peak amplitudes of all recorded 

MEPs (Fig. 1C) were measured and averaged for each individual as a measure of baseline 
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cortico-motor reactivity. Cortico-motor reactivity was reassessed in blocks of 30 TMS pulses 

at 5, 10, 20, 30, 40, and 50 min post-iTBS. For each block, individual MEPs >2.5 SD from 

the mean were excluded. Plasticity was calculated as the percent change of each post-iTBS 

block from baseline.

Statistical analysis

Statistical analyses were performed in JMP Pro (version 12.0, http://www.jmp.com) and 

Stata (version 14.1, http://www.stata.com) using a normal distribution, Levene’s test for 

homoscedasticity, and a two-tailed 95% confidence interval (α = 0.05). Individual 

significance values for each set of tests were adjusted for multiple comparisons using Holm-

Bonferroni correction.

Pairwise comparisons were made against the null hypotheses that demographic, health, 

cortical thickness, neuropsychological, and neurophysiological measures were equivalent 

between T2DM and controls. The proportions of gender, handedness, and racial-ethnic 

composition were compared using Fisher’s Exact tests, while all continuous variables were 

compared with Student’s t-tests.

To test the null hypothesis that the after-effects of iTBS are equivalent between groups, post-

iTBS changes in MEP amplitudes were entered into a 2 (diagnosis) × 6 (time) full-factorial 

linear mixed-effects model. However, as the peak modulation of MEP amplitudes typically 

occurs immediately after iTBS [29], planned pairwise comparisons between T2DM and 

controls for each time-point were conducted using Student’s t tests.

To evaluate the behavioral significance of altered plasticity, correlation analyses were 

performed between MEP amplitudes 10-min post-iTBS (POST10; %Δ from baseline) and 

scores on the DSST, TMT, Digit Span, and RAVLT. POST10 was selected post hoc (see 

Results) as the time-point when plasticity measures were most altered in T2DM relative to 

controls. Correlations were thus performed separately for T2DM and controls to avoid 

confounding group differences in neuropsycholgical and TMS measures.

RESULTS

Table 1 details group means±standard error of continuous variables, numbers and 

proportions of categorical variables, and pairwise comparisons, including adjusted p-values. 

Unless otherwise indicated, p-values reported in the text are unadjusted.

Demographics, health, cortical thickness, and neuropsychological testing

Fisher’s Exact Tests yielded with no group differences in the proportion of gender, 

handedness, or ethnic composition, while student’s t tests indicated T2DM and control 

participants were similarly aged and educated (p’s > 0.2). These results indicate that the two 

groups had equivalent demographic composition.

As expected, the T2DM group had significantly worse health indices, including greater 

HbA1c and fasting glucose levels, weight, and body-mass index (p’s < 0.02), though the 

groups had similar creatinine levels (p = 0.823) and were of similar height (p = 0.543). All 
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differences remained significant after Holm-Bonferroni correction. These results indicate 

that measures of blood sugar and obesity were higher in the T2DM group, while height and 

creatinine, a marker of kidney function, were equivalent.

Analysis of cortical thickness found that the mean thickness across the left hemisphere did 

not differ significantly (p = 0.223), however the left motor cortex (precentral gyrus and 

central sulcus) was thinner for T2DM than controls (p = 0.012).

In the neuropsychological measures, there were no significant group differences in the 

MMSE, W-TAR, or GDS (p’s > 0.1), though the T2DM group had slightly higher ADLs (p 
= 0.063). These results indicate T2DM did not differ from control participants in terms of 

overall neurocognitive status, premorbid IQ, functional independence, or levels of 

depression, respectively. Despite these similarities and the lack of subjective cognitive 

complaints, the T2DM group exhibited reduced psychomotor processing speed, working 

memory, and verbal learning. Specifically, T2DM made fewer correct substitutions on the 

DSST (p = 0.004), completed fewer trials on the Digit Span Backwards task (p = 0.029), and 

recalled fewer words on the RAVLT learning trials (p = 0.003). After applying Holm-

Bonferroni correction, the DSST and RAVLT remained significant.

Measures of cortico-motor reactivity and plasticity

All participants tolerated TMS and iTBS with no complications or unexpected side effects. 

Student’s t tests yielded no significant differences in baseline neurophysiological measures, 

including motor thresholds and baseline MEP amplitudes and latencies (p’s >0.1). Similarly, 

there were no group differences in the paired pulse TMS measures (p’s > 0.1). These results 

indicate T2DM did not differ from controls in cortico-motor reactivity, the cortico-spinal 

response to TMS, or the efficacy of inhibitory and excitatory intracortical circuits 

(Supplementary Table 1 and Supplementary Figures 1–3).

Across all post-iTBS time-points, the mean±standard error percent change in MEP 

amplitude was 36.21±7.2 for controls and 7.22±6.0 for T2DM. This effect in controls is 

consistent with a recent meta-analysis of TBS in healthy subjects [29].

The linear mixed-effect model indicated the change in MEP amplitudes did not vary 

significantly (at the 0.05 level) by diagnosis, F(1,34.1) = 2.59, p = 0.117, time, F(5,167.2) = 

1.97, p = 0.086, or their interaction, F(5,167.2) = 1.45, p = 0.209. However, planned t tests 

showed T2DM subjects had significantly less potentiation of MEP amplitudes 5-min post-

iTBS (POST5; p = 0.042) and POST10 (p < 0.007) (Fig. 2), with the latter remaining 

significant after Holm-Bonferroni correction. From 20–50 min post-iTBS, the change in 

MEP amplitudes was statistically equivalent between groups (p’s > 0.3). These results 

indicate it is the initial impact of iTBS on cortico-motor reactivity that is selectively altered 

in T2DM relative to controls.

SUPPLEMENTARY MATERIAL
The supplementary material is available in the electronic version of this article: http://dx.doi.org/10.3233/JAD-160505.
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Follow-up linear regression analyses demonstrated diagnosis remained a significant 

predictor of POST10 plasticity (p’s < 0.02) after controlling for age, gender, BMI, HbA1c, 

fasting glucose, or motor cortex thickness, resting/active motor thresholds, or baseline MEP 

amplitude. Table 2 lists the significance of each covariate as a predictor of POST10 

plasticity, as well as changes in the regression coefficient of the model, and the significance 

and beta coefficient of diagnosis (β1) after adding each covariate. While no covariate 

contributed significantly to the model (p’s>0.1), adding weight or motor cortex thickness 

reduced β1 by more than 10%, suggesting group differences in these factors may account for 

some of the observed association between T2DM and POST10 plasticity. By comparison, β1 

increased by 25% after adding HbA1c, suggesting POST10 plasticity may be even more 

altered in T2DM once HbA1c is taken into consideration.

Relationship between cortico-motor plasticity and cognitive function

For the control group, there were no significant correlations between POST10 and any of the 

cognitive measures (all p’s > 0.6). In the T2DM group by comparison, there were significant 

positive associations between POST10 plasticity and performance on the digit span 

backwards task (R19 = 0.49, p = 0.025), RAVLT-learning (R19 = 0.55, p = 0.009; Fig. 3), and 

RAVLT-delayed recall (R19 = 0.44, p = 0.047). After Holm-Bonferroni adjustment, only the 

relationship between POST10 and RAVLT-learning remained significant. These results 

indicate that individuals with T2DM whose MEPs increased at POST10 tended to perform 

better on the cognitive measures than those whose MEPs remained unchanged or decreased.

DISCUSSION

The present study compared older adults with and without T2DM on TMS-measures of 

brain plasticity assessed in the motor cortex. Our major novel finding is that individuals with 

T2DM, unlike their non-T2DM counterparts, did not show significant potentiation of MEP 

amplitudes 5–10 minutes post-iTBS. This period corresponds with the peak effect of TBS in 

normal individuals [10, 29] and demonstrates the highest test-retest reliability [30]. Using 

similar TMS measures, altered mechanisms of brain plasticity have been demonstrated in 

autism spectrum disorder [12], traumatic brain injury [13], and AD [14, 31, 32], and used to 

track changes over the lifespan in healthy adults [11]. In the future, similar plasticity 

measures might be obtained from higher-order association areas more directly linked to 

cognition using real-time integration of TMS with electroencephalography. Nonetheless the 

present findings suggest that TMS-based assessments of motor cortex plasticity offer a 

clinically relevant marker of central nervous system changes in T2DM.

It is unlikely that differences in TMS measures of brain plasticity result from a direct impact 

of T2DM on the motor cortex. While the motor cortex was thinner in T2DM participants, 

diagnosis remained a significant predictor of the impact of iTBS even after accounting for 

these macrostructural differences. Magnetic resonance spectroscopy has shown evidence in 

T2DM of abnormal metabolism in non-motor regions [33]; future studies could investigate if 

the motor cortex is similarly altered. T2DM has been associated with altered integrity of the 

cortico-spinal pathway [34]. However, a structured neurological exam or medical history 

review found no evidence of neuropathy in any of our T2DM participants. Moreover, motor 
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thresholds, baseline MEP amplitudes and latencies were all equivalent, indicating that 

T2DM does not alter cortico-motor reactivity or the ability of TMS-induced activity to 

propagate along the cortico-spinal pathway and elicit a muscle contraction. Thus, alterations 

in the response to iTBS likely reflect T2DM-related changes to the efficacy of neuroplastic 

mechanisms within the cortex. Indeed, using invasive techniques to monitor brain activity, 

Di Lazzaro and colleagues [16] demonstrated that iTBS assesses intracortical mechanisms of 

plasticity. In rodents’ neocortex, iTBS has been shown to increase pyramidal cell output by 

reducing parvalbumin expression in fast-spiking inhibitory interneurons [35]. Importantly, 

the present study found no differences between T2DM and controls in any of the paired-

pulse TMS measures of intracortical inhibition and facilitation. T2DM in humans does not 

therefore appear to alter intracortical circuits within the motor cortex, but the ability of the 

synapses therein to be potentiated.

Our second major findings was that reduced measures of brain plasticity in T2DM 

participants were associated with lower verbal learning scores on the RAVLT and fewer 

correct trials of the Digit Span Backwards task. These results bring human evidence of 

T2DM-associated cognitive impairment in line with genetic mouse models of impaired 

insulin signaling and insulin resistance. Mice engineered without the glucagon-like peptide 1 

(GLP-1) receptor had reduced LTP in area CA1 of the hippocampus, showed impaired 

discrimination of learned and novel objects and performed poorly on a water maze task [36]. 

Similarly, reducing insulin receptor expression globally by means of β-subunit 

haploinsufficiency [37] or in the hippocampus using a lentiviral vector [38] severely 

curtailed hippocampal LTP and impaired spatial memory. What makes the present results 

notable is that plasticity was assessed in the motor cortex, while learning and memory are 

hippocampal-dependent and working memory is most closely associated with lateral 

prefrontal and posterior parietal cortices. While it is possible that all three systems are 

independent targets of T2DM-related damage, the more parsimonious explanation is that 

T2DM affects a common substrate. In rodents, N-methyl-D-aspartate receptors (NMDARs) 

are known to be crucial for induction of theta burst-driven LTP in the hippocampus [39] and 

iTBS after-effects in the neocortex [40] as well as for behavioral measures of working 

memory [41] and learning and memory [42]. Similarly, in humans, iTBS after-effects, 

working memory and RAVLT performance have all been shown to be NMDAR-dependent 

[15, 17, 43–45]. Thus, the relationship of reduced verbal learning and working memory to 

altered LTP-like plasticity in the present study may reflect a T2DM-associated brain-wide 

reduction in the density or efficacy of NMDARs. Given T2DM is associated with 

upregulation of the GLUT1 glucose transporter [46], and glucose provides the original 

source of glutamate in the brain [47, 48], chronic hyperglycemia could lead to excessive 

glutamate and increased risk of excitotoxicity. Any reduction in post-synaptic NMDARs to 

moderate this risk would consequently reduce the efficiency of LTP and alter any NMDAR-

dependent measures.

Since the RAVLT in particular is sensitive to age-related cognitive decline [23] and T2DM is 

an important risk factor for dementia [5, 49], the present findings suggest impairments in the 

mechanisms underlying neuroplasticity may predicate learning and memory deficits. An 

alternative interpretation is that preserved brain plasticity might provide protection against 

cognitive decline. The relationship between plasticity and cognitive resilience deserves 
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further investigation. Nonetheless, our results would lead to the prediction that T2DM 

individuals with normal TMS plasticity measures would be less likely to develop dementia. 

In future studies, these assessments of brain plasticity could be used to chart the progress of 

T2DM-related brain changes and evaluate the therapeutic efficacy of interventions.

The present findings provide neurobiological support for the epidemiological link between 

T2DM and AD [5, 50]. Several TMS studies have shown similar patterns of reduced LTP-

like plasticity in AD patients [14, 31, 32]. In particular, Koch and colleagues have 

demonstrated that TMS measures of plasticity are associated with the severity of Tau 

neuropathology in AD [51] but independent from the age that cognitive symptoms first 

appear [32]. Furthermore, a 4-week treatment with a dopamine agonist was shown to rescue 

LTP-like plasticity in early AD [31], a finding that both provides mechanistic insight into 

altered cortical plasticity and offers a potential therapeutic intervention to recover it. 

Similarly, intranasal insulin therapy has been shown to improve cognition in healthy 

individuals [52], as well as patients with mild cognitive impairment/early AD [53–55] or 

T2DM [56]. Future studies could examine how plasticity relates to Tau levels or 

dopaminergic function in T2DM or investigate whether cognitive improvement following 

intranasal insulin administration is mediated through enhancement of LTP-like plasticity.

Several factors may limit the generalizability of our findings. While the sample size is 

consistent with recently-published work on diabetes and cognitive aging [7, 56, 57], it is 

relatively small when compared to large-scale epidemiological studies [58]. Further, we 

enrolled a relatively homogenous population of non-demented adults. Thus it is not possible 

to know if our findings extend to patients with significant comorbidities or evident dementia. 

Lastly, it was not possible to obtain recent HbA1c or fasting glucose levels in all 

participants.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Cortical reactivity and plasticity can be measured noninvasively in the human motor cortex 

using TMS. Reactivity refers to the average amplitude of MEPs elicited by single-pulse 

TMS, while plasticity is defined as the change in reactivity induced by iTBS. A) MR-guided 

TMS was applied to the left primary motor cortex and resulting MEPs were recorded from 

the right FDI muscle by surface EMG. B). The present study assessed TMS-iTBS measures 

of plasticity as well as paired pulse TMS measures of cortical inhibition and facilitation. 

After determining resting motor threshold (rMT), 50 single (unconditioned) monophasic 

TMS pulses were delivered, followed by three sets of 50 pulse-pairs to assess short-interval 

intracortical inhibition (SICI), intracortical facilitation (ICF), and long-interval intracortical 

inhibition (LICI). After a break, rMT was reassessed and three sets of 30 biphasic pulses 

were delivered to measure baseline cortico-motor reactivity. The active motor threshold 

(aMT) was assessed and iTBS was applied. Cortico-motor reactivity was reassessed in six 

blocks of 30 pulses at 5, 10, 20, 30, 40, and 50 min post-iTBS. C) Example MEP traces from 

a single control subject (top) and T2DM patient (bottom) recorded at baseline (left) and 10 

min after iTBS (right).
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Fig. 2. 
Comparison of TMS-plasticity measures by group. Mean and standard error of the percent 

change in MEP amplitude are shown for each post-iTBS time-point. Pairwise comparisons 

between controls and T2DM for each time-point were made with Student’s t tests (*p < 

0.05, **p < 0.01). 5–10 min after iTBS, the change in MEP amplitudes was significantly 

reduced in individuals with T2DM relative to controls.
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Fig. 3. 
Relationship between cortico-motor plasticity and verbal learning. Pearson’s correlation 

coefficients were calculated separately for T2DM and control groups to assess the 

relationship between the change in MEP amplitude 10-min post-iTBS (x-axis) and 

performance (y-axis) on the Rey Auditory Verbal Learning Test (RAVLT) learning trials (% 

correct). T2DM participants whose MEPs increased following iTBS demonstrated better 

verbal learning performance than those whose MEPs remained unchanged or decreased.
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Table 2

Change in regression coefficients of Diagnosis on POST10 after adding covariates

% Δβdiagnosis ΔPdiagnosis Pcovariate

Diagnosis plus Weight −0.17 0.02 0.03 0.313

Diagnosis plus M1 thickness −0.14 0.02 0.02 0.378

Diagnosis plus Race −0.09 0.01 0.01 0.219

Diagnosis plus BMI −0.07 0.01 0.01 0.697

Diagnosis plus Age −0.07 0.00 0.03 0.233

Diagnosis plus Fasting glucose −0.06 0.00 0.00 0.680

Diagnosis plus Height −0.03 0.00 0.02 0.409

Diagnosis plus Baseline MEP −0.03 0.00 0.06 0.123

Diagnosis plus Gender −0.02 0.00 0.01 0.537

Diagnosis plus RMT −0.02 0.00 0.05 0.148

Diagnosis plus Creatinine −0.01 0.00 0.01 0.569

Diagnosis plus AMT 0.00 0.00 0.06 0.126

Diagnosis plus Handedness 0.03 0.00 0.07 0.235

Diagnosis plus HbA1c 0.25 0.00 0.06 0.189

POST10, 10-min post-iTBS; AMT, active motor threshold; RMT, resting motor threshold; MEP, motor evoked potential; BMI, body mass index; 
M1, primary motor cortex.
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