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Abstract

Technologies such as genome sequencing, gene expression profiling, proteomic and metabolomic 

analyses, electronic medical records, and patient-reported health information have produced large 

amounts of data, from various populations, cell types, and disorders (big data). However, these 

data must be integrated and analyzed if they are to produce models or concepts about physiologic 

function or mechanisms of pathogenesis. Many of these data are available to the public, allowing 

researchers anywhere to search for markers of specific biologic processes or therapeutic targets for 

specific diseases or patient types.

We review recent advances in the fields of computational and systems biology, and highlight 

opportunities for researchers to use big data sets in the fields of gastroenterology and hepatology, 

to complement traditional means of diagnostic and therapeutic discovery.
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Introduction

In 2003, the completion of the Human Genome Project—which culminated in the public 

release of the first sequenced and annotated genome derived from human DNA— was 

heralded as the dawning of the genomic era.1 Since that time, continued technological 

advances have enabled the rapid and cost-effective analysis of DNA, RNA, protein, and 

other biomolecules in large cohorts of patients. The integration of multiple types of omics* 

experiments (see Glossary for terms marked with *) across populations and conditions, 
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made possible by the rapid accumulation of data generated using these technologies, has 

begun to yield clinically impactful discoveries by reanalysis of the deposited data.2 

However, this surfeit of data has also made the analysis of omics studies an increasingly 

challenging task. Illustrating the scope of this problem, the European Bioinformatics 

Institute (EBI) reported in early 2016 housing 75 petabytes of publicly-accessible data3 (a 

quantity that would take more than nineteen years to download on an exceedingly fast 1 

gigabit-per-second Internet connection), and between the two major public repositories of 

genomics data, ArrayExpress4 and the Gene Expression Omnibus5 (GEO), there are nearly 

two million samples currently available (for an overview of big data resources, see Table 1 

and Supplementary Table 1). In addition to transcriptomic and genomic (i.e., DNA 

sequence/variants) datasets, additional types of omics data, assaying the proteome, 

metabolome, kinome, methylome, acetylome, lipidome, microbiome, phenome, exposome, 

meta-genome, and interactome, are increasingly being deposited for public use.

In parallel, the widespread adoption of electronic health records6 (EHR*) has also generated 

massive amounts of digitized personal health information, as has the increasing popularity of 

automatic serial data acquisition from wearable devices/technologies*7 and web applications 

that collect patient-reported health information* (e.g., the www.HepCure.org portal for 

hepatitis C patients and their physicians). Unprocessed clinical trial data will also soon 

become more widely accessible. Earlier this year, the International Committee of Medical 

Journal Editors issued a proposal that, if accepted, will require authors of clinical trials to 

make de-identified patient data publicly available after a 6 month embargo period, with the 

intention of increasing transparency and reproducibility of the trial results, and facilitating 

large-scale secondary analyses by external researchers.8 This and other open data initiatives

—including the newly-launched Genomic Data Commons, which aims to serve as a hub for 

existing and future cancer research data9—will dramatically expand the public store of data 

available for both mining and integrated meta-analyses.

Developments like these have propelled biomedical research into the era of big data.* Given 

the hypothesis-free nature of data mining techniques, big data can be used to obtain a global 

perspective that complements the focused mechanistic studies typical of experimental 

biology, and enable the detection of high-level information patterns that would otherwise be 

impossible to perceive. Such approaches will help clarify the pathogenesis and proper 

classification of complex diseases, which typically involve a wide range of causal factors. 

For example, a recent integrated analysis of multiple datasets has defined three subtypes of 

type 2 diabetes that would not have been apparent based solely on clinical assessment.10

Additionally, the establishment of regional or national biobanks* (e.g., UK Biobank, 

www.ukbiobank.ac.uk) and large multicenter/national consortia (e.g., International Cancer 

Genome Consortium [ICGC], icgc.org) provide opportunities to more effectively integrate 

the breadth of human diversity (e.g., age group, sex, race/ethnicity, and environmental 

exposures) into biomarker and therapeutic discovery.

The potential value of big data in clinical medicine and basic science has been widely 

acknowledged.11 For instance, due to the practical limitations in designing and 

implementing randomized clinical trials (RCTs) to address many important clinical 
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questions, the mining of retrospective EHR and other large-scale clinical outcomes data has 

been proposed as a supplement to RCTs in the generation of practice-guiding evidence.12 A 

restructured clinical taxonomy—one which moves away from the current organ/symptom-

based classification system in favor of molecular descriptions of disease—has also been 

identified as a critical step toward precision medicine.*13 However, the current integration of 

molecular science into clinical medicine requires substantial progress before big data can 

make a meaningful impact on health care. The field of translational bioinformatics* has 

arisen over the past decade specifically to address this challenge, aiming to harness big data 

by developing statistical techniques and computational infrastructures capable of integrating 

and analyzing large, heterogeneous datasets, and ultimately deriving clinically-relevant 

insights that address unmet diagnostic and therapeutic needs across broad medical 

disciplines (see Figure 1 for an overview of the typical big data-driven workflow). Compared 

to a purely experimental approach, the incorporation of data mining and analytics tools into 

the biomedical pipeline is expected to shorten developmental timelines, reduce costs, and 

improve the success rate of candidate diagnostic and therapeutic tools (see Figure 2).

Given these advantages, big data-based approaches are likely to have many productive 

applications within gastroenterology and hepatology, particularly for diseases in which 

diagnostic methods and/or treatments are imprecise. For example, despite several important 

therapies for inflammatory bowel diseases, due to our increased understanding of the 

associated immune dysregulation, its incidence is still increasing worldwide, and a 

significant proportion of patients do not achieve adequate remission of symptoms. Big data 

might also be analyzed in studies of gastrointestinal dysmotility, which is difficult to 

manage, or irritable bowel syndrome and other functional disorders, which are imperfectly 

understood and are difficult to diagnose and treat. There are also many sequence, gene 

expression, and proteomic and metabolomics data available on hepatic, colorectal, and 

gastric cancers, as well as pancreatic adenocarcinoma, that could be used to increase early 

detection or provide therapeutic targets

In liver, promising areas for data-driven discovery include viral hepatitis, where the complex 

interactions between viral heterogeneity, host genetic variations, and environmental factors 

in disease pathogenesis have not yet been satisfactorily integrated; liver cancer 

(hepatocellular carcinoma [HCC] and intrahepatic cholangiocarcinoma [ICC]), is increasing 

in incidence, yet therapies for HCC and ICC remain limited; progressive hepatic fibrosis, 

which likely shares core fibrosis pathways with other fibrotic diseases, yet for which there 

are no approved anti-fibrotic drugs; non-alcoholic fatty liver disease, in which recent 

epidemiological studies underscore the risk of developing liver cancer even in the absence of 

cirrhosis, emphasizing the need to identify biomarkers and targets for the “the next global 

liver disease epidemic”;15 and acute on chronic alcoholic hepatitis, where mortality is still 

extremely high (up to 50%) and treatment options are limited, and in which the precise 

identification of high-risk populations in need of therapy is still challenging.16

In this review, we will cover the currently available resources relevant to big data-driven 

research, and discuss future prospects for the integration of these resources within the fields 

of gastroenterology and hepatology.
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Big data in diagnostic discovery

Biomarkers may be classified as diagnostic, prognostic, or therapeutic response-predictive 
depending on their intended use. Diagnostic biomarkers are used to determine the likelihood 

that a patient is suffering from a specific disease. Prognostic biomarkers inform physicians 

regarding the risk of clinical outcomes, such as cancer recurrence or disease development 

and progression, which may be used to assist patients and physicians in determining the 

appropriate aggressiveness of follow-up and/or care. Therapeutic response-predictive 

biomarkers are more specific because they are used to predict an individual’s response to 

specific treatments. Biomarker development follows the sequential processes of discovery, 

validation, and clinical implementation, with the eventual goal of establishing accessible 

tests that can be used to guide clinical decision making.17,18

Many of the candidate biomarkers reported recently have not been successfully translated 

into clinical practice, often because they did not pass the rigorous validation phase assessing 

technical/analytical validity (reproducibility and robustness of measurement) and clinical 

utility (replicated diagnostic, prognostic, or predictive capability in specific clinical 

contexts).17,19–21 Optimal study design is a key issue in maximizing the reliable discovery 

and successful validation of biomarkers. In many cases, sample availability may be limited, 

and both prospective enrollment and longitudinal follow-up studies to validate biomarkers 

over time can be costly and challenging to manage. In addition, cultural, environmental, and 

other variations across populations often necessitate large sample sizes to ensure 

generalizability, further complicating the design of appropriate studies.

With omics technologies, relatively rare genetic aberrations are increasingly identified as 

candidate predictive biomarkers of drug response, especially in the field of oncology.22 The 

therapeutic benefit of experimental therapies targeting such pathogenic aberrations often 

cannot be detected in the traditional “all comer” clinical trial design, which enrolls patients 

irrespective of the presence of these aberrations. Alternatively, new clinical trial designs, 

first stratifying the enrolled patients by molecular tests and then assigning a potentially 

effective therapy to each individual, have been evaluated (referred as “umbrella” or “basket” 

trial design).23 However, it is worth noting that performance of the biomarkers, e.g., 

positive/negative predictive value, should ideally be well defined prior to conducting 

biomarker-enriched clinical trials to ensure proper interpretation of a therapeutic benefit. 

The emergence of publicly available randomized controlled trial data (especially those that 

include -omic characterization of study participants) may allow post hoc assessment of 

predictive biomarkers before adopting them in prospective biomarker-enriched trials. 

Detailed molecular characterization of extreme responders has also been explored as an 

option of clinical biomarker-drug testing.24

Emerging public and private big data resources (including those listed in Table 1) will help 

overcome these challenges by enhancing the availability of data and/or samples. As the 

diversity and comprehensiveness of patient cohorts in these databases expands, ‘virtual’ 

patient enrollment will shorten the discovery process, improve reliability, and reduce costs 

of biomarker assessment in clinical trials through the incorporation of in silico validation* 

(Figure 3). The National Cancer Institute (NCI) has recommended improved sharing of 
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existing specimens and data to create a NCI-wide inventory of specimens and cancer 

diagnosis data, and is funding pilot projects to support these efforts.25 The Institute of 

Medicine also encourages public sharing of clinical trial data while minimizing the risks and 

burdens of sharing.8,26 Although a number of ethical and legal challenges remain, these and 

related publicly–supported efforts to share data will accelerate biomarker development.

Molecular diagnostics in gastroenterology

Within gastroenterology and hepatology, big data-driven approaches have identified several 

promising biomarkers (Table 2). Meta-analyses of publicly available genomic datasets have 

identified colorectal cancer diagnostic biomarkers,27 as well as molecular signatures that 

sub-classify pancreatic cancer,28 HCC,29 and colorectal cancer.30 An analysis of multiple 

transcriptomic profiles from cell types within liver has yielded a 122-gene signature that 

defines the presence hepatic stellate cells in fibrotic livers and correlates with clinical 

outcomes.31 Multi-cohort transcriptome analysis has also identified and validated a 186-

gene hepatic signature predicting increased HCC risk and poorer prognosis in cirrhotic 

subjects.32–34 A reanalysis of 2,000 publicly available colorectal cancer transcriptomic 

profiles has led to identification of CDX2 as a prognostic biomarker predictive of disease-

free survival, as well as predictive biomarker of response to adjuvant chemotherapy in stage 

II/III disease.35

Nevertheless, very few of the candidate biomarkers described in the literature have been 

implemented in clinical care because of several obstacles, including costly and lengthy assay 

development and prospective clinical utility validation, uncertain intellectual property 

regulations to protect omics/big data-driven biomarkers, and an unclear path toward 

regulatory approval and reimbursement.22 Instead, optimizing and validating biomarkers in 
silico using big data resources could reduce time and cost, and substantially lower the bar for 

clinical translation of molecular biomarkers.

Big data in therapeutic discovery

Integrating big data analytics and validating drugs in silico has the potential to improve the 

cost-effectiveness of the drug development pipeline. Here we review the two major drug 

discovery approaches—de novo development and drug repurposing—and the related 

computational techniques and resources that support them.

De novo drug discovery

Despite enormous investment in research and development (R&D) within the 

pharmaceutical industry, the rate at which new drugs are approved has not meaningfully 

increased over the past two decades.36 Further, the cost of developing a new drug remains 

high, ranging from $3 billion to more than $30 billion per approval between 2006 and 

2014,37 reflecting the complex challenges involved in meeting current scientific, regulatory 

and commercial requirements. An over-reliance on in vitro high-throughput drug screening 

(HTS)* and the “one-drug-one-target-one-disease” concept is cited by some as a 

contributing factor in the abundance of late-stage R&D failures in recent years, many of 

which were the result of poor efficacy and unexpected toxicity of lead compounds developed 
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using HTS technology.38,39 In contrast, certain experimental systems identify candidate 

drugs based on higher-level readouts of pharmacologic activity, in order to predict the effects 

of a compound in vivo.40,41 Phenotypic screens using animal or cell-based models of disease 

offer improved performance in this regard, but come with their own set of drawbacks, 

including relatively low throughput, high expense, mechanistic uncertainty, and limited 

coverage of the full spectrum of human disease.

Big data-driven strategies are being increasingly used to address these challenges. 

Computational prediction of drug toxicity and pharmacodynamic/pharmacokinetic 

properties, based on integration of multiple data types, helps prioritize compounds for in 
vivo and human testing, potentially reducing costs.42 In particular, computational exclusion 

of drugs that are likely to be toxic, prior to clinical assessment, will enhance patient safety 

while minimizing delays and expense, since drug toxicity is a major reason for failed clinical 

trials. For example, IL-17-targeting therapy, which has efficacy in rheumatic diseases, was 

found to be ineffective—and even harmful—in IBD, contrary to expectations based on the 

similar inflammatory features of these conditions. Global readouts of drug activity are 

expected to help clarify the causal relationships in such cases.

Similarly, chemical structure-based prediction of pharmacologic activity can identify more 

potent candidate compounds.43 Large-scale compound library screening datasets and 

cheminformatics* tools deposited in publicly available databases can enable in silico 
reanalysis for virtual drug exploration. The characterization of global transcriptional changes 

has been widely proposed as a universal readout to quantitatively assess disease states and 

drug responses. This approach allows drug-disease matching in a high-throughput, low-cost, 

and mechanistically revealing manner, while still providing the organism- or organ-system-

level view of disease missing from target-driven studies.

Drug repurposing

A complementary approach to the discovery of new compounds is drug repurposing (also 

called drug repositioning), which entails the discovery of new indications for existing drugs. 

To date, successful drug repurposing has largely resulted from serendipity rather than 

systematic exploration.44 A classic example is sildenafil, which was repurposed from use in 

angina to erectile dysfunction based on an unexpected clinical effect. Similarly thalidomide, 

in spite of its well-known teratogenicity, was successfully repositioned as an effective 

treatment for multiple myeloma and leprosy.45 As public big data continues to accumulate, 

computational screening methods will foster a more systematic and comprehensive approach 

to drug repurposing (an example of the repurposing pipeline is outlined in Figure 4).

Conceptually, drug repurposing can be viewed as an optimization of the pharmacopoeia, 

aiming to maximize therapeutic efficiency within a fixed catalog of drugs and diseases.46 As 

such, repurposing has several attractive features as a complement to de novo drug 

development. First, the costs and time requirements associated with drug repurposing are 

greatly reduced,47 particularly for medications that have already been approved for clinical 

use in another indication or have cleared safety issues in phase I clinical trials.48 

Additionally, in the proper clinical setting, off-label use prior to regulatory approval could 

further reveal the full clinical potential of repurposed compounds in a time- and cost-
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efficient manner. Second, reduced financial and regulatory barriers make drug repurposing 

an attractive option for rare and neglected diseases, which are generally less likely to be 

targeted by pharmaceutical companies due to lower profit potentials.49 The Orphan Drug 

Act, which incentivizes the development of drugs for rare diseases, has increased industry 

interest in this area, as has the recognition that so-called “niche busters” may mitigate the 

financial risk of pursuing large-market blockbusters,50 but there is still a significant unmet 

worldwide need. Drug repurposing may therefore serve a critical role in bring valuable 

treatments to underserved patients and populations. Third, the growing availability of 

publicly-accessible cheminformatics* data and advanced computational tools is allowing 

academic researchers to assist and even replace industry partners as the primary drivers of 

drug repurposing efforts.51 Finally, big data-based drug repurposing will be closely aligned 

with precision medicine, which has recently been established as a national priority.52 As 

stated earlier, increased characterization of the molecular mechanisms of disease has led to a 

rethinking of the traditional clinical taxonomy, moving from symptom-based descriptors to a 

molecular classification system.13 Omics-guided drug repurposing aims to discover 

molecular taxonomy-based therapeutic indications, which is an integral goal of precision 

medicine.

Big data-driven techniques for drug discovery

Integration of multi-layer omics information

The recent explosion of omics data has radically changed approaches to therapeutic 

discovery, particularly for drug repurposing. Cost-effective, high-throughput technologies 

can now characterize disease states at multiple levels to generate a multidimensional 

molecular “disease signature”.*44 Such a signature may include transcriptomic, proteomic or 

other changes as functional readouts of disease activity. In parallel, several search engines, 

most notably the Connectivity Map (CMap)53 and Library of Integrated Network-based 

Cellular Signatures (LINCS),54 have cataloged the effects of pharmacologic compounds on a 

variety of cell types. These databases may be queried in order to identify candidate 

compounds that are likely to either reverse a disease signature—a technique known as 

“signature inversion”44—or mimic desirable changes. Given that these databases contain 

data on many currently approved drugs, signature inversion studies can rapidly identify 

repurposing candidates while prioritizing widely available generic drugs. Several notable 

examples of this approach include the identification of topiramate as a potential treatment 

for inflammatory bowel disease,55 chlorpromazine, trifluoperazine56 and prenylamine57 to 

treat HCC, citalopram as a candidate therapy for colorectal cancer,58 and the HDAC 

inhibitor vorinostat for gastric cancer.59 Taking this concept further, Suthram et al derived a 

network of disease signatures mapped onto protein interaction data, and identified a subset 

of modules that were common to many diseases.60 Importantly, these shared modules were 

enriched with druggable proteins, confirming the potential of transcriptomic data to identify 

therapeutically relevant targets.

Genome Wide Association Studies (GWAS)—linking germline DNA polymorphisms with 

clinical phenotypes—as well as expression quantitative trait locus (eQTL) analyses that 

integrate gene expression data, have enabled identification of numerous disease 
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susceptibility genes and more efficient discovery of therapeutic strategies, without relying on 

a priori biological hypotheses. These advances have been a driving force in the creation of 

large patient cohorts accompanied by archived biospecimens and omics databases.61 

Similarly, the study of somatic DNA structural and/or chemical alterations has greatly 

accelerated cancer drug discovery and development.62

It should be noted that there are a number of challenges when analyzing omics data, 

including high dimensionality (i.e., many more variables than samples, which can lead to the 

emergence of spurious associations),63 marked heterogeneity in data attributes (e.g., 

diversity in assay platform, experimental conditions, analytical methodologies, etc.),64 and 

an imperfect concordance between different types of biomolecules (e.g., mRNA transcripts 

and the corresponding translated proteins).65 Other types of data, such as chemical 

modifications, enzymatic activities, and genotypes, can also be integrated as additional 

inputs for a multilayered omics characterization,66–68 adding valuable information but also 

increasing the complexity of analysis.

Similarity assessment across distinct data types/domains

Omics-based big data may also be used to link drugs and indications by making novel 

connections between distinct data types and domains (the “guilt-by-association” 

approach).44,69 These connections can be made in a number of different ways (e.g., common 

molecular dysregulations in disease states, shared indications between apparently unrelated 

compounds,70 and drug side-effect overlap71), based on the assumption that one type of 

similarity implies another. Unexpected drug side effects— which may or may not be 

undesirable, depending on the clinical context—provide a rich source of functional drug 

information, both as a means of discovering related groups of compounds through their 

shared effect profiles,72 or by directly leading to the identification of repurposing 

applications (for example, a drug with a side-effect of urinary retention might be rationally 

repurposed to the treatment of urge incontinence).73 To facilitate side-effects-driven 

analyses, Kuhn et al compiled a database of known drug-side-effect associations in an easily 

mineable format, including side-effect frequencies for many drugs.74 Additionally, several 

user-friendly tools have been developed for the quantification of disease and drug similarity 

(see Table 1, Supplemental Table 1, and 75). There have also been recent attempts to 

integrate multiple types of disease-disease and drug-drug similarity within a single analytic 

pipeline for drug discovery.76–80

Network biology

Human diseases are generally the result of complex interactions between a variety of 

biomolecules within a multi-scale biological system, ultimately conspiring to bring about the 

organism-level phenotypes that are observed clinically.81 Network biology/medicine*, which 

conceptually represents different aspects of the cellular environment as nodes, connected by 

edges and spatially interrelated into modules, attempts to capture the full complexity of 

biological interactions on the system level. Compared to a reductionist approach, network 

medicine is thought to better recapitulate the fundamental biological processes and 

machinery—rather than their components— which bring about complex disease states. A 

central implication of the network hypothesis is that many diseases with multi-level causal 
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event interactions will be more effectively treated by promiscuous (i.e., multitarget) drugs 

than by highly-selective individual compounds, since multiple targets are engaged to 

ameliorate the disease phenotype.82

In addition to providing an intuitive means of representing the interactions that drive cellular 

biology, however, networks also enable the use of sophisticated computational comparisons, 

a reflection of the field’s mathematical roots as a derivative of graph theory. For instance, a 

curated network of drugs, proteins and side-effects may be used to visually explore the 

topological connections between compounds, which would otherwise be difficult to 

chemically relate.83 Similarly, networks have been used as a means of relating drugs and 

disease through common protein interactions.84

Omics data may also be integrated into networks. For example, Iorio et al generated a drug 

network by iteratively refining relationships between drug-induced transcriptional 

signatures, ultimately discovering “drug neighborhoods” which implied shared mechanisms 

and indications for member compounds.85 Networks additionally provide a convenient 

means of combining disparate data types into a unified analysis. In a recent study, Menche et 
al. attempted to relate diseases by topological network parameters using an integrated 

“interactome”, which they compiled from all known intracellular interactions. The authors 

considered diseases to be related if they were relatively adjacent on the network, and were 

able to demonstrate significant associations between this network proximity and externally-

derived disease features, including gene expression and symptomatology.86

Literature mining

There is a vast amount of knowledge contained in the published literature, far more than 

could be assimilated by a single investigator through traditional means. Further, research 

often congregates in silos of specialized knowledge, limiting the dissemination of concepts 

between disparate areas of investigation. Literature mining,* which originally developed 

from Swanson’s ABC model (i.e., if A is connected to B, and B is connected to C, there is a 

further implied connection between A and C87), now aims to extract information from 

highly diverse semantic contexts through the use of natural language processing algorithms, 

and has recently been adapted specifically for drug discovery and repurposing. For example, 

an analogy-based literature mining approach was able to successfully predict the in vitro 
activity of nearly one-third of a small molecule library against prostate cancer cells, with the 

added advantage of uncovering plausible mechanisms of action.88 Similarly, an automated 

reasoning algorithm connected drug-target information obtained through database and 

literature mining with cancer target information, showing a significant ability to recover 

known drug-cancer connections.89 Further, literature mining can be used as a means of 

adding information content to separate analytic pipelines. For example, Gramatica et al used 

a combination of literature mining and graph theory to construct a network-based model 

capable of identifying non-obvious connections between drugs and diseases based on 

topological parameters.90 User-friendly literature mining tools have been developed; for 

instance, PolySearch is a web-based text mining application allowing users to quickly 

identify connections between a variety of biological entities, including drugs and diseases, 

using information drawn from a variety of literature sources and curated databases.91
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Drug target analysis

The virtual screening of compounds based on molecular structure has advanced significantly 

over the past two decades. This approach seeks to predict likely interactions between drugs 

and target proteins, based on their respective structures. In silico structural screening can be 

valuable for both de novo drug design, by enabling promising compounds to undergo an 

initial selection process prior to experimental screening and validation, and for drug 

repurposing, being far more cost-effective than experimental HTS methods.92 Additionally, 

virtual screening can be conducted in either “forward docking” (screening a protein target 

against a library of compounds) or “reverse docking” (in which individual compounds are 

screened against a library of protein targets) formats, facilitating both disease- and drug-

specific discovery.92,93 Several web-tools have been implemented to enable the prediction of 

connections between drugs and target proteins using forward/reverse docking (or the related 

concept of pharmacophore* mapping) for user-input source compounds.94–97 For instance, 

an online tool specifically designed for repurposing studies has used virtual docking to 

compare input compounds against a library of molecules with known indications and side-

effects, helping to predict the potential uses and adverse effects for compounds of interest.98 

An alternative approach, comparing compound structures against sets of ligands known to 

bind a variety of target proteins, has been used to predict several novel drug-protein 

connections.99 A related structural-similarity-based screening tool, TargetHunter, was 

implemented to enable the identification of multiple targets for a given compound of 

interest.100

Quantitative structure-activity relationship (QSAR) algorithms attempt to predict the 

therapeutic, toxic, and pharmacologic activities of compounds by inferring likely 

physicochemical properties from the compounds’ molecular structures.101 A user-friendly 

machine learning platform, AutoWeka, has been developed to aid in the implementation of 

QSAR studies.102 Other web-based tools are available for the prediction of 

pharmacodynamics/pharmacokinetic and toxicity profiles of compounds based on structural 

input data.103,104 Recently, several QSAR-based methods have been used in the discovery of 

novel agents for the treatment of IBD,105 uncovering compounds capable of inhibiting NF-

κB106 and TNF-α converting enzyme,107 two molecules implicated in disease pathogenesis.

Drug combinations

With the enhanced ability to predict systems-level disease pathogenesis and drug effects, the 

rational design of combination therapies has become feasible. There are several potential 

advantages of drug combinations: better coverage of multiple disease mechanisms than with 

a single agent;108 dose reduction for a potentially toxic component of the combination while 

maintaining therapeutic efficacy;109 synergistic effects, including synthetic lethality in 

cancer110; and the prevention of innate and acquired drug resistance.111 Efficient, high-

throughput identification of effective drug combinations is therefore an important 

component of a successful therapeutic discovery pipeline. To this end, a number of methods 

for computational prediction of synergistic compounds have been developed,112 based on 

side-effect profiles,108 chemical and pathway data,113 network analyses,114 and drug-

induced gene expression patterns.109 Curated databases of reported drug combinations and 

other resources are also publicly available.115
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Statistical methods, computational infrastructure

Machine learning*, an automated form of data modeling and inference, has become a 

dominant tool in computational drug discovery, particularly in the implementation of QSAR 

studies.116 Machine learning algorithms are generally categorized either as supervised (i.e., 

guided by external information) or unsupervised (i.e., exploring inherent data structure), 

with each individual algorithm within these categories having specific advantages and 

disadvantages.117 Traditional machine learning algorithms, such as support vector machine 

(SVM), have been successfully utilized in drug development analysis by integrating drug 

and protein structures, disease states, and drug toxicity for repurposing and sensitivity 

prediction.118 More recently, deep learning, which uses multi-layer artificial neural networks 

to extract meaning from data, has shown promise because of its robustness when working 

with complex, heterogeneous datasets.119 For example, a recent deep neural network 

analysis was able to categorize drugs into therapeutic categories using pathway-enriched 

transcriptional signatures, with improved predictive performance compared to SVM.120 

Another study used deep learning to predict drug toxicity by correlating molecular structure 

to the risk of drug-induced liver injury.121 The simultaneous use of multiple machine 

learning algorithms (a technique known as ensemble learning) has been shown to combine 

the advantages of individual algorithms while minimizing their weaknesses, although the 

improved performance of ensembles often comes at the expense of computing time and poor 

interpretability.122 An ensemble learning approach recently proved effective in the 

prediction of drug sensitivity within a variety of human cancer cell lines.123

Although machine learning is showing great promise within drug discovery pipelines, the 

vast size and complexity of future big data could easily exceed the capability of currently 

available computational infrastructure. To address this challenge, several statistical measures 

that require less computational expense, such as the maximal information coefficient (MIC), 

have been developed to promote the efficient handling of big data.124 In parallel, 

development of computational infrastructure that can be rapidly expanded, such as the 

Hadoop file system,125 crowdsourcing,126 and massively parallel processing hardware 

(including the recruitment of graphical processing units127), are being actively explored and 

adopted.

Challenges

There are several challenges involved in the integration of a big data-driven pipeline for 

biomarker and drug discovery within gastroenterology and hepatology. As previously 

mentioned, the statistical complexity involved in the analysis of large, heterogeneous 

datasets is a major stumbling-block in the successful generation of data-driven 

discoveries.128 Adding layers of omics information may facilitate the identification of better 

molecular correlates, but potentially at the expense of larger required sample sizes to achieve 

proper statistical power. This in turn depends on the strength of association between 

molecular dysregulations and the phenotype of interest. In addition, significance assessment 

can be a challenging task when analyzing too many features. Thus, it is critical to: perform 

proper sample size calculation to ensure sufficient statistical power; correct for multiple 

hypotheses when estimating statistical significance; and reduce the dimensionality of 
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molecular datasets by filtering out less informative features, extraction of representative 

information from multiple features (e.g., principal components), and/or prioritization of 

small subsets of molecular features for the analysis based on prior biological knowledge. 

Most importantly, external replication of the findings is the key because it is not practically 

feasible to eliminate the false positive associations that occur in a single high-dimensional 

dataset.

In addition, in order to fully realize the potential of big data in the clinical sphere, there is 

still a need for more and better data. Many diseases lack sufficient molecular 

characterization, and existing datasets are only infrequently linked to specific clinical 

features and outcomes. Currently available patient-derived omics data are heavily biased 

towards accessible organ systems such as blood and surgical tissues. In contrast, for 

example, there are very few genomic datasets for advanced HCC because tissue acquisition 

is not recommended as part of routine clinical practice. Additionally, the uneven quality of 

publicly available data can make valid interpretation difficult. A number of quality control 

measures have been devised for omics experiments, but integrating data from multiple 

experiments and/or different technological platforms and experimental conditions is an 

ongoing problem. Technical or clinical variation between individual experiments (so-called 

“batch effects”) can obscure or spuriously mimic the biological changes being sought 

through integrative analysis.64 It is therefore critical that publicly available data include 

detailed technical information regarding all factors that might contribute to experimental and 

clinical variation. On the other hand, given the growing body of big data automatically 

collected from sources like wearable devices and EHR, perfect data curation and quality 

control is an unrealistic expectation, and instead novel methods will need to be developed 

that are less sensitive to data heterogeneity. Finally, it should be emphasized that while big 

data-driven approaches promise to accelerate the discovery of new therapies and diagnostics, 

all computational predictions must still be thoroughly validated in experimental and clinical 

settings prior to general use.

Future Prospects

We are moving towards big data-based healthcare, including data-driven methodologies to 

accelerate the discovery of new diagnostics and drugs. To maximize the benefit of these big 

data-based approaches in gastroenterology and hepatology, it will be essential for clinical 

researchers to systematically collect specimens and clinical information in order to create 

centralized, comprehensive repositories of mineable data to address unmet needs. Routine 

collection of omics data such as whole genome or exome sequences may be an option once 

it is proven to be a cost-effective approach. This will require not only the incorporation of 

omics technologies into the clinical toolkit, but also the creation of medical information 

systems to regularly collect, curate, and analyze the data, and deliver results and 

interpretation to the clinic. Regulatory mechanisms for patient privacy protection that do not 

unrealistically hamper conduct of big data-based research will also be another critical 

requirement for the realization of precision medicine. Such plans are already evolving using 

secure, open formats, and investigators conducting clinical trials should become familiar 

with these resources.129 At the same time, a new breed of scientists and clinicians must 

emerge who are facile with big data approaches and can translate these data into novel 
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biomarkers and drugs that prevent disease or improve the outcomes for patients with 

gastrointestinal and liver illnesses.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

CMap Connectivity Map

DNA deoxyribonucleic acid

HCV hepatitis C

HDAC histone deacetylase

EHR electronic health records

EBI European Bioinformatics Institute

LINCS Library of Integrated Network-based Cellular Signatures

MIC maximal information coefficient

mRNA messenger ribonucleic acid

NCBI National Center for Biotechnology Information

RCT randomized controlled trial

GI gastrointestinal

HCC hepatocellular carcinoma

NCI National Cancer Institute

R&D research and development

RNA ribonucleic acid

HTS high-throughput screening

QSAR quantitative structure-activity relationship

Glossary of terms

Big data
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Aggregate of various types of massive data, described by the following general attributes: 

volume (a large amount of data), velocity (rapid accumulation), variety (heterogeneity of 

relevant features), and veracity (the ability of data to faithfully represent its subject)

Cheminformatics
Computational approaches to quantitative/predictive analysis of small molecules for their 

properties and performance

Disease signature
A set of biomolecules (e.g., mRNA, protein) that changes in a coordinated manner in 

association with a specific disease condition such as presence or subtype of disease, poorer 

clinical outcome, and response to certain therapy

Drug signature
A set of biomolecules (e.g., mRNA, protein) that changes in a coordinated manner in 

response to treatment by a drug in experimental systems

Electronic health records
Clinical tool for gathering, storing, browsing, and analyzing patient health-related 

information. Widely implemented, though data format is not standardized, and access to data 

is controlled by regulatory policies and/or agencies such as Health Insurance Portability and 

Accountability Act (HIPAA) in the U.S

High-throughput screening
Large-scale, often unbiased, assessment of biomolecule libraries to identify compounds 

eliciting biological activity against targets of interest

In silico validation
The use of pre-collected biomedical data relevant to a specific research question, without 

generating new experimental and/or clinical data, to achieve a rapid and low-cost validation 

of new biological hypotheses, biomarkers, and therapies

Machine learning
Computational approaches to identify, match, and predict patterns from highly complex data

Omics data
Data comprehensively characterizing and/or quantifying a type of biomolecule, i.e., “-

omes”, including the genome, transcriptome, proteome, methylome, epigenome, 

metabolome, microbiome, virome, interactome, and phenome

Patient-reported health information
Health-related information reported or recorded by patients, beyond that normally recorded 

in routine clinical encounters, e.g., medication adherence, symptom tracking, voluntary 

genomic studies, etc

Pharmacophore
Biologically relevant chemical substructures, often comprising the sites of activity between a 

compound and its substrates
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Precision medicine
An emerging paradigm in translational biomedicine aiming to deliver medical care that is 

tailored to the specific health needs of individuals, rather than populations

Translational bioinformatics
Bioinformatics with special focus on clinical-basic translation

Wearable technology
A range of devices wearable by study subjects, e.g., clothes with vital sign monitors, contact 

lens with glucose sensors, which regularly and automatically collect and store data, and/or 

transmit information to a data collection server

References

Author names in bold designate shared co-first authorship.

1. Collins F, Green E, Guttmacher A, et al. A vision for the future of genomics research. Nature. 2003; 
422:835–847. [PubMed: 12695777] 

2. Costa FF. Big data in biomedicine. Drug Discov. Today. 2014; 19:433–440. [PubMed: 24183925] 

3. Cook CE, Bergman MT, Finn RD, et al. The European Bioinformatics Institute in 2016: Data 
growth and integration. Nucleic Acids Res. 2016; 44:D20–D26. [PubMed: 26673705] 

4. Kolesnikov N, Hastings E, Keays M, et al. ArrayExpress update-simplifying data submissions. 
Nucleic Acids Res. 2015; 43:D1113–D1116. [PubMed: 25361974] 

5. Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: Archive for functional genomics data sets - 
Update. Nucleic Acids Res. 2013; 41:D991–D995. [PubMed: 23193258] 

6. Pivovarov R, Elhadad N. Automated methods for the summarization of electronic health records. J. 
Am. Med. Informatics Assoc. 2015; 22:938–947.

7. Mezghani E, Exposito E, Drira K, et al. A semantic big data platform for integrating heterogeneous 
wearable data in healthcare. J. Med. Syst. 2015; 39:185. [PubMed: 26490143] 

8. Taichman DB, Backus J, Baethge C, et al. Sharing clinical trial data — a proposal from the 
International Committee of Medical Journal Editors. N. Engl. J. Med. 2016; 374:384–386. 
[PubMed: 26786954] 

9. National Cancer Institute Press Office. Newly launched Genomic Data Commons to facilitate data 
and clinical information sharing. 2016. Available at: http://www.cancer.gov/news-events/press-
releases/2016/genomic-data-commons-launch

10. Li LL, Cheng W-YW, Glicksberg BS, et al. Identification of type 2 diabetes subgroups through 
topological analysis of patient similarity. Sci. Transl. Med. 2015; 7:1–16.

11. Issa NT, Byers SW, Dakshanamurthy S. Big data: the next frontier for innovation in therapeutics 
and healthcare. Expert Rev. Clin. Pharmacol. 2014; 7:293–298. [PubMed: 24702684] 

12. Badawi O, Brennan T, Celi LA, et al. Making big data useful for health care: A summary of the 
inaugural MIT critical data conference. J. Med. Internet Res. 2014; 16:e22. [PubMed: 24451921] 

13. National Research Council (US) Committee on A Framework for Developing a New Taxonomy of 
Disease. Toward Precision Medicine: Building a Knowledge Network for Biomedical Research 
and a New Taxonomy of Disease. Washington, DC: The National Academies Press; 2011. 

14. Vanhove W, Nys K, Vermeire S. Therapeutic innovations in inflammatory bowel diseases. Clin. 
Pharmacol. Ther. 2016; 99:49–58. [PubMed: 26509246] 

15. Sherif ZA, Saeed A, Ghavimi S, et al. Global epidemiology of nonalcoholic fatty liver disease and 
perspectives on us minority populations. Dig. Dis. Sci. 2016; 61:1214. [PubMed: 27038448] 

16. Arsene D, Farooq O, Bataller R. New therapeutic targets in alcoholic hepatitis. Hepatol. Int. 2016; 
10:538–552. [PubMed: 27072540] 

Wooden et al. Page 15

Gastroenterology. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.cancer.gov/news-events/press-releases/2016/genomic-data-commons-launch
http://www.cancer.gov/news-events/press-releases/2016/genomic-data-commons-launch


17. Parkinson DR, McCormack RT, Keating SM, et al. Evidence of clinical utility: an unmet need in 
molecular diagnostics for patients with cancer. Clin. Cancer Res. 2014; 20:1428–1444. [PubMed: 
24634466] 

18. Sawyers CL, van’t Veer LJ. Reliable and effective diagnostics are keys to accelerating personalized 
cancer medicine and transforming cancer care: a policy statement from the american association 
for cancer research. Clin. Cancer Res. 2014; 20:4978–4981. [PubMed: 25204554] 

19. Poste G. Bring on the biomarkers. Nature. 2011; 469:156–157. [PubMed: 21228852] 

20. Teutsch SM, Bradley LA, Palomaki GE, et al. The Evaluation of Genomic Applications in Practice 
and Prevention (EGAPP) Initiative: methods of the EGAPP Working Group. Genet. Med. 2009; 
11:3–14. [PubMed: 18813139] 

21. Institute of Medicine. Evolution of Translational Omics: Lessons Learned and the Path Forward. 
Washington, DC: The National Academies Press; 2012. 

22. Goossens N, Nakagawa S, Sun X, et al. Cancer biomarker discovery and validation. Transl. Cancer 
Res. 2015; 4:256–269. [PubMed: 26213686] 

23. Redig AJ, Jänne PA. Basket trials and the evolution of clinical trial design in an era of genomic 
medicine. J. Clin. Oncol. 2015; 33:975–977. [PubMed: 25667288] 

24. Gannon HS, Kaplan N, Tsherniak A, et al. Identification of an “exceptional responder” cell line to 
MEK1 inhibition: clinical implications for MEK-targeted therapy. Mol. Cancer Res. 2015:207–
216. [PubMed: 26582713] 

25. Schully SD, Carrick DM, Mechanic LE, et al. Leveraging biospecimen resources for discovery or 
validation of markers for early cancer detection. J. Natl. Cancer Inst. 2015; 107:djv012. [PubMed: 
25688116] 

26. Mello MM, Francer JK, et al. Preparing for responsible sharing of clinical trial data. N. Engl. J. 
Med. 2013; 369:1651–1658. [PubMed: 24144394] 

27. Jung Y, Lee S, Choi H-S, et al. Clinical validation of colorectal cancer biomarkers identified from 
bioinformatics analysis of public expression data. Clin. Cancer Res. 2011; 17:700–709. [PubMed: 
21304002] 

28. Bailey P, Chang DK, Nones K, et al. Genomic analyses identify molecular subtypes of pancreatic 
cancer. Nature. 2016; 531:47–52. [PubMed: 26909576] 

29. Hoshida Y, Nijman SMB, Kobayashi M, et al. Integrative transcriptome analysis reveals common 
molecular subclasses of human hepatocellular carcinoma. Cancer Res. 2009; 69:7385–7392. 
[PubMed: 19723656] 

30. Guinney J, Dienstmann R, Wang X, et al. The consensus molecular subtypes of colorectal cancer. 
Nat. Med. 2015; 21:1350–1356. [PubMed: 26457759] 

31. Zhang DY, Goossens N, Guo J, et al. A hepatic stellate cell gene expression signature associated 
with outcomes in hepatitis C cirrhosis and hepatocellular carcinoma after curative resection. Gut. 
2015; 65:1754–1764. [PubMed: 26045137] 

32. Hoshida Y, Villanueva A, Kobayashi M, et al. Gene expression in fixed tissues and outcome in 
hepatocellular carcinoma. N Engl J Med. 2008; 359:1995–2004. [PubMed: 18923165] 

33. Hoshida Y, Villanueva A, Sangiovanni A, et al. Prognostic gene expression signature for patients 
with hepatitis C-related early-stage cirrhosis. Gastroenterology. 2013; 144:1024–1030. [PubMed: 
23333348] 

34. King LY, Canasto-Chibuque C, Johnson KB, et al. A genomic and clinical prognostic index for 
hepatitis C-related early-stage cirrhosis that predicts clinical deterioration. Gut. 2015; 64:1296–
1302. [PubMed: 25143343] 

35. Dalerba P, Sahoo D, Paik S, et al. CDX2 as a prognostic biomarker in stage II and stage III colon 
cancer. N. Engl. J. Med. 2016; 374:211–222. [PubMed: 26789870] 

36. Munos B. Lessons from 60 years of pharmaceutical innovation. Nat. Rev. Drug Discov. 2009; 
8:959–968. [PubMed: 19949401] 

37. Schuhmacher A, Gassmann O, Hinder M, et al. Changing R&D models in research-based 
pharmaceutical companies. J. Transl. Med. 2016; 14:105. [PubMed: 27118048] 

38. Hart T, Xie L. Providing data science support for systems pharmacology and its implications to 
drug discovery. Expert Opin. Drug Discov. 2016; 11:241–256. [PubMed: 26689499] 

Wooden et al. Page 16

Gastroenterology. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



39. Medina-Franco JL, Giulianotti MA, Welmaker GS, et al. Shifting from the single to the multitarget 
paradigm in drug discovery. Drug Discov. Today. 2013; 18:495–501. [PubMed: 23340113] 

40. Scannell JW, Blanckley A, Boldon H, et al. Diagnosing the decline in pharmaceutical R&D 
efficiency. Nat. Rev. Drug Discov. 2012; 11:191–200. [PubMed: 22378269] 

41. Swinney DC, Anthony J. How were new medicines discovered? Nat. Rev. Drug Discov. 2011; 
10:507–519. [PubMed: 21701501] 

42. Wang Y, Xing J, Xu Y, et al. In silico ADME/T modelling for rational drug design. Q. Rev. 
Biophys. 2015; 1308:1–28.

43. Nantasenamat C, Prachayasittikul V. Maximizing computational tools for successful drug 
discovery. Expert Opin. Drug Discov. 2015; 10:321–329. [PubMed: 25693813] 

44. Li J, Zheng S, Chen B, et al. A survey of current trends in computational drug repositioning. Brief. 
Bioinform. 2016; 17(1):2–12. [PubMed: 25832646] 

45. Ashburn TT, Thor KB. Drug repositioning: identifying and developing new uses for existing drugs. 
Nat. Rev. Drug Discov. 2004; 3:673–683. [PubMed: 15286734] 

46. Power A, Berger AC, Ginsburg GS. Genomics-enabled drug repositioning and repurposing: 
insights from an IOM Roundtable activity. JAMA. 2014; 311:2063–2064. [PubMed: 24867009] 

47. Hurle MR, Yang L, Xie Q, et al. Computational drug repositioning: from data to therapeutics. Clin. 
Pharmacol. Ther. 2013; 93:335–341. [PubMed: 23443757] 

48. Chong CR, Sullivan DJ. New uses for old drugs. Nature. 2007; 448:645–646. [PubMed: 17687303] 

49. Ekins S, Williams AJ, Krasowski MD, et al. In silico repositioning of approved drugs for rare and 
neglected diseases. Drug Discov. Today. 2011; 16:298–310. [PubMed: 21376136] 

50. Kakkar AK, Dahiya N. The evolving drug development landscape: From blockbusters to niche 
busters in the orphan drug space. Drug Dev. Res. 2014; 75:231–234. [PubMed: 24829189] 

51. Nair P. Second act. Proc. Natl. Acad. Sci. 2013; 110:2430–2432. [PubMed: 23359702] 

52. Collins FS, Varmus H. A new initiative on precision medicine. N. Engl. J. Med. 2015; 372:793–
795. [PubMed: 25635347] 

53. Lamb J, Crawford ED, Peck D, et al. The Connectivity Map: using gene-expression signatures to 
connect small molecules, genes, and disease. Science. 2006; 313:1929–1935. [PubMed: 
17008526] 

54. Vidović D, Koleti A, Schürer SC. Large-scale integration of small molecule-induced genome-wide 
transcriptional responses, Kinome-wide binding affinities and cell-growth inhibition profiles reveal 
global trends characterizing systems-level drug action. Front. Genet. 2014; 5:342. [PubMed: 
25324859] 

55. Dudley JT, Sirota M, Shenoy M, et al. Computational repositioning of the anticonvulsant 
topiramate for inflammatory bowel disease. Sci. Transl. Med. 2011; 3:96ra76.

56. Chen M-H, Yang W-LR, Lin K-T, Liu C-H, Liu Y-W, Huang K-W, et al. Gene expression-based 
chemical genomics identifies potential therapeutic drugs in hepatocellular carcinoma. PLoS One. 
2011; 6:e27186. [PubMed: 22087264] 

57. Wang J, Li M, Wang Y, et al. Integrating subpathway analysis to identify candidate agents for 
hepatocellular carcinoma. Onco. Targets. Ther. 2016; 9:1221–1230. [PubMed: 27022281] 

58. van Noort V, Schölch S, Iskar M, et al. Novel drug candidates for the treatment of metastatic 
colorectal cancer through global inverse gene-expression profiling. Cancer Res. 2014; 74:5690–
5699. [PubMed: 25038229] 

59. Claerhout S, Lim JY, Choi W, et al. Gene expression signature analysis identifies vorinostat as a 
candidate therapy for gastric cancer. PLoS One. 2011; 6:e24662. [PubMed: 21931799] 

60. Suthram S, Dudley JT, Chiang AP, et al. Network-based elucidation of human disease similarities 
reveals common functional modules enriched for pluripotent drug targets. PLoS Comput. Biol. 
2010; 6:e1000662. [PubMed: 20140234] 

61. Nelson MR, Tipney H, Painter JL, et al. The support of human genetic evidence for approved drug 
indications. Nat. Genet. 2015; 47:856–860. [PubMed: 26121088] 

62. Iorio F, Knijnenburg TA, Vis DJ, Bignell GR, Menden MP, et al. A landscape of pharmacogenomic 
interactions in cancer. Cell. 2016; 166:740–754. [PubMed: 27397505] 

Wooden et al. Page 17

Gastroenterology. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



63. Zollanvari A. High-dimensional statistical learning: roots, justifications, and potential machineries. 
Cancer Inform. 2016; 14:109. [PubMed: 27081307] 

64. Leek JT, Scharpf RB, Bravo HC, et al. Tackling the widespread and critical impact of batch effects 
in high-throughput data. Nat. Rev. Genet. 2010; 11:733–739. [PubMed: 20838408] 

65. Liu Y, Beyer A, Aebersold R. On the dependency of cellular protein levels on mrna abundance. 
Cell. 2016; 165:535–550. [PubMed: 27104977] 

66. Du J, Bernasconi P, Clauser KR, et al. Bead-based profiling of tyrosine kinase phosphorylation 
identifies SRC as a potential target for glioblastoma therapy. Nat. Biotechnol. 2009; 27:77–83. 
[PubMed: 19098899] 

67. Bachovchin, Da; Koblan, LW.; Wu, W., et al. A high-throughput, multiplexed assay for 
superfamily-wide profiling of enzyme activity. Nat. Chem. Biol. 2014; 10:656–663. [PubMed: 
24997602] 

68. Yu C, Mannan AM, Yvone GM, et al. High-throughput identification of genotype-specific cancer 
vulnerabilities in mixtures of barcoded tumor cell lines. Nat. Biotechnol. 2016; 34:419–423. 
[PubMed: 26928769] 

69. Hodos RA, Kidd BA, Shameer K, et al. In silico methods for drug repurposing and pharmacology 
Wiley Interdiscip. Rev. Syst. Biol. Med. 2016; 8:186–210.

70. Chiang AP, Butte AJ. Systematic evaluation of drug-disease relationships to identify leads for 
novel drug uses. Clin. Pharmacol. Ther. 2009; 86:507–510. [PubMed: 19571805] 

71. Yang L, Agarwal P. Systematic drug repositioning based on clinical side-effects. PLoS One. 2011; 
6:e28025. [PubMed: 22205936] 

72. Ye H, Liu Q, Wei J. Construction of drug network based on side effects and its application for drug 
repositioning. PLoS One. 2014; 9:e87864. [PubMed: 24505324] 

73. Zhang P, Wang F, Hu J, et al. Exploring the relationship between drug side-effects and therapeutic 
indications. AMIA Annu. Symp. Proc. 2013; 2013:1568–1577. [PubMed: 24551427] 

74. Kuhn M, Letunic I, Jensen LJ, et al. The SIDER database of drugs and side effects. Nucleic Acids 
Res. 2016; 44:D1075–D1079. [PubMed: 26481350] 

75. Xu R, Li LL, Wang Q. Towards building a disease-phenotype knowledge base: extracting disease-
manifestation relationship from literature. Bioinformatics. 2013; 29:2186–2194. [PubMed: 
23828786] 

76. Gottlieb A, Stein GY, Ruppin E, et al. PREDICT: a method for inferring novel drug indications 
with application to personalized medicine. Mol. Syst. Biol. 2014; 7:496–496.

77. Zhang P, Wang F, Hu J. Towards drug repositioning: a unified computational framework for 
integrating multiple aspects of drug similarity and disease similarity. AMIA Annu. Symp. Proc. 
2014; 2014:1258–1267. [PubMed: 25954437] 

78. Cheng L, Li J, Ju P, et al. SemFunSim: a new method for measuring disease similarity by 
integrating semantic and gene functional association. PLoS One. 2014; 9:e99415. [PubMed: 
24932637] 

79. Wang W, Yang S, Zhang X, et al. Drug repositioning by integrating target information through a 
heterogeneous network model. Bioinformatics. 2014; 30:1–8. [PubMed: 23751181] 

80. Iwata H, Sawada R, Mizutani S, et al. Systematic drug repositioning for a wide range of diseases 
with integrative analyses of phenotypic and molecular data. J. Chem. Inf. Model. 2015; 55:446–
459. [PubMed: 25602292] 

81. Chan SY, Loscalzo J. The emerging paradigm of network medicine in the study of human disease. 
Circ. Res. 2012; 111:359–374. [PubMed: 22821909] 

82. Hopkins AL. Network pharmacology: the next paradigm in drug discovery. Nat. Chem. Biol. 2008; 
4:682–690. [PubMed: 18936753] 

83. Von Eichborn J, Murgueitio MS, Dunkel M, et al. PROMISCUOUS: a database for network-based 
drug-repositioning. Nucleic Acids Res. 2011; 39:D1060–D1066. [PubMed: 21071407] 

84. Lee H, Bae T, Lee J-H, et al. Rational drug repositioning guided by an integrated pharmacological 
network of protein, disease and drug. BMC Syst. Biol. 2012; 6:80. [PubMed: 22748168] 

Wooden et al. Page 18

Gastroenterology. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



85. Iorio F, Shrestha RL, Levin N, et al. A semi-supervised approach for refining transcriptional 
signatures of drug response and repositioning predictions. PLoS One. 2015; 10:e0139446. 
[PubMed: 26452147] 

86. Menche J, Sharma A, Kitsak M, et al. Uncovering disease-disease relationships through the 
incomplete interactome. Science. 2015; 347(6224):1257601. [PubMed: 25700523] 

87. Swanson DR. Medical literature as a potential source of new knowledge. Bull. Med. Libr. Assoc. 
1990; 78:29–37. [PubMed: 2403828] 

88. Cohen T, Widdows D, Stephan C, et al. Predicting high-throughput screening results with scalable 
literature-based discovery methods. CPT pharmacometrics Syst. Pharmacol. 2014; 3:e140. 
[PubMed: 25295575] 

89. Tari L, Vo N, Liang S, et al. Identifying novel drug indications through automated reasoning. PLoS 
One. 2012; 7:e40946. [PubMed: 22911721] 

90. Gramatica R, Di Matteo T, Giorgetti S, et al. Graph theory enables drug repurposing – how a 
mathematical model can drive the discovery of hidden mechanisms of action. PLoS One. 2014; 
9:e84912. [PubMed: 24416311] 

91. Liu Y, Liang Y, Wishart D. PolySearch2: a significantly improved text-mining system for 
discovering associations between human diseases, genes, drugs, metabolites, toxins and more. 
Nucleic Acids Res. 2015; 43:W535–W542. [PubMed: 25925572] 

92. Ma DL, Chan DSH, Leung CH. Drug repositioning by structure-based virtual screening. Chem. 
Soc. Rev. 2013; 42:2130–2141. [PubMed: 23288298] 

93. Lee A, Lee K, Kim D. Using reverse docking for target identification and its applications for drug 
discovery. Expert Opin. Drug Discov. 2016; 11(7):707–715. [PubMed: 27186904] 

94. Li H, Gao Z, Kang L, et al. TarFisDock: A web server for identifying drug targets with docking 
approach. Nucleic Acids Res. 2006; 34:219–224.

95. Douguet D. e-LEA3D: A computational-aided drug design web server. Nucleic Acids Res. 2010; 
38:W615–W621. [PubMed: 20444867] 

96. Liu X, Ouyang S, Yu B, et al. PharmMapper server: a web server for potential drug target 
identification using pharmacophore mapping approach. Nucleic Acids Res. 2010; 38:W609–
W614. [PubMed: 20430828] 

97. Wang X, Chen H, Yang F, et al. IDrug: A web-accessible and interactive drug discovery and design 
platform. J. Cheminform. 2014; 6:1–8. [PubMed: 24397863] 

98. Luo H, Chen J, Shi L, et al. DRAR-CPI: a server for identifying drug repositioning potential and 
adverse drug reactions via the chemical-protein interactome. Nucleic Acids Res. 2011; 39:W492–
W498. [PubMed: 21558322] 

99. Keiser MJ, Setola V, Irwin JJ, et al. Predicting new molecular targets for known drugs. Nature. 
2009; 462:175–181. [PubMed: 19881490] 

100. Wang L, Ma C, Wipf P, et al. TargetHunter: an in silico target identification tool for predicting 
therapeutic potential of small organic molecules based on chemogenomic database. AAPS J. 
2013; 15:395–406. [PubMed: 23292636] 

101. Nantasenamat C, Isarankura-Na-Ayudhya C, Naenna T, et al. A practical overview of quantitative 
structure-activity relationship. EXCLI J. 2009; 8:74–88.

102. Nantasenamat, C.; Worachartcheewan, A.; Jamsak, S., et al. AutoWeka: Toward an Automated 
Data Mining Software for QSAR and QSPR Studies. In: Cartwright, H., editor. Artificial Neural 
Networks. 2nd. New York: Springer Science+Busines Media; 2015. p. 119-147.

103. Cheng F, Li W, Zhou Y, et al. AdmetSAR: A comprehensive source and free tool for assessment 
of chemical ADMET properties. J. Chem. Inf. Model. 2012; 52:3099–3105. [PubMed: 
23092397] 

104. Pires DEV, Blundell TL, Ascher DB. pkCSM: Predicting small-molecule pharmacokinetic and 
toxicity properties using graph-based signatures. J. Med. Chem. 2015; 58:4066–4072. [PubMed: 
25860834] 

105. García-Domenech R, Gálvez-Llompart M, Zanni R, et al. QSAR methods for the discovery of 
new inflammatory bowel disease drugs. Expert Opin. Drug Discov. 2013; 8:933–949. [PubMed: 
23668227] 

Wooden et al. Page 19

Gastroenterology. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



106. Gálvez-Llompart M, Recio MC, García-Domenech R. Topological virtual screening: A way to 
find new compounds active in ulcerative colitis by inhibiting NF-κB. Mol. Divers. 2011; 15:917–
924. [PubMed: 21717125] 

107. Yang JS, Chun K, Park JE, et al. Structure based optimization of chromen-based TNF-α 
converting enzyme (TACE) inhibitors on S1’ pocket and their quantitative structure-activity 
relationship (QSAR) study. Bioorg. Med. Chem. 2010; 18:8618–8629. [PubMed: 21078557] 

108. Huang H, Zhang P, Qu XA, et al. Systematic prediction of drug combinations based on clinical 
side-effects. Sci. Rep. 2014; 4:7160. [PubMed: 25418113] 

109. Lee J-H, Kim DG, Bae TJ, et al. CDA: combinatorial drug discovery using transcriptional 
response modules. PLoS One. 2012; 7:e42573. [PubMed: 22905152] 

110. Prahallad, a; Bernards, R. Opportunities and challenges provided by crosstalk between signalling 
pathways in cancer. Oncogene. 2015; 35:1–7. [PubMed: 25893285] 

111. Johannessen CM, Johnson LA, Piccioni F, et al. A melanocyte lineage program confers resistance 
to MAP kinase pathway inhibition. Nature. 2013; 504:138–142. [PubMed: 24185007] 

112. Sun X, Vilar S, Tatonetti NP. High-throughput methods for combinatorial drug discovery. Sci. 
Transl. Med. 2013; 5:205rv1.

113. Chen L, Li B-Q, Zheng M-Y, et al. Prediction of effective drug combinations by chemical 
interaction, protein interaction and target enrichment of KEGG pathways. Biomed Res. Int. 2013; 
2013:723780. [PubMed: 24083237] 

114. Huang L, Li F, Sheng J, et al. DrugComboRanker: drug combination discovery based on target 
network analysis. Bioinformatics. 2014; 30

115. Liu Y, Wei Q, Yu G, et al. DCDB 2.0: a major update of the drug combination database. Database 
(Oxford). 2014; 2014:bau124. [PubMed: 25539768] 

116. Lima AN, Philot EA, Trossini GHG, et al. Use of machine learning approaches for novel drug 
discovery. Expert Opin. Drug Discov. 2016; 11:225–239. [PubMed: 26814169] 

117. Smith TC, Frank E. Introducing machine learning concepts with WEKA. Methods Mol. Biol. 
2016; 1418:353–378. [PubMed: 27008023] 

118. Napolitano F, Zhao Y, Moreira VM, et al. Drug repositioning: a machine-learning approach 
through data integration. J. Cheminform. 2013; 5:30. [PubMed: 23800010] 

119. Mamoshina P, Vieira A, Putin E, et al. Applications of deep learning in biomedicine. Mol. Pharm. 
2016; 13:1445–1454. [PubMed: 27007977] 

120. Aliper A, Plis S, Artemov A, et al. Deep learning applications for predicting pharmacological 
properties of drugs and drug repurposing using transcriptomic data. Mol. Pharm. 2016; 13:2524–
2530. [PubMed: 27200455] 

121. Xu Y, Dai Z, Chen F, et al. Deep learning for drug-induced liver injury. J. Chem. Inf. Model. 
2015; 55:2085–2093. [PubMed: 26437739] 

122. Zhou, Z-H. Ensemble Learning. In: S, Li, editor. Encyclopedia of Biometrics. New York, NY: 
Springer Science+Busines Media; 2009. p. 270-273.

123. Wan Q, Pal R. An ensemble based top performing approach for NCI-DREAM drug sensitivity 
prediction challenge. PLoS One. 2014; 9:e101183. [PubMed: 24978814] 

124. Reshef DN, Reshef YA, Finucane HK, et al. Detecting novel associations in large data sets. 
Science. 2011; 334:1518–1524. [PubMed: 22174245] 

125. Agarwal P, Owzar K. Next generation distributed computing for cancer research. Cancer Inform. 
2015; 14:1–13.

126. Good BM, Su AI. Crowdsourcing for bioinformatics. Bioinformatics. 2013; 29:1925–1933. 
[PubMed: 23782614] 

127. Jayaraj PB, Ajay MK, Nufail M, et al. GPURFSCREEN: a GPU based virtual screening tool 
using random forest classifier. J. Cheminform. 2016; 8:12. [PubMed: 26933453] 

128. Alyass A, Turcotte M, Meyre D. From big data analysis to personalized medicine for all: 
challenges and opportunities. BMC Med. Genomics. 2015; 8:33. [PubMed: 26112054] 

129. Bierer BE, Li R, Barnes M, et al. A global, neutral platform for sharing trial data. N. Engl. J. 
Med. 2016; 374:2411–2413. [PubMed: 27168194] 

Wooden et al. Page 20

Gastroenterology. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



130. Kim JH, Sohn BH, Lee HS, et al. Genomic predictors for recurrence patterns of hepatocellular 
carcinoma: model derivation and validation. PLoS Med. 2014; 11:e1001770. [PubMed: 
25536056] 

131. Ji J, Eggert T, Budhu A, et al. Hepatic stellate cell and monocyte interaction contributes to poor 
prognosis in hepatocellular carcinoma. Hepatology. 2015; 62:481–495. [PubMed: 25833323] 

132. Huang H, Shiffman ML, Friedman S, et al. A 7 gene signature identifies the risk of developing 
cirrhosis in patients with chronic hepatitis C. Hepatology. 2007; 46:297–306. [PubMed: 
17461418] 

Wooden et al. Page 21

Gastroenterology. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Big data-driven discovery in gastroenterology and hepatology
Big data-driven discovery may provide new approaches to long-standing or emerging unmet 

needs in gastrointestinal and liver diseases (left panel). Multi-domain systematically and/or 

automatically collected data from patients and publicly or privately available databases are 

integrated into a highly rich and heterogeneous dataset (middle panel). Mining of the 

assembled big data by specialized methodologies (translational bioinformatics) more 

efficiently yields diagnostic devices, tools, and/or therapeutics (right panel).
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Figure 2. Advantages of the big data-driven approach
In the traditional, biological hypothesis-driven approach for a specific disease (upper panel), 

candidate biomarkers and therapeutic targets go through lengthy and costly serial preclinical 

validations. Clinical evaluation is performed without incorporating genetic and 

environmental variations among enrolled patients, and a therapeutic benefit in a subset of 

patients can be missed. As a result, successful clinical translation suffers from lower 

efficiency and higher cost. In contrast, the big data-driven approach (lower panel) 

incorporates different data types, including both molecular and clinical information, and 

computationally derives candidate biomarkers and therapeutic targets/drugs without relying 

on any prior hypotheses. Subsequent preclinical and clinical validation can be 

simultaneously performed in parallel by incorporating computational cross-species analysis, 

thereby substantially reducing the required time and costs associated with biomarker/

therapeutic development. Candidates may additionally be targeted to a specific niche patient 

subpopulation, further reducing the likelihood of translational failure.
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Figure 3. Big data-driven biomarker discovery
Biomarker candidates may be identified from either analysis of newly-collected samples or 

in silico analysis of existing data from public and/or private big data repositories (left). 

Biomarker validation has traditionally been a costly process requiring assay development 

and prospective clinical evaluation with patients followed according to a strict protocol. By 

incorporating big data resources, in silico validation of a candidate biomarker can establish 

its clinical utility in multiple patient cohorts without conducting costly and lengthy 

prospective clinical trials. Only well-validated biomarkers are advanced to subsequent assay 

development and clinical evaluation with reduced risk of failure to demonstrate clinical 

utility (right).
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Figure 4. Big data-driven therapeutic discovery
An example of the hypothesis-free, “signature inversion” therapeutic discovery approach for 

inflammatory bowel disease (IBD) is shown as an example of big data-driven drug discovery 

(e.g., Dudley et al55). A disease signature—a set of genes dysregulated in a coordinated 

manner in IBD patients—is first identified (left, genes A, B, and C are up-regulated, and 

genes D, E, and F are down-regulated). With the IBD disease signature, a database of drug 

perturbation gene signatures is queried to identify compounds that modulate the genes A-F 

in the opposite direction (i.e., suppress expression of genes A, B, and C, and induce 

expression of genes D, E, and F), and are thereby expected to antagonize the IBD disease 

signature. No mechanistic understanding of the associated gene dysregulation is needed for 

the computational compound identification. Subsequent experimental validation can confirm 

the predicted therapeutic effect and seek to uncover mechanism(s) of action before 

proceeding to further preclinical and clinical development (right). Because the screening is 

performed using data derived from approved drugs with known toxicity profiles, clinical 

testing can omit phase I and move immediately to phase II.
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