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Abstract
Sensoryneurons gather evidence in favor of the specific stimuli towhich they are tuned, but they could improve their sensitivity
by also taking counterevidence into account. The Bours–Lankheet model for motion detection uses counterevidence that relies
on a specific combination of the ON and OFF channels in the early visual system. Specifically, themodel detects pairs of flashes
that occur separated in space and time. If theflashes have the same contrast polarity, they are interpreted as evidence in favorof
the corresponding motion. But if they have opposite contrasts, they are interpreted as evidence against it. This mechanism
provides an explanation for reverse-phi (the perceived reversal of an apparent motion stimulus due to periodic contrast-
inversions) that is a conceptual departure from the standard explanations of the effect. Here, we investigate this
counterevidence mechanism by measuring directional tuning curves of neurons in the primary visual and middle temporal
cortex areas of awake, behaving macaques using constant-contrast and inverting-contrast moving dot stimuli. Our
electrophysiological data support the Bours–Lankheet model and suggest that the counterevidence computation occurs at an
early stage of neural processing not captured by the standard models.
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Introduction
Successful discrimination of sensory inputs requires a stage
at which the net sensory evidence is evaluated. Most models of
motion discrimination, for example, feature a final stage at
which the evidence for leftward motion is subtracted from that
for rightward motion (Reichardt 1961; Adelson and Bergen 1985;
van Santen and Sperling 1985; Johnston and Clifford 1995). This
“opponency” stage for motion discrimination is thought to be si-
tuated in the middle temporal (MT) area of the primate brain
(Snowden et al. 1991).

Optimally, the sensory evidence that is compared at this stage
should reflect not only the evidence in favor of either interpret-
ation, but also the evidence against it. The distinction between
these 2 types of evidence is the core difference between 2 other-
wise similar models of motion detection, the Mo–Koch and the
Bours–Lankheet models (Mo and Koch 2003; Bours et al. 2009).
These 2 models are similar in that they measure spatiotemporal
correlations between separate, half-wave-rectified detectors of
the light and dark parts of the visual stimulus, analogous to the
ON and OFF channels in primates (Schiller 1995; Westheimer

2007). Furthermore, both models provide explanations for the
reverse-phi illusion, that is, the reversal of perceived direction
in apparent motion displays of which the contrast polarity is in-
verted from one frame to the next (Anstis 1970), but they do so in
ways that highlight the distinction between counterevidence and
evidence-only models. In the Mo–Koch model, a detector whose
output is enhanced by constant-contrastmotion in one direction
is equally activated by a contrast-inverting stimulus moving in
the opposite direction. In other words, contrast-invertingmotion
provides evidence in favor of the opposite direction. In the Bours–
Lankheet model, however, a detector tuned to constant-contrast
motion in one direction is suppressed by contrast-inverting mo-
tion in the same direction, that is, the contrast-inversion indi-
cates evidence against the occurrence of that particular motion.

When only 2 directions are considered, the difference be-
tween “evidence” and “counterevidence”may not be immediately
clear, for, by nature of the subtractive opponency, any evidence
in favor of one interpretation is functionally equivalent to evi-
dence against the alternative. However, the difference is easily
seen when considering the response of a population of motion
detectors tuned to all directions on the circle. The published
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formulations of the Mo–Koch and Bours–Lankheet models
discriminate between left and right only; we extended these
one-dimensional models to two dimensions by assuming a regu-
lar fall-off of sensitivity from the preferred direction for each de-
tector. Figure 1A shows the hypothetical relation between the
population response curves to constant-contrast motion (top)
and to inverting-contrast motion (bottom) under the evidence-
only assumption of the Mo–Koch model. If, as predicted by
Mo–Koch, the phi response to a direction is identical to the re-
verse-phi response to the opposite direction, the curves should
be rotated by 180°, as depicted. Figure 1B shows the tuning curves
to constant- (top) and inverting (bottom)-contrast motion under
the counterevidence hypothesis of the Bours–Lankheet model.
Here, the inhibition by inverting-contrastmotion causes a trough
in the response at the direction where a peak is observed for
constant-contrast motion, resulting in the kidney-shaped popu-
lation response curve depicted in Figure 1B (bottom). A subse-
quent step of opponency, for example, by calculating the vector
average of the population response curve, would lead to pre-
dicted percepts that are consistent with phi and reverse-phi for
both models.

Two psychophysical observations provide support for the
notion that counterevidence is used in visual motion detection.
It is well known that 2 superimposed sets of dots that move in
opposite directions lead to a percept of transparent motion
where one dot field appears to slide over the other (Qian et al.
1994). Bours et al. (2007) asked what would happen if the dots
flipped their contrast polarity from frame to frame. The evi-
dence-only model predicts that the transparency percept should
remain unchanged, because of the equivalence of phi motion in
one and reverse-phi motion in the opposite direction. This pre-
diction is illustrated in Figure 1C for the left and right motion
using a population response curve. For both constant-contrast
and inverting-contrast motion, this curve is elongated in the
directions of the 2 components, which leads to a percept of trans-
parent motion (Grunewald and Lankheet 1996; Treue et al. 2000).
The counterevidence model, however, predicts a different per-
cept for inverting-contrast motion. Because the horizontally
moving inverting-contrast components inhibit the detectors
tuned to their directions, the population response adopts a
figure-eight shape that is taller than it is wide (Fig. 1D). Hence,
the counterevidence model predicts that transparency should
be seen vertically. The behavioral data by Bours et al. (2007) con-
firm this hypothesis. In an additional experiment, two stimuli,
one of constant and one of inverting-contrast, that both moved
physically (not perceptually) in the same directionwere superim-
posed. The Mo–Koch model predicts that transparent motion
should be seen in this configuration (Fig. 1E). Instead, Bours and
colleagues found that all net motion was abolished, consistent
with the counterevidence prediction (Fig. 1F).

In the present work, we compare and contrast the counterevi-
dence and evidence-only models by measuring tuning curves to
constant-contrast and inverting-contrast motion of motion-sen-
sitive neurons in the primary visual (V1) and MT cortex areas of
the macaque and comparing them with the predictions shown
in Figure 1A,B. Themean tuning curves of a sample of single neu-
rons provide an approximation of the mean population response
to a single direction (Pouget et al. 2000). We targeted V1 because
this is the stage at which the ON andOFF channels are thought to
fuse (Schiller 1995; Westheimer 2007). We found the tuning
curves in this area to be consistent with the counterevidence
hypothesis, that is, the measured tuning curves resembled the
predicted population tuning curves in Figure 1B more than
those in Figure 1A. We targeted MT because its activity is
known to be closely linked to motion perception (Parker and
Newsome 1998). Surprisingly, tuning curves in MT corresponded
most with the evidence-only prediction (Fig. 1A). We further
show how this seeming inconsistency could be resolved with a
nonlinear summation of the responses of the V1 neurons.
Taken together, our data provide evidence for the view promoted
by the Bours–Lankheet model that interesting inferences with
striking perceptual consequences occur at the earliest stages of
motion processing based on the conceptual distinction between
evidence and counterevidence.

Materials and Methods
Subjects and Surgical Preparation

The experiments involved 3 adultMacaca mulattamales: MM, MY,
and MN. Experimental and surgical protocols were approved
by the Rutgers University Animal Care and Use Committee
and complied with guidelines for the humane care and use of
laboratory animals of the National Institutes of Health. All surgi-
cal procedures were conducted under sterile conditions using
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Figure 1. (A) The evidence-only hypothesis predicts that the population response

curve to inverting-contrast motion (dashed arrow) is the same but 180° rotated

compared with the curve for constant-contrast motion in the same direction

(solid arrow). (B) The counterevidence hypothesis predicts that the response to

inverting-contrast motion has a trough where the peak is for constant-contrast

motion. Through opponency (e.g., by taking the vector average of the

population response) both models correctly predict the phi and reverse-phi

motion percepts (indicated with check marks). (C‒F) Review 2 psychophysical

experiments by Bours et al. (2007). (C) Evidence-only predicts a horizontal

transparency percept in displays of overlapping left and right motion of

inverting-contrast. (D) However, observers perceived motion that was orthogonal

to the 2 components. (E) According to evidence-only, 2 rightward motion

components—one of constant contrast, the other inverting—are perceived as

horizontal transparent motion. (F) Instead, observers perceived no net motion

in such a stimulus. (C‒F) These observations are consistent with the use of

counterevidence (check marks) but not with the evidence-only hypothesis

(x marks).
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ketamine-induced isoflurane anesthesia followed by combined
ibuprofen and morphine analgesia. We implanted custom-
made titanium head posts and high-density polyethylene re-
cording chambers normally to the skulls, dorsal to the expected
location of MT (MM and MN).

We implanted afloatingmicroelectrode array (Microprobes) in
the left V1 of MM and 2 such arrays in the left V1 of MY. During
this procedure, we created a craniotomy and a durotomy, slowly
lowered the arrays into the exposed cortex using a micro-
positioner, attached the wires to the edge of the craniotomy
using Vetbond tissue adhesive, and covered the entire craniot-
omy first with a dural growth regenerationmatrix (Duragen, Inte-
gra), and then with bone cement. Connectors (Omnetics) were
placed in a custom-made, tamper-proof, polyethylene chamber
affixed to the skull with dental cement.

Electrophysiology

To record from area MT, we penetrated the dura mater with a
stainless steel guide tube before each daily recording session to
gain access to the cortex. We then used a micro-positioner
(NAN Instruments) to lower epoxylite-coated tungsten electrodes
(1–2 MΩ at 1 kHz; Fred Haer Co.) through the guide tube into the
cortex. We identified area MT on the basis of its estimated ana-
tomical location from structural MRI scans, the high fraction of
direction-selective cells as assessed by the response to a circu-
lar-path motion stimulus (Schoppmann and Hoffmann 1976;
Krekelberg 2008), the small size of the receptive fields (RFs)
relative to the neighboring medial superior temporal area,
and the contralateral location of the RF centers as mapped
with an automated sequence of localized motion pulses
(Krekelberg and Albright 2005). The mean RF eccentricity of
the MT neurons that were included in this study was 6.2°
(SD 4.2) for MM and 2.5° (SD 1.6) for MN.

We recorded from area V1 using permanently implanted
floating microelectrode arrays (1.2 × 3.4 mm2, 32 electrodes with
lengths between 0.6 and 1.5 mm and 0.8–1 MΩ impedance at
1 kHz; Microprobes). MM’s V1 RFs were located approximately
2.5° below fixation; those of MY 1.5° below fixation and 2°
contralateral.

We digitized (14 bits at 25 kHz) the band-passed (Butterworth,
120 Hz at 12 dB/octave to 6 kHz at 24 dB/octave) electrical signals
using an AlphaLab recording system (Alpha Omega Co.). Offline,
we detected action potentials by thresholding the voltage trace at
5.0 (MT) or 3.5 (V1) SDs from themean.Wedecomposed thewave-
forms into awavelet-based feature space (Quiroga et al. 2004) and
used KlustaKwik (Kadir et al. 2014) for automated clustering. The
resulting clusters were checked and fine-tuned manually using
custom-made cluster and waveform visualization software.

Fixation Task

We measured eye-positions using infrared video eye trackers
(EyeLink, SR Research). Both eyes of MM and MY were tracked
at 500 Hz. The left eye ofMNwas tracked at 1000 Hz. Themonkeys
received juice rewards formaintaining their gazewithin 1.5° (MM)
or 2.0° (MN, MY) from the fixation marker. Whenever fixation was
interrupted, the trialwasaborted, thedata excluded fromanalysis,
and the stimulus-condition repeated at a later time.

Visual Apparatus

We used Neurostim (http://neurostim.sourceforge.net, last ac-
cessed September 22, 2015) on a computer with an NVidia 8800

GT graphics card to display stimuli on a 40 × 30 cm CRT monitor
(Sony GDM-520) at a vertical refresh rate of 150 Hz and a reso-
lution of 1024 × 768 pixels. The screen was at a distance of
49 cm (MN) or 64 cm (MM and MY) and had a calibrated linear
luminance range between 0.5 and 60 cd/m2.

Visual Motion Stimuli

Most studies that investigated reverse-phi typically used unlim-
ited lifetime dots or grating stimuli (e.g., Krekelberg and Albright
2005) whose contrast was inverted with each motion step. Such
stimuli, however, provide a mixture of inverted-contrast correla-
tions (between one frame and any odd number of frames later)
and constant-contrast correlations (between frames separated
by any even number of frames). As a consequence, such stimuli
cannot fully isolate same and opposite-contrast motion signals
and leave open a number of trivial explanations of the reverse-
phi illusion (Lu and Sperling 1999).

Here, we used a variant of the single-step dot lifetime (SSDL)
stimulus paradigm (Morgan and Ward 1980) that is generalized
to the time domain by the use of multiple, uncorrelated SSDL
components that are temporally interleaved (Bours et al. 2007,
2009). As in all SSDL stimuli, each dot was displacedwith a prede-
fined horizontal and vertical offset, and then randomly refreshed,
that is, randomly repositionedwithin the aperture on the next in-
stance. The advantage of this method over the use of standard
SSDL stimuli is that it allows the experimenter to set the delay be-
tween the first and second instances of the dots to anymultiple of
the monitor’s frame duration by interleaving any number of
stimulus components. To clarify, consider the example of an in-
terleaved-SSDL stimulus with 2 components, A and B. On odd
monitor frames, A is shown with one interspersed half of its
dots refreshed and the other half stepped relative to the previous
presentation of A. In the next presentation of A, 2monitor frames
later, the previously refreshed half is stepped and vice versa. On
the intervening evenmonitor frames, this sequence of operations
is performed on B. The result is a motion stimulus with a pure
delay of 2 monitor frames between the correlated dot steps. No-
tice how this is different frommanipulating the delay by keeping
each dot stationary for 2 consecutive frames before and after the
step. Thatwould result in amixture of delays, that is, the temporal
offsets between the first and third, first and fourth, second and
third, and second and fourth instances of the stepping dots.

In this study, we chose the parameters of the interleaved-
SSDL stimuli to be similar to those that yielded high sensitivity
in a study with human observers (Bours et al. 2009). Our stimuli
consisted of an equal number of black (1.0 cd/m2) and white
(55 cd/m2) dots that were randomly positioned within a circular
aperture on a mid-gray background (28 cd/m2). We programmed
the stimuli such that the dots either maintained or flipped lumi-
nance polarity across their single step to create the so-called con-
stant-contrast and inverting-contrast motion conditions. (We
reserve the terms “phi” and “reverse-phi” for the percepts that
these stimuli usually elicit.)

The size and position of the aperture was chosen to approxi-
mately match the RF of the MT unit or the combined RF of the V1
units being recorded simultaneously (see the “Electrophysiology”
section).

The density was 40 or 10 dots/deg2 with dots of 1 or 2 pixels
diameter, respectively. The change from high-density small
dots to medium-density larger dots was motivated by the obser-
vation that at the larger eccentricity of some of the MT units, the
dots were barely visible. To keep theMT and V1 data comparable,
we used both dot densities and sizes also in 12 of the 33 V1 units,
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the results of which proved similar and have been pooled in this
report.

Stimuli lasted 1000 ms in 16/32 MT and 28/33 V1 recordings or
500 ms otherwise. The duration of the blank interval between 2
stimuli normally was 100 ms, or 500 ms when a reward was
given to allow some time to drink. This occurred every 3–5 trials,
depending on the stimulus duration and the motivation level of
the monkey. These interstimulus intervals represent lower-
bounds as theywere occasionallymuch longer when themonkey
looked away from the fixation marker.

During the presentation interval, the stimulus produced con-
stant speed apparent motion in 1 of 12 evenly spaced directions.
In most V1 recordings, we used the speeds 4, 8, and 16°/s, but in
some (5/33) the speed 32°/s was added to or substituted the 4°/s
conditions. We used a range of speeds for 2 reasons. First, it
improved the odds of stimulating each of the simultaneously
recorded V1 neurons at near-optimal speed. Second, it has been
shown thatmanyV1neurons exhibit bimodal direction-tuning to
high-speed dot stimulus motion, which has been explained in
terms of their filter properties in spatiotemporal frequency
space (Skottun et al. 1994). Systematic deviations from unimodal
tuning could aid in disentangling the counterevidence and
evidence-only mechanisms, as will be clarified below (see the
“Analysis” section). In the MT recordings, due to the inherent
time constraint of the single-electrode technique, only 1 speed
or sometimes (6/32) 2 speeds were used from the range 8, 16,
32, and 64°/s. Because only one MT neuron was recorded at a
time, we were able to confirm online whether it was sufficiently
responsive to the speed chosen or start over with an adjusted
speed otherwise. The mean speeds used per unit in this report
were on average 17.9°/s (SD 7.5) for V1 and 25.8°/s (SD 14.1) forMT.

We used interleaved-SSDL stimuli with 1, 2, or 3 components
in early pilot recordings, after which we settled on using 2 com-
ponents in the remainder of the recordings. This corresponds to a
step-delay of 13.3 ms at the 150-Hz refresh rate of our stimulus
display.

To minimize the quantization effect of the monitor’s rect-
angular pixel matrix on the step sizes in different directions,
we plotted the dots using OpenGL’s anti-aliasing. This method
weighs pixel intensity by the fraction of overlap by a virtual dot.
Thus, the luminance-weighted center of the cluster of pixels
representing a dot maximally coincides with the dot’s intended
position. We used anti-aliasing in one randomly interleaved
half of the trials and regular nearest-neighbor plotting in the
other. Separate analyses of these halves of the data yielded simi-
lar results (except that twice as many units showed significant
direction-tuning when anti-aliasing was used); hence, we pre-
sent the pooled data in this study.

All conditionswere presented in a randomly interleaved fash-
ion and repeated in blocks until the monkey lost the motivation
to maintain fixation, or (MT only) the isolation was lost, or suffi-
cient repeats were recorded.

Analysis

We characterized the neural response to each stimulus presenta-
tion with the firing rate (action potentials per second) observed
between stimulus onset plus an estimate of the neuron’s latency
(Friedman and Priebe 1998) and the offset of the stimulus.
For each unit, we created direction-tuning curves for constant-
contrast (TCC) and inverting-contrastmotion (TCI) by calculating
themean firing rates permotion direction. A unit was included in
our analysis when both its TCC and TCI were significantly non-
uniform (Rayleigh test, Zar 1999) at the 5% level.

The critical test in this study was to compare each unit’s TCC
withnon-parametric predictions of that tuning curve based on its
TCI. The evidence-only model (see below) predicts that TCC
should correspond to TCI rotated by 180°, we use rTCI to refer
to this predicted curve. The counterevidence model predicts
that TCC should correspond to the TCI curve turned upside
down. We call this the inverted TCI (iTCI). Note that rTCI and
iTCI only provide different predictionswhen the TCI deviates suf-
ficiently from a cosine, either by being tuned sharper or broader,
or by featuring systematic irregularities such as bimodal direc-
tion tuning at high stimulus speeds.

To compare TCC, iTCI, and rTCI, we took the following steps.
The tuning curves were normalized by subtracting their respect-
ive means and scaling the areas under the curves to unity. rTCI
was created by cycling TCI over the motion direction axis by
180°. iTCI was created by flipping the signs of TCI. To create
pooled averages of the tuning curves of the V1 (Fig. 3A) and MT
(Fig. 4A) units, we defined the preferred direction of constant-
contrast motion, that is, the circular average of TCC, as the 0°
direction.

We report the correlations of rTCI and iTCI to TCC in Fisher
z-transformed partial correlations (Zrot and Zinv). The advantage
of this measure over standard R2 values is that the variance
stabilizing property of this transformation warrants the use of
the Wilcoxon’s signed rank (WSR) test to compare populations
of paired Zrot to Zinv values. This test has more statistical power
than the sign test. The partial correlation for the rTCI and iTCI
predictions was of the form (shown for rTCI)

Rrot ¼ rrot � rinvrrotinvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� rinv2Þð1� rrotinv2Þ

p ð1Þ

where rinv is the correlation of iTCIwith TCC, rrot is the correlation
of rTCI with TCC, and rrotinv is the correlation of the 2 predictions.
Z-values were calculated as (shown for rTCI):

Zrot ¼ 1
2
ln

1þ Rrot

1� Rrot

� �
νð�1=2Þ ð2Þ

where v is the degrees of freedom, that is, the number of values in
the tuning curve (12) minus 3 [adapted from Smith et al. (2005)].

The preceding analysis of tuning curves makes no assump-
tion about the shape of those curves. For completeness, we also
performed this analysis on the basis of parametric fits to TCC and
TCI, and on the residuals of those fits. The parametric fit was of
the form (shown for TCC)

dTCC ¼ aWðθÞ þ b ð3Þ

where a scales the response amplitude, b provides a direction-in-
dependent (untuned) response, and W(θ) is a “warped cosine”
function over the domain of motion directions:

WðθÞ ¼
� ðcos θþ 1Þ�cþ1

2�c þ 1; c< 0

ðcos θþ 1Þcþ1

2c
� 1; c � 0

8>><
>>: ð4Þ

where c is the warp factor. A positive (negative) value of c results
in a cosine-like tuning curve with a narrow (broad) positive lobe;
c = 0 results in a perfect cosine. This warped cosine is better sui-
ted for tuning curves than the commonly used scaled and offset
von Mises function (Mardia and Jupp 2009) because when the
concentration parameter (κ) that governs the width of the von
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Mises is zero, the function is flat and the amplitude parameter
has no effect. This degeneracy is problematic because neurons
(especially those in V1) often have tuning widths near 180° that
require near-zero κ to fit. In contrast, the warped cosine fit
(eq. 3) is well behaved in this domain. Half-height tuning widths
attainablewith this particularwarped cosine function are limited
between roughly 6° and 354° (−1023 < c <1023) when using 64-bit
numerical precision.

Primary Visual to Middle Temporal Cortex Model

To better understand the relationship between V1 neurons and
their MT counterparts, we constructed a simple linear–nonlinear
model in which the shapes of MT’s pooled TCC and TCI (Fig. 4A)
are derived from those measured in V1 (Fig. 3A) by means of
weighted integration, followed by response normalization, and
a stationary nonlinearity:

d½MT� ¼ ½Wc�V1�d: ð5Þ

The operator * represents circular convolution, V1 the response
vector of the pooled V1 neurons to the 12 directions, and W a
warped cosine weighting profile (eq. 4). Because we were chiefly
interested in the relative shapes of the V1 and MT tuning curves,
we fit the model to the normalized pooled MT responses d½MT�.
Brackets denote scaling of the enclosed vector between 0 and 1,
that is, ½x� ¼ ðx�xminÞ=ðxmax�xminÞ. The model had 2 free para-
meters. The variable c represents thewidth of theweighting pro-
file and determines the range of preferred directions over which
theMT neurons sample fromV1. The variable d specifies the out-
put nonlinearity. The responses of theMTpopulation to constant
and inverting-contrast motion (MTTCC,MTTCI) were fit to the re-
spective responses of the V1 population to constant and invert-
ing-contrast motion (V1TCC,V1TCI) in parallel (i.e., using the
same values for c and d). We optimized equation (5) using the
quasi-Newton algorithm of Matlab 2014b’s fminunc function.

Results
To investigate whether the primate visual system uses countere-
vidence in motion detection, we measured tuning curves to con-
stant-contrast and inverting-contrast motion inmacaque V1 and
MT. We recorded 33 V1 units (14 in MM and 19 in MY) and 32 MT
units (15 inMMand 17 inMN) that exhibited significant direction-
tuning to both motion types (Rayleigh test; P < 0.05). The mean
angular offset between the preferred directions of constant and
inverting-contrast motion was 183.0° (SD 3.0) in V1 and 180.0°
(SD 2.5) in MT. Hence, the reverse-phi effect was reflected in the
activity of the V1 andMT units in this study, consistent with pre-
vious reports (Ibbotson and Clifford 2001; Livingstone et al. 2001;
Livingstone and Conway 2003; Krekelberg and Albright 2005).

Primary Visual Cortex

A representative V1 neuron’s tuning curves for constant-contrast
motion (TCC, solid curves) and inverting-contrast motion (TCI,
dashed curves) are shown in Figure 2A for 3 different motion
speeds. The TCCs correlated less strongly with the rTCIs (red
curves in Fig. 2B) than with the iTCIs (blue curves in Fig. 2C),
which suggests that this V1 neuron made use of counterevi-
dence. The example V1 neuron in Figures 2D‒F shows a similar
result. The shape of the direction tuning of this neuron depended
strongly on the stimulus speed. With increasing speed, the tun-
ing curve became bimodal, with 2 lobes flanking the direction

where the single peak was observed at the lowest speed (Skottun
et al. 1994). The bimodal shapes are apparent in both the TCIs and
the TCCs, and they clearly alignmuch better after inversion than
after rotation (Fig. 2E,F).

To investigate inversion and rotation across the sample of
units, we created one TCC and one TCI per unit, pooling across
stimulus speeds. The curves were then centered on zero and
scaled to unity area under the curve. The means of these curves,
similarly normalized, are shown in Figure 3A. Consistentwith the
example V1 units in Figure 2, the correlation between rTCI and
TCC was much lower (Zrot = 1.22) than that between iTCI and
TCC (Zinv = 5.59). The scattergraph in Figure 3B shows each indi-
vidual unit’s Zinv plotted against its corresponding Zrot. A paired
two-sided WSR test on these data showed that Zinv was indeed
superior to Zrot (WSRZ =−3.90, P < 0.001).

We performed the same analysis based on parametric fits of
the normalized tuning curves (eq. 3). Owing to the normalization,
these fits had effectively only a single free parameterc that corre-
sponds to the tuning width. As shown in Figure 3C,D, the TCC-
fits correlated more with the iTCI-fits than with the rTCI-fits
(Zinv = 7.75; Zrot = 2.07; WSRZ = −3.24, P = 0.001). This means that
the superiority of iTCI over rTCI (and therefore counterevidence
over evidence-only) was driven at least partially by the overall
shape of the tuning curve as captured by the parametric fit.

The parametric fits to the data in Figure 3A, although excel-
lent on average ðR2

TCC ¼ 0:98; R2
TCI ¼ 0:98Þ, were unable to capture

the bimodality in the tuning curves at high stimulus speeds. We,
therefore, also quantified the correlation between the residuals of
the TCI fits and the residuals of the TCC fit after inversion or
rotation. The mean correlation after inversion (Zinv = 1.92) was
larger than after rotation (Zrot = 0.75), and this differencewas stat-
istically significant at the population level (Fig. 3F; WSRZ =−3.37,
P < 0.001). This analysis shows that the residuals were not uncor-
related noise, but systematic irregularities of the tuning curves
that inverted, rather than rotated, when the stimulus was chan-
ged from constant-contrast to inverting-contrast motion.

Middle Temporal Cortex

Figure 2G shows the TCCs (solid curves) and TCIs (dashed curves)
measured in a single MT neuron using 2 stimulus speeds. The
rTCIs (Fig. 2H, red curves) correlated more strongly with their
TCC counterparts than the iTCIs did (Fig. 2I, blue curves), which
suggests that, in contrast to V1, this MT neuron did not make
use of counterevidence. This was consistent across the MT sam-
ple (Fig. 4), in which TCC correlated strongest with rTCI. The pre-
ference for rotation was statistically significant across the
population of normalized MT tuning curves (Fig. 4B, WSRZ = 3.53,
P < 0.001) and their fits (Fig. 4D, WSRZ = 3.26, P = 0.001), but not for
the residuals (Fig. 4F, WSRZ = 1.44, P = 0.081). The lack of signifi-
cance for the residuals is likely related to the fact that equation
(3) captured theMT tuning curvesmuch better than theV1 tuning
curves [i.e., the mean Fisher-transformed goodness-of-fit values
ðarctanh√R2Þ of the MT sample (2.26 SD 0.72) were larger than
V1’s (1.78 SD 0.54); two-sample t-test, t128 = 4.30, P < 0.001].
Hence, systematic irregularities of the MT tuning curves, if they
existed, were likely overshadowed by independent noise.

Primary Visual to Middle Temporal Cortex

In summary, the TCCs of V1 neurons correlated most strongly
with the iTCIs (consistent with the counterevidence hypothesis),
but the TCCs and TCIs of MTmatched best through rotation (con-
sistent with the evidence-only hypothesis). Considering that
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most input to MT stems from V1 (Maunsell and van Essen 1983;
Movshon and Newsome 1996), this raises the question how this
transition might arise.

To study this transition in some detail, we created a model in
which each MT neuron received a weighted input from the V1
population, followed by a power-law nonlinearity (eq. 5). We
found that this two-parameter model captured the transition
very well (Fig. 5B). An excellent fit (R2 = 0.99) was provided with
a 228° wide weighting profile (c = −0.97) and an approximately
quadratic nonlinearity (d = 2.08). To examine the contributions
of either parameter, we performed additional fits with 2 reduced
models.

The model with only the weighted integration in place,d½MT� ¼ ½Wc � V1�, yielded an R2 of 0.79 (Fig. 5C). This represented
a significant reduction of fit quality compared with the full model
even considering the removal of a free parameter (F1,22 = 389;
P < 10−14). The alternative one-parameter model, d½MT� ¼ ½V1�d, was
about equally impaired (R2 = 0.76; F1,22 = 439; P < 10−15; Fig. 5D). How-
ever, unlike the full and thenonlinearity-onlymodels, theweighted
integration model failed to capture the Zrot > Zinv property of the
measured MT curves that is essential to the present results. Visual
inspection of theweighted integrationmodel fit (Fig. 5C) shows that
its benefit relative to the baseline model, d½MT� ¼ ½V1� (R2 = 0.62;
Fig. 5A), stemmedmainly fromsmoothing-out the slight bimodality

of V1’s TCC. The effect of the nonlinearity is that it amplifies higher
responsesmore than lower responses. This provided the tightening
of themodel TCC in Figure 5D thatwas also observed experimental-
ly.We conclude that, even though theweighted integration and the
expansive nonlinearity are about equally important in terms of
minimizing the residuals of the fits, it is the latter property that
drives the transition fromV1’s Zrot <Zinv toMT’s Zrot >Zinv behavior.

TCC and TCI Tuning Parameters

Our analysis focused on comparisons of rotated and inverted
tuning curves as direct tests of the model predictions. The para-
meters of the tuning curvefits (eq. 3), however, provide additional
insights into the processing ofmotion in V1 andMT thatwere not
touched upon in the previous analyses (Fig. 6).

Most notably, TCCs had significantly greater amplitude than
TCIs in both areas (Fig. 6A) and while TCC was broader than TCI
inV1, the oppositewas true inMT (Fig. 6C). In addition, therewere
differences between the overall responses in areas V1 andMT. For
instance, tuning curve amplitudes (Fig. 6A) were higher in MT,
whereas the untuned firing rates (Fig. 6B) were higher in V1.
This may have resulted from the closer match between the
stimulus speeds and the preferred speeds of the MT units, and
from the higher signal-to-noise ratio of the MT recordings

Z Z

Z

Z

Z

Z

Figure 2. (A) The tuning curves of an example V1 neuron to constant-contrast (TCC, solid curves) and inverting-contrast (TCI, dashed curves) motion at speeds of 4, 8, and

16°/s (grayscale, darker indicates faster). Across the range of speeds, the preferred direction to constant- and inverting-contrast motion is roughly 180° apart: a neural

correlate of the reverse-phi effect. (B) The TCIs rotated over 180° (red) correlated weakly with the TCCs (low Zrot values). (C) The iTCIs (blue) correlated strongly with

the TCCs (high Zinv values). This is consistent with the counterevidence hypothesis. (D) Another V1 neuron that also exhibits low Zrot (E) and high Zinv (F). Stimulus

speed had a profound effect on the shape of this neuron’s direction-tuning curves, which became progressively bimodal at higher velocities. (G) The direction-tuning

curves of an MT neuron measured at 8 and 16°/s also reflected the reverse-phi effect but rotation of the TCI (H) yielded much stronger correlation with the TCC than

inversion (I). Shaded areas represent SEM (shown only once for clarity).
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owing to the use of the single-electrode recording technique in
that area.

Discussion
Accidental correlations between parts of amoving scenewith op-
posite contrast occur continually. But, because objects typically
do not invert contrast as they move, none of these correlations
are consistent with true motion. The visual system could exploit
this by taking opposite-contrast spatiotemporal correlations as
counterevidence for the motion consistent with those spatio-
temporal parameters (Bours et al. 2007). Our data support the
view that such a counterevidence strategy is implemented by dir-
ection-selective V1 neurons.

A counterevidence strategy was also proposed by Read and
Cumming (2007) to solve the correspondence problem in stereop-
sis. They argued that phase-disparity detectors in V1 provide
counterevidence, or in their terms act as “lie-detectors”, to un-
mask false positives signaled by position-disparity detectors. It
would be interesting to find out if these 2 examples of the use

of counterevidence in V1 are separate encoding schemes or
that they are functionally and mechanistically related.

Reverse-Phi

In terms of the counterevidence hypothesis, inverting-contrast
apparent motion is seen as reversed because it selectively acti-
vates detectors that pick up evidence against the velocity that
is consistentwith the spatiotemporal parameters of the apparent
motion (Bours et al. 2007). We think this is an interesting idea be-
cause it offers a novel interpretation of the reverse-phi effect
which has, since its discovery by Anstis in 1970, received relative-
ly little scrutiny comparedwith illusions of comparable phenom-
enological strength, such as the motion aftereffect (Mather et al.
1998).

Two reasons for the indifference toward reverse-phi may be
that several motion models claim to readily explain the illusion
(Reichardt 1961; Adelson and Bergen 1985; van Santen and
Sperling 1985; Johnston and Clifford 1995), or that there is noth-
ing to explain (Lu and Sperling 1999). We believe these reasons
to be incomplete or incorrect, respectively. To address the latter
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point first, Lu and Sperling (1999) present the example of a sine-
wave grating that steps 90 degrees per frame. Inverting the con-
trast of such a grating results, of course, in a display that is phys-
ically identical to a constant-contrast grating stepping in the
opposite direction. Reverse-phi, however, is observed in a wide
range of stimuli, not just in 90° stepping sine-wave gratings. Not-
ably, our SSDL stimuli contain none of themotion signals that the
model of Lu and Sperling (1999; their Fig. 4) uses to explain re-
verse-phi.

As to the former point, standard motion models achieve
seemingly straightforward explanations of reverse-phi by virtue
of using detectors that respond to positive and negative polarity
visual inputs with positive and negative neural activity. For in-
stance, stimulating the Reichardt detector with positive (light)
and negative (dark) flashes with the appropriate spatiotemporal
separation will produce, through multiplication of these signals,
a negative outcome that indicates reversal of the detected
velocity. In the primate visual system, however, light and dark in-
puts drive separate ON andOFF channels (Schiller 1995;Westhei-
mer 2007). The Bours–Lankheet andMo–Kochmodels are specific
elaborations of the Reichardt detector that take this ON–OFF

separation into account and generate predictions that are directly
testable using electrophysiological data.

The motion-energy model (Adelson and Bergen 1985) also
lacks separate ON and OFF channels and would require signifi-
cant modifications to generate predictions related to counterevi-
dence that could be tested in V1. Conceptually, however, the
explanation of reverse-phi in terms of motion energy is that the
intermittent contrast-inversions cause a significant amount of
motion energy to be displaced in Fourier space, which then
activates the opposite detector. As such, reverse-phi arises
from evidence in favor of the direction opposite the physical dis-
placement, not from counterevidence. It would be interesting to
see what insights into the early visual system could be obtained
by elaborating or restructuring the motion-energy models to
include ON and OFF channel inputs with counterevidence
interactions.

Additional experimental evidence for suppressive interaction
between ON and OFF channels can be observed in the data of
Livingstone and Conway (2003). They used reverse-correlation
to show that the velocities that cause maximal facilitation for
same contrast interactions also generate maximal suppression

–180 –90 0 90 180
–0.2

–0.1

0

0.1

0.2

–2 0 8

Z
in

v

–2

0

2

4

6

8

–180 –90 0 90 180
–0.2

–0.1

0

0.1

0.2

–5 0 5 10

Z
in

v

–5

0

5

10

–180 –90 0 90 180
–0.02

–0.01

0

0.01

Zrot

Zrot

Zrot

–2 0 4

Z
in

v

–2

0

2

4

M
ea

n 
no

rm
al

iz
ed

 M
T

 r
es

po
ns

e

.02

A

E

C

B

F

D

2 4 6

2

Zrot = 2.47
Zinv = 0.71

ro

in

Z t = 7.65
Z v = −3.59

Zrot = 9.31
Zinv = −5.53

Figure 4. Comparison of counterevidence and evidence-only predictions in areaMT (N = 32). TCC (solid black) correlated strongest with the rotated TCI (red). This was true

for (A) the pooled tuning curve and (B) the population of tuning curves; (C) the fits to the pooled population tuning curves inA; and (D) thefits to the individual units’ tuning

curves. (E) The residual of the fit to the pooled TCC (black) also correlated strongest with the rotated TCI residual (red), but this effect was not significant across the

population (F). Same conventions as in Figure 3.

Evidence and Counterevidence in Motion Perception Duijnhouwer and Krekelberg | 4609



for opposite-contrast interactions (see an example neuron in
their Fig. 7). Recent work provides evidence that a similar mech-
anism exists in fruit flies (Clark et al. 2011).

Our results suggest that V1 neurons enhance their sensitivity
to ecologically relevant motion by detecting two-point correla-
tions between as well as within the ON and OFF channels. We
interpret this as an example of a neuron’s sensitivity to a high-
er-order statistical regularity. Other examples of such higher-
order sensitivity have previously been reported. For instance,
neurons in area MT are sensitive to the higher-order correlations
created by multiple successive motion steps in the same direc-
tion (Mikami et al. 1986), and both fruit flies and humans reliably
extract additional motion information from scenes containing
three-point diverging and converging spatiotemporal correla-
tions that are invisible to the standard motion models and the
Bours–Lankheet model (Hu and Victor 2010; Fitzgerald et al.
2011; Clark et al. 2014). Recent work from our laboratory suggests
that networks of recurrently connected neurons arewell suited to
extract such higher-order statistical regularities dynamically
(Richert et al. 2013; Joukes et al. 2014).

Primary Visual Versus Middle Temporal Cortex

We found that in V1 the TCI and TCC related through inversion,
whereas inMT they related through rotation. The proposed coun-
terevidence mechanism can only be implemented at a stage
where motion detectors have access to separate ON and OFF
channels. Even though there is evidence to support the view
that MT cells have some polarity sensitivity (Hartmann et al.

2011), this property is much more common in V1 neurons (Schil-
ler 1995; Westheimer 2007). Hence, it should be no surprise that,
given that we found it at all, we found support for the countere-
vidence mechanism in V1.

The difference between the MT and V1 responses, however, is
surprising from the perspective that so many of the motion tun-
ing properties in V1 and MT are highly similar (Pack et al. 2006).
Our V1 to MTmodel (eq. 5) demonstrates that simple mathemat-
ical operations (convolution, normalization, and exponentiation)
that map onto known neurophysiological properties, such as
weighted synaptic inputs, divisive response normalization, and
rectifying output nonlinearities (Carandini et al. 1997; Rust
et al. 2006), can account for this discrepancy. In other words,
we do not believe that our finding that MT’s TCC and TCI relate
through rotation means that MT performs a de novo evidence-
only calculation, but that the signature of the counterevidence
it inherits fromV1, inversion, ismasked bya strongnonlinear sig-
nal transformation between the 2 areas.

Our V1 to MT model is related to the notion of an opponency
stage that is present in most models of motion perception
(Adelson and Bergen 1985; van Santen and Sperling 1985;
Johnston and Clifford 1995). In its simplest form, this stage com-
bines all negative and positive direction signals into a positive
signal in the net direction, which in 2D amounts to calculating
the vector average. In V1, there is little opponency (Snowden
et al. 1991); hence, the positive and negative signals representing
constant and inverting-contrast motion were seen as peaks and
troughs in the tuning curves, respectively. In MT, however, oppo-
nency produces a positive output in the net direction of motion
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Figure 5. V1 to MT signal transformation models. (A) The no-transformation baseline, that is, MT’s (gray) normalized TCC (solid) and TCI (dashed) are directly compared

with those of V1 (black). (B) The full linear–nonlinear summation model. Convolution of the normalized V1 curves with a 228°-wide filter followed by nearly quadratic

nonlinearity provides a close fit to the normalized MT curves. Two reduced models with (C) only weighted integration or (D) only the nonlinearity.

Figure 6. Quantification of the tuning curve properties in V1 and MT. (A) Amplitude. (B) Untuned response. (C) Half-height tuning width. Connecting lines represent

two-sided t-tests (paired within a cortex area, two-sample between areas) with the number of stars indicating significance levels (n + 1 SD). Error bars represent SEM.
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regardless of whether the input from V1 had a trough in one dir-
ection or a peak in the other. Hence, MT is predicted to be oblivi-
ous to whether the contrast of the motion it is encoding is
constant or inverting, which is consistent with our finding that
MT’s TCI and TCC had the same (but 180° rotated) shape. This
finding alsomatches well with what can be deduced from the ob-
servations that (1) the sensitivities to inverting and constant-
contrast motion are similar in humans (Bours et al. 2009) and
that (2) there is a close correspondence between perception and
neuronal activity in MT (Parker and Newsome 1998).

However, although nearly identical in shape, we found that,
in MT, the TCIs had a smaller amplitude than the TCCs
(Fig. 6A). According to models of decoding that we (Krekelberg
et al. 2006a, 2006b; Krekelberg and van Wezel 2013) and others
(Churchland and Lisberger 2001; Priebe and Lisberger 2004)
used to relate neural activity to perception, this predicts lower
sensitivity to inverting-contrast motion, which seems at odds
with the finding that human observers are equally sensitive to
both types of motion (Bours et al. 2009). However, we also
found a widening of MT’s TCIs (Fig. 6C). This widening implies
that more neurons respond to inverting-contrast motion than
to constant-contrast motion, which could counteract
the expected loss of sensitivity (Pouget et al. 1999; Zhang and
Sejnowski 1999).

We are at present not certain what causes the reduced ampli-
tude and widening of the tuning of MT neurons to inverting-
contrast stimuli. The fact that inhibition cannot reduce firing
rates below zero and that inhibition plays a crucial role in the
proposed interaction between the ON and OFF channels may
contribute. This is supported by the finding that TCIs in V1 al-
ready have smaller amplitudes than the corresponding TCCs
(Fig. 6A). Another contributing factor could be the specifics of
the opponency mechanism operating between V1 and MT,
which ismore complex than the vector-averaging approximation
used inmostmodels (Krekelberg andAlbright 2005). For instance,
vector averaging could not produce percepts of motion transpar-
ency, which are known to be encoded by population responses in
MT (Pouget et al. 2000; Treue et al. 2000). Our understanding of the
transformation of the motion signal from V1 to MT may be sig-
nificantly furthered by studying the responses to the transparent
motion stimuli used previously in the psychophysics of Bours
et al. (2007) (Fig. 1C‒F). Ideally, such a study would use identical
visual stimulation in both areas (Patterson et al. 2014), distin-
guish between the simple and complex subpopulations of V1
(Pack et al. 2006), and include a measure of the connectedness
of the neurons under study (Movshon and Newsome 1996).
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