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Structured Abstract

PURPOSE—Currently available optical coherence tomography (OCT) angiography (OCTA) 

systems provide information about blood flux, but limited information about blood flow speed. We 

develop a method for mapping the previously proposed variable interscan time analysis (VISTA) 

algorithm into a color display that encodes relative blood flow speed.

METHODS—OCTA was performed with a 1050 nm, 400 kHz A-scan rate, swept source OCT 

system using a 5 repeated B-scan protocol. VISTA was used to compute the OCTA signal from B-

scan pairs having 1.5 ms and 3.0 ms interscan times. The resulting VISTA data were then mapped 

to a color space for display.

RESULTS—We evaluated the VISTA visualization algorithm in normal eyes (n=2), non-

proliferative diabetic retinopathy (NPDR) eyes (n=6), proliferative diabetic retinopathy (PDR) 

eyes (n=3), geographic atrophy (GA) eyes (n=4), and exudative age-related macular degeneration 
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(AMD) eyes (n=2). All eyes showed blood flow speed variations, and all eyes with pathology 

showed abnormal blood flow speeds compared to controls.

CONCLUSIONS—We developed a novel method for mapping VISTA into a color display, 

allowing visualization of relative blood flow speeds. The method was found useful, in a small case 

series, for visualizing blood flow speeds in a variety of ocular diseases, and serves as a step 

towards quantitative OCTA.
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Ocular blood flow; variable interscan time analysis (VISTA); optical coherence tomography 
(OCT); optical coherence tomography angiography (OCTA); age-related macular degeneration 
(AMD); nascent geographic atrophy (GA); choroidal neovascularization (CNV)

Introduction

A variety of ocular pathologies are caused by, and/or result in, alterations of the retinal and 

choriocapillaris vasculatures. For example, age-related macular degeneration (AMD) and 

diabetic retinopathy (DR), both of which are leading causes of blindness and severe vision 

loss in developed countries,1–3 are associated with alterations of the retinal and 

choriocapillaris vasculatures.4–16 Retinal, and, to a lesser extent, choroidal vasculatures have 

traditionally been imaged with dye-based methods, namely fluorescein angiography (FA) 

and indocyanine green angiography (ICGA).17, 18 More recently, optical coherence 

tomography (OCT) angiography (OCTA) has emerged as a non-invasive method for 

volumetrically visualizing retinal and choroidal vasculatures in vivo.19–30 OCTA has its 

roots in Doppler OCT, a technique that measures the Doppler shifts caused when flowing 

erythrocytes scatter the OCT beam.31–39 OCTA uses a repeated B-scan protocol wherein 

multiple B-scans are acquired from the same tissue location in rapid succession. The 

principle idea of OCTA is that if a region of tissue is stationary—that is, there is no flowing 

blood in the region—the repeated B-scans will be identical; however, if the tissue’s optical 

scattering is time-dependent—that is, there is blood flow through the region—the repeated 

B-scans will differ. By comparing repeated B-scans, for example via decorrelation, 

information about blood flow can be inferred and microvasculature visualized.

Variable interscan time analysis (VISTA), an OCTA imaging and analysis technique 

proposed by Choi and Moult et al., was developed to overcome the limitation that typical 

OCTA does not directly measure blood flow speeds.40 Although a summary of the technique 

is outlined herein, interested readers are referred to the previous publication for details. 

Because OCTA signals are related to blood flux through a non-linear, and generally 

unknown, statistical distribution, in practice OCTA signals are primarily used to detect the 

presence or absence of vasculature, rather than to infer blood flow speed information. We 

can understand that OCTA measures blood flux—that is, the blood volume per unit area per 

unit time—and not blood flow speed by noting that, in general, OCTA computations are 

influenced not only by the speed at which the scattering blood constituents travel, but also 

by their density. In describing the VISTA algorithm, we hypothesized a relationship between 

blood flux and the OCTA signal. In this relationship there are three essential regions of 

blood flux. The first, relates to low blood fluxes that cannot be detected by OCTA. The 
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second relates to blood fluxes that can be both detected and distinguished from one another. 

Finally, the third relates to blood fluxes that can be detected but cannot be distinguished 

from one another. Accordingly, to be fully correct, a qualifier must be added to the previous 

statement: OCTA detects the presence or absence of vessels whose blood flux is within a 
certain range. This qualifier is necessitated by the fact that any OCTA system has a smallest 

detectable flux, and a largest distinguishable flux. Vessels having blood fluxes smaller than 

the smallest detectable flux cannot be distinguished from background noise; vessels having 

blood fluxes larger than the largest distinguishable flux cannot be distinguished from one 

another. The underlying idea of the VISTA algorithm is to exploit the fact that the smallest 

detectable flux and largest distinguishable flux are functions of the interscan time.

Although the VISTA algorithm allows for differentiation of blood flow speeds, it has not yet 

been developed into an easily interpretable, clinically useful form. The current methodology 

for viewing VISTA is to compare, side-by-side, OCTA images corresponding to different 

effective interscan time. While such comparison is sufficient for making simple 

observations, it is, in general, difficult to visualize the differences in the blood flow speeds 

without close inspection. The aim of this paper is to present a methodology for displaying 

and interpreting VISTA information in a clear, concise fashion that allows clinicians to 

visualize relative blood flow speeds. We demonstrate the method’s utility by visualizing the 

choroidal, choriocapillaris, and retinal vasculatures in a small case series of different 

pathologies.

Methods

Subjects

This study protocol was approved by the Institutional Review Boards at the Massachusetts 

Institute of Technology (MIT) and Tufts Medical Center. All participants were imaged in the 

ophthalmology clinic at the New England Eye Center (NEEC) and written informed consent 

was obtained prior to imaging. The research adhered to the Declaration of Helsinki and the 

Health Insurance Portability and Accountability Act. All subjects underwent a complete 

ophthalmic examination including a detailed history, refraction, intraocular pressure 

measurement, anterior segment examination and a dilated fundus examination by an 

ophthalmologist at the NEEC.

SS-OCT and SS-OCTA Imaging

OCTA was performed using an ultrahigh speed SSOCT research prototype developed at 

MIT and in use at NEEC. A similar OCT system was described previously and therefore 

only key characteristics are summarized herein.30 The prototype OCT instrument uses a 

vertical cavity surface emitting laser (VCSEL) swept light source with a 400 kHz A-scan 

rate. The light source is centered at 1050 nm wavelengths which, when compared to the 840 

nm wavelengths used in most commercial systems, enables deeper light penetration into the 

RPE, choroid, and reduced attenuation from ocular opacities.41 OCT interferometric signals 

are acquired with an analog-to-digital acquisition card externally clocked at a maximum 

frequency of ~1.1 GHz using an external Mach-Zehnder interferometer.
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OCTA imaging was performed with 6 mm × 6 mm and 3 mm × 3 mm fields of view. For 

both field sizes, 5 repeated B-scans from 500 uniformly spaced locations were sequentially 

acquired. Each B-scan consisted of 500 A-scans and the fundamental interscan time between 

repeated B-scans was ~1.5 ms, accounting for the mirror scanning duty cycle. The 

acquisition time for repeated B-scans was ~7.5 ms (~1.5 ms × 5) per position. A total of 5 × 

500 × 500 A-scans were acquired per OCTA volume for a total acquisition time of ~3.9 s. 

The volumetric scan pattern yields isotropic transverse sampling of the retina at 12 µm and 6 

µm intervals for the 6 mm × 6 mm and 3 mm × 3 mm field sizes, respectively. Smaller field 

sizes have proportionately more transverse sample density and provide higher OCTA image 

quality.

Image Analysis

OCTA images were generated using the VISTA algorithm by calculating a decorrelation 

signal on a pixel-by-pixel basis between sequential OCT B-scans (1↔2, 2↔3, 3↔4, and 

4↔5), and every-other scan (1↔3, 2↔4, 3↔5); the former corresponds to the fundamental 

interscan time of ~1.5 ms, while the latter corresponds to an effective interscan time of ~3.0 

ms. For additional details regarding the VISTA algorithm, interested readers are referred to 

Choi and Moult et al.40 To correct for eye motion, which produces spurious decorrelation 

signals, the repeated B-scans were motion corrected using a rigid registration algorithm prior 

to calculating decorrelation. For each B-scan location and interscan time, the OCTA images 

were averaged to improve the signal-to-noise ratio. This was performed at all 500 B-scan 

locations in order to obtain a three-dimensional OCTA volume. In order to compensate for 

patient motion, 2 orthogonally oriented volumes were acquired from each eye. These 

volumes were then registered and merged using a previously described algorithm.42, 43 From 

these OCTA volumes we computed projections of the volume over various depths, with the 

exact depth depending on the particular feature we were interested in studying.

The VISTA data generated were visualized using the method described below. With the 

OCTA images computed, the process of visualizing the VISTA images can be partitioned 

into two, primarily parallel, phases (Figure 1). One phase, on the left of Figure 1, computes, 

for each image pixel, the brightness value of that pixel in the final VISTA display; in our 

chosen display, the pixel brightness is representative of the blood flux. The other phase, 

shown on the right of Figure 1, computes, for each image pixel, the hue (color) of the pixel 

in the final VISTA display; the pixel hue represents the blood flow speed at that pixel. These 

two stages are detailed below.

The first step in computing the VISTA brightness values is to take, for each pixel, the 

maximum of the two input OCTA images. It is usually the case that the image formed from 

the larger effective interscan time—in our case 3 ms—contains the higher decorrelation 

value; however, due to the stochastic nature of sampling, it can happen that the shorter 

interscan time—in our case 1.5 ms—actually contains the higher decorrelation value. After 

the maximum operation, the image contrast is adjusted by remapping the pixel intensities in 

the 1% and 99% quantiles to the values 0 (black) and 1 (white), to normalize the contrast; 

the remaining pixel intensities are then linearly mapped between the black and white levels.
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In the next step, the cases of retinal and CC vasculatures are handled differently. In the case 

of OCTA images of the retinal vasculature, a Frangi vesselness filter, which emphasizes 

vascular features, is applied to the contrast adjusted image.44 The resulting image is then 

thresholded and applied to the adjusted brightness image as binary mask, effectively setting 

pixels between vessels to zero. In doing so, the intercapillary noise, specifically in the hue 

channel, is significantly reduced. We are able to use a vesselness filter for OCTA images of 

the retinal vasculature because the vessel structure can be clearly resolved by OCTA. 

However, this vesselness filter is not applied to choriocapillaris (CC) OCTA images, because 

the fine vascular CC structure cannot be resolved with the resolution of a typical OCT 

system.

In the second phase of the algorithm the hue values are determined. First, the pixel-by-pixel 

ratio of the two input OCTA images is calculated. This ratio is related to the blood flow 

speed at a given location, as can be seen by considering the VISTA curves presented in Choi 

and Moult et al.40 In the next step, a joint bilateral filter is applied to the image to smooth 

the random fluctuations that are an inevitable consequence of the randomness inherent in 

blood flow, and the derivative nature of the signal processing used to compute the VISTA 

image. A joint bilateral filter, rather than a Gaussian, is used to preserve vessel boundaries. 

In the case of CC images, the weights for the filter are derived from the adjusted maximum 

OCTA image, while in the case of retinal images, the weights for the filter are derived from 

the vesselness masked adjusted image. Because the hue value of each VISTA pixel is, in 

essence, a ratio of the decorrelation value obtained from the 1.5 ms interscan time to the 

decorrelation value obtained from the 3.0 ms interscan time, the values above unity are 

likely the result of a high blood flow speed. This motivates setting these ratios to unity, 

which in our convention corresponds to the fastest displayed blood flow speed. After this 

adjustment, the VISTA pixels are clamped at pre-defined high and low values, and linearly 

remapped; the clamping values differ for the retinal and choroidal images, and were chosen 

empirically in order to maximize the dynamic ranges. The rationale behind choosing 

different clamping values for the retinal and choroidal images is that the retinal and 

choroidal vasculatures comprise ocular blood supplies with different characteristics.

In the final step of the algorithm the brightness and hue images are used to display the 

images in a pseudo-HSV (hue, saturation, value) color space, which was modified to have a 

more uniform color gradient/distribution. We adopted the convention of showing slower 

blood flow speeds in blue, and faster blood flow speeds in red.

Results

We evaluated our VISTA visualization algorithm on normal control eyes (n = 2; age = 48.0 

± 7.1) (Figure 2), eyes with non-proliferative diabetic retinopathy (NPDR) (n = 6; age = 56.7 

± 7.3) (Figure 3), eyes with proliferative diabetic retinopathy (PDR) (n = 3; age = 49.4 

± 4.4)(Figure 4), eyes with geographic atrophy (GA) (n = 4; age = 78.2 ± 2.8) (Figure 5), 

and exudative AMD patients (n = 2; age = 84.5 ± 7.8) (Figure 6). In normal controls we 

observed a blood flow speed gradient, with higher speeds associated with the larger retinal 

vasculatures, and slower speeds associated with smaller vessels. In patients with NPDR we 

observed slower speeds associated with capillary looping, and in PDR patients we observed 
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slower speeds associated with neovascular lesions. In patients with GA, we observed a 

distribution of blood flow speeds associated within the choroidal vessels underlying the 

region of atrophy; we also observed lower blood flow speeds in certain areas beyond the 

margins of atrophy. In patients with exudative AMD we observed a distribution of speeds 

associated with the lesions, with faster speeds being associated with the trunk of the lesion, 

and slower speeds associated with the lesion extremities.

Discussion

The ability to visualize blood flow speed changes—as opposed to simply the presence or 

absence of blood flux—has the potential to be valuable for studying a variety of ocular 

diseases, particularly those whose pathogenesis proceeds through different stages of flow 

impairment, rather than an immediate progression to total vascular atrophy. The previously 

proposed VISTA algorithm provides a way to extend OCTA in order to infer information 

about relative blood flow speeds; however, its clinical utility was limited by lack of an 

effective method of viewing the VISTA data. The algorithm presented here addresses this 

limitation, and maps the raw VISTA data into an easily interpretable color space.

The relative blood flow speeds visualized by our VISTA algorithm are consistent with those 

that would be expected based on physical principles and prior literature.45 In particular, in 

the normal control eyes we observed a gradient of blood flow speeds, with faster speeds 

being associated with the larger retinal vessels, and slower speeds being associated with the 

smaller retinal vessels. We also observed slower blood flow speeds associated with capillary 

looping and neovascularization. We suspect that the slower blood flow speeds in these cases 

are related to the tortuosity and vessel caliber; here, our findings are difficult to place in the 

context of prior studies because, to our knowledge, there have been no studies investigating 

local blood flow speeds in these lesions.

In this study we performed VISTA using two different interscan times—1.5 ms, and 3.0 ms. 

However, it should be noted that VISTA is extendable to an arbitrary number of interscan 

times. In general, as more interscan times are added, a finer gradation of blood flow speeds 

is appreciable. There are, however, a number of caveats. First, as the effective interscan time 

increases, the likelihood of patient motion accumulating between repeated B-scans also 

increases, which can have a deleterious effect on image quality. Addressing this limitation 

requires use of accurate motion correction methods, through hardware based eye tracking, 

computational post-processing, or a combination thereof. The second issue, which is a result 

of speed at which ocular blood flows, is that as the interscan time becomes longer, the 

probability of sampling in the third region of blood, as described in the Introduction, 

increases. The third region of blood flow, characterized by blood flows that can be detected 

but not distinguished from one another, does not provide additional information when 

sampled multiple times. Accordingly, as the number of interscan times increases, we would 

likely need to reduce the fundamental interscan time. Reducing the fundamental interscan 

time also has the advantage of allowing higher speed blood flows to be resolved, such as 

those that may occur in larger vasculature. Reducing the fundamental interscan time requires 

improved galvanometer scanning performance and, if the same fields and sampling densities 
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are desired, increased A-scan rates. Despite these challenges, we believe that generalizing 

VISTA to multiple (> 2) interscan times is a promising direction of future research.

When interpreting the results of this study, as well as the capabilities of the presented 

algorithm, there are a number of important limitations to consider. First, the number of 

analyzed eyes was small, meaning that the observations made in this study may not 

generalize to larger cohorts. Second, it is important to stress that the algorithm presented 

provides a scheme to visualize relative blood flow speeds, not absolute blood flow speeds. 

Furthermore, while our observed results were consistent with previous literature, we did not 

validate our algorithm explicitly, for example, by using a flow phantom. While such 

validation studies would be interesting, they are themselves limited, as it is difficult to 

faithfully mimic in vivo conditions.

In this paper we have presented a novel method for visualizing relative blood flow speeds, in 
vivo, using OCTA and the VISTA algorithm. Due to the importance that ocular blood flow 

has in a variety of diseases, we expect that this method will be useful for studying the 

pathogenesis of ocular disease. Furthermore, these current efforts are a first step towards 

developing fully quantitative OCTA technology, which would prove invaluable in not only 

studying ocular disease, but also in developing endpoints for therapeutic trials.
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Summary Statement

We develop a methodology for visualizing blood flow speeds in ocular pathology using 

OCTA and VISTA.
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Figure 1. 
Workflow of the VISTA visualization algorithm. The inputs to the algorithm are the two 

distinct interscan time OCTA projections. The algorithm proceeds in two, essentially 

parallel, phases. One phase, depicted on the left of the figure, computes the brightness values 

of the VISTA image; the other phase, depicted on the right of the figure, computes the hue 

(color) of the VISTA image. This brightness and hue data is then displayed, forming the 

final VISTA image. For projections of the retinal vasculature, a vessel masking filter (dashed 
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box) is used to suppress intercapillary hue artifacts; in CC OCTA, this filter cannot be used 

because the vascular structure of the CC is below the optical resolution of our OCT system.
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Figure 2. 
VISTA visualization in a 43 year old normal patient, taken over (A–C) a 3 mm × 3 mm field 

of view, and (D–F) a 6 mm × 6 mm field of view. (A) Mean projection of the 1.5 ms OCTA 

volume through the depths spanned by the retinal vasculature. (B) Mean projection of the 

3.0 ms OCTA volume through the depths spanned by the retinal vasculature. (C) VISTA 

image; red indicates faster blood flow speeds, blue slower speed. Note the blood flow speed 

gradient, with the larger retinal vessels associated with faster speeds, and the smaller retinal 

vessels associated with slower speeds. (D) Mean projection of the 1.5 ms OCTA volume 

through ~90 um slab, lying below the Bruch’s membrane. (E) Mean projection of the 3.0 ms 

OCTA volume through ~90 um slab, lying below the Bruch’s membrane. (F) VISTA image; 

red indicates faster blood flow speeds, blue slower speeds. Note the homogenous speed in 

the CC vasculature. The color bar on the right side indicates the relation between color and 

blood flow speed. The same color bar is used for all VISTA color images in this paper.
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Figure 3. 
VISTA visualization in a 53 year old NPDR patient taken over a 3 mm × 3 mm field of view. 

(A) Mean projection of the 1.5 ms OCTA volume through the depths spanned by the retinal 

vasculature. (B) Mean projection of the 3.0 ms OCTA volume through the depths spanned 

by the retinal vasculature. (C) VISTA image; red indicates faster blood flow speeds, blue 

slower speeds. (D), (E), and (F), are enlargements of the dashed boxes in (A), (B), and (C), 

respectively. Notice that the capillary loops, which likely correspond to microaneurysms, are 

associated with slower blood flow speeds.
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Figure 4. 
VISTA visualization in a 30 year old PDR patient taken over a 3 mm × 3 mm field of view. 

(A) Fundus photo, cropped over the OCT field of view. (B) FA, cropped over the OCT field 

of view. (C) Enlargement of the FA image about the neovascular lesion. (D) OCT B-scan 

taken through the dashed line in (B). The neovascular lesion is seen lying above the retina. 

(E) Mean projection of the 1.5 ms OCTA volume through the depths spanned by the retinal 

vasculature. (F) Mean projection of the 3.0 ms OCTA volume through the depths spanned by 

the retinal vasculature. (G) VISTA image; red indicates faster blood flow speeds, blue slower 

speeds. (H), (I), and (J) are enlargements of the dashed boxes in (E), (F), and (G), centered 

on the neovascular lesion. Notice how the lesion is associated with slower blood flow 

speeds.
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Figure 5. 
VISTA in a 75 year old GA patient taken over a 6 mm × 6 mm field of view. (A) Fundus 

photo, cropped over the OCT field of view. (B) FAF, cropped over the OCT field of view. 

(C) Mean en face projection of the entire OCT volume. (D) Mean projection of the 1.5 ms 

OCTA volume through ~90 um slab, lying below the Bruch’s membrane. (E) Mean 

projection of the 3.0 ms OCTA volume through ~90 um slab, lying below the Bruch’s 

membrane. (F) VISTA image; red indicates faster blood flow speeds, blue slower speeds. 

Note that the OCT volume was not flattened and therefore, due to the curvature of the retina, 

the ~90 um slab, while lying roughly near where the Bruch’s membrane would be located 

near the center of the field of view, intersects deeper choroidal vasculature on the edges of 

the image. Note that the readily visible choroidal vessels in the region of atrophy show a 

distribution of blood flow speeds. Also note that on the left of the margin of the VISTA 

image, appearing green, there is an area of relatively slow blood flow speed. This is 

indicative of CC flow impairment on the GA margin.
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Figure 6. 
VISTA visualization in a 90 year old exudative AMD patient, with a treated choroidal 

neovascular (CNV) lesion, taken over a 6 mm × 6 mm field of view. (A) Mean projection of 

the 1.5 ms OCTA volume through the depths spanned by the lesion. (B) Mean projection of 

the 3.0 ms OCTA volume through the depths spanned by the lesion. (C) VISTA image; red 

indicates faster blood flow speeds, blue slower speeds. Note how the neovascular lesion 

exhibits a range of blood flow speeds, with faster speeds associated with the trunk of the 

lesion, and slower speeds associated with its extremities. Note that retinal vessels generate 

decorrelation tails in the image.
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