Skip to main content
. 2015 Nov 17;2(2):2055102915615045. doi: 10.1177/2055102915615045

Table 2.

Results of invariance testing.

Model Invariance testing strategy Parameters estimated df χ2 χ2/df ratio AGFI TLI RMSEA
0. 1-factor independence model Combined groups: 1 set of parameters estimated across the groups 18 total, across groups (15 betas, 3 latent variances) 153 2143.73, p < .001 14.01 .62 .00 .14
1. 3-factor constrained model Combined groups: 1 set of parameters estimated across the groups 39 total, across groups (15 betas, 18-item variances, 3 latent variances, 3 latent covariances) 132 596.18, p <.001 4.52 .877 .730 .071
2. 3-factor unconstrained model Test of configural invariance separate groups: 2 sets of parameters estimated separately within each group 78 total: all within groups Group 1 (39): 15 betas, 18-item variances, 3 latent variances, 3 latent covariances Group 2 (39): 15 betas, 18-item variances, 3 latent variances, 3 latent covariances 264 730.12, p < .001 2.77 .896 .729 .051
3. Measurement weights model Test of metric invariance separate groups: constrains the betas to be equal across groups, estimates other parameters freely within groups 63 total: 15 betas across groups Group 1 (24): 18-item variances, 3 latent variances, 3 covariances Group 2 (24): 18-item variances, 3 latent variances, 3 covariances 279 753.75, p < .001 2.70 .861 .739 .050
χ2 difference test, compared to unconstrained model χ2 (15) = 23.6, p = .07 .04 .10 −.001
4. Structural covariance model Test of construct variance/covariance invariance constrain the latent variable covariances only 75 total, 3 latent covariances across groups Group 1: 18-item variances, 15 betas 3 latent variances Group 2: 18-item variances, 15 betas 3 latent variances 267 747.69 2.80 .856 .723 .051
χ2 difference test, compared to unconstrained model χ2(3) = 17.57, p < .001 .00 −.000 .001

betas: regression coefficients; AGFI: adjusted goodness of fit index; RMSEA: root mean square error of approximation; TLI: Tucker–Lewis index.