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Abstract

Clethra barbinervis Sieb. et Zucc. is a tree species that grows naturally at several mine sites

and seems to be tolerant of high concentrations of heavy metals, such as Cu, Zn, and Pb.

The purpose of this study is to clarify the mechanism(s) underlying this species’ ability to tol-

erate the sites’ severe heavy-metal pollution by considering C. barbinervis interaction with

root fungal endophytes. We measured the heavy metal concentrations of root-zone soil,

leaves, branches, and fine roots collected from mature C. barbinervis at Hitachi mine. We

isolated fungal endophytes from surface-sterilized root segments, and we examined the

growth, and heavy metal and nutrient absorption of C. barbinervis seedlings growing in ster-

ilized mine soil with or without root fungal endophytes. Field analyses showed that C. barbi-

nervis contained considerably high amounts of Cu, Zn, and Pb in fine roots and Zn in leaves.

The fungi, Phialocephala fortinii, Rhizodermea veluwensis, and Rhizoscyphus sp. were fre-

quently isolated as dominant fungal endophyte species. Inoculation of these root fungal

endophytes to C. barbinervis seedlings growing in sterilized mine soil indicated that these

fungi significantly enhanced the growth of C. barbinervis seedlings, increased K uptake in

shoots and reduced the concentrations of Cu, Ni, Zn, Cd, and Pb in roots. Without root fun-

gal endophytes, C. barbinervis could hardly grow under the heavy-metal contaminated con-

dition, showing chlorosis, a symptom of heavy-metal toxicity. Our results indicate that the

tree C. barbinervis can tolerate high heavy-metal concentrations due to the support of root

fungal endophytes including P. fortinii, R. veluwensis, and Rhizoscyphus sp. via growth

enhancement, K uptake promotion and decrease of heavy metal concentrations.
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Introduction

Natural vegetation has been observed on the deposits containing high concentrations of

heavy metals. These plant species must have evolved to adapt to the heavy-metal environ-

ment [1], because only plants showing heavy-metal tolerance can grow there. Today numer-

ous pepperbush trees (Clethra barbinervis Sieb. et Zucc.) can be observed throughout the

Hitachi mine forest, one of the three main copper mines of Japan in old days, although C.

barbinervis was not among the species used for tree planting in the early 1900s [2]. The soil

in Hitachi mine contains high concentrations of heavy metals, especially Cu, Ni, Zn, Cd and

Pb [3,4], and many plant species suffer stunted growth there due to those soil conditions.

C. barbinervis is a deciduous, broad-leaved, pioneer tree species, which grows naturally at

mine sites [5]. C. barbinervis is also known to contain high concentrations of Zn, Mn, Co,

Ni, and Cd in leaves; therefore, the leaves are used as a standard for heavy-metal analysis of

natural products [6]. However, the heavy-metal tolerance mechanism(s) of C. barbinervis
has yet to be clarified.

Some of microorganisms in the rhizosphere such as arbuscular mycorrhizal fungi, bacteria

and fungi are known to enhance heavy-metal tolerance in plants. For example, arbuscular

mycorrhizal fungi can accumulate heavy metals in the mycelia in order to inhibit the transfer

of heavy metals to plant cells, resulting alleviation of their toxicity [7,8] (see also a review [9]).

Ecological data suggest that arbuscular mycorrhizal fungi-infected plant species has increased

in coal mine via a 28 year-investigation, indicating plant-growth enhancements by arbuscular

mycorrhizal fungi under heavy-metal polluted site [10]. Rhizospheric bacteria are also known

to decrease heavy metal toxicity in plants via enhancement of plant growth [11,12,13], produc-

ing siderophores and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase in the reduc-

tion of plant ethylene, for example. Recent studies have shown that root fungal endophytes can

improve ecological adaptations of plants living in severe environments: root fungal endophytes

can enhance the stress tolerance of plants to abiotic and biotic factors, including heat [14,15],

salt [16,17], drought [18], herbivores [19,20], and pathogens [16,21,22] (see also reviews

[23,24]). Root fungal endophytes such as dark-septate endophytes, induce tolerance of plants

to heavy-metal stress, via enhancements of antioxidative system, changing heavy-metal distri-

bution in plant cells and detoxification of heavy metal [25]. Thus, it is possible that microor-

ganisms in the rhizosphere enhance stress tolerance in C. barbinervis growing under high

concentrations of heavy metals.

The purpose of this study was to clarify the heavy-metal tolerance mechanism(s) of C. bar-
binervis by considering the species’ interaction with root fungal endophytes. Via field work

(July 2006 to May 2007), we measured the heavy-metal concentrations of root-zone soil, and

leaves, branches, and roots of mature C. barbinervis trees growing in the forest of the Hitachi

mine. We isolated root fungal endophytes from surface-sterilized root segments in June,

August, and October 2006. Through in vitro inoculation of root fungal endophytes to sterile

C. barbinervis seedlings, we discerned whether root fungal endophytes are necessary for C. bar-
binervis to survive at sites with heavy-metal pollution.

Materials and Methods

Ethics statement

The study site belongs to Japanese National Forest. Our fieldwork activities, including observa-

tions and collections of plant materials and soil, were permitted by Ibaraki District Forest

Office. Any endangered or protected species were not involved.
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Study site and sample collection

The study site is located in a forest containing C. barbinervis on the western slope (27.8˚) of the

Hitachi mine, Ibaraki prefecture, Japan (36˚370N, 140˚380E). Five C. barbinervis were arbi-

trarily selected; the average tree height ± SE was 15.0 ± 2.0 m and average tree age ± SE was

24.2 ± 3.9 years (assessed based on the number of annual rings extracted using an increment

borer). These individuals were analyzed at monthly intervals for heavy-metal concentrations

and root-endophyte isolation. The mean annual temperature during the study period (July

2006 to May 2007) was 14.6˚C; mean temperature was highest in April 2006 (25.0˚C) and low-

est in January 2007 (6.1˚C). Annual precipitation was about 1877 mm [26].

During the study period, root-zone soil, fine roots, leaves, and branches were collected for

heavy-metal analysis from each C. barbinervis tree. Root-zone soil (50 × 50 × 50 mm) together

with fine roots was collected within a 1-m diameter of each tree. After separating it from fine

roots, root-zone soil was air-dried and passed through a 2-mm sieve mesh. According to the

Fourth Committee for Unified Soil Classification System of Japan (Second Approximation)

[27], our study site was considered to be forest brown soil. Leaves and branches of C. barbiner-
viswere collected from 3-m height of each tree. Leaves were not collected from December

2006 to March 2007 (leaf buds of C. barbinervis grow in March and April, the leaves expand in

April and May, turn yellow in October and November and fall in November and December).

At each sampling, three leaves considered to be the same age were arbitrarily collected from

each tree (n = 5) and combined to use for heavy-metal analysis.

Chemical analysis of root-zone soil and plant materials

Total heavy metals (Cu, Ni, Zn, Cd, and Pb) in air-dried root-zone soil were quantified by

inductively coupled plasma optical emission spectrometry (ICP-OES; model 757v, Nippon Jar-

rell-Ash, Kyoto, Japan) after digestion in concentrated HNO3–HClO4 (1:4 v/v). The results of

five replications were averaged, and the standard errors were calculated.

Plant materials were carefully washed with running water and deionized water to remove

soil particles according to a previous report [28]. These samples were separately dried for 48 h

at 80˚C and then ground with an electric mill (IFM-650D, Iwatani, Tokyo, Japan). After the

ground materials were pyrolyzed in concentrated HNO3, their Cu, Ni, Zn, Cd, and Pb concen-

trations were quantified by ICP-OES. The results of five replications were averaged, and the

standard errors were calculated.

Root fungal endophyte isolation and microscopic observation of trypan-

blue-stained roots

Fine roots were collected from five individual trees in June, April, and October 2006 and were

used for root fungal endophyte isolation by means of the sterilization procedure described pre-

viously [29]. After fine roots were carefully washed with running water and deionized water,

they were surface-sterilized with 70% ethanol for 1 min, followed by 15% hydrogen peroxide

solution for 15 min and 70% ethanol for 1 min. The roots were then rinsed with sterilized

deionized water to remove reagents, dried on sterile filter paper on a clean bench and then cut

into approximately 5-mm pieces with a sterile scalpel. Thirty root pieces were randomly cut

from individual roots of each C. barbinervis. The 150 root pieces were put on 1% malt extract

agar (1% MA) and incubated at 23˚C in the dark for 14 days. Fungal colonies were microscopi-

cally observed (100× and 400×, CX21, Olympus) and purified by means of serial plating on 1%

MA. Root fungal endophyte detection rate (%) was calculated by the following formula:

Detectionrateð%Þ ¼ Nd=Nt
� 100
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where Nd is the number of root pieces from which the fungus was detected and Nt is the total

number of root pieces used for fungal isolation (150). Representative isolates used for inocula-

tion were deposited in National Institute of Technology and Evaluation and the author’s (KY)

private culture collection: Phialocephala fortinii C.J.K. Wang & H.E. Wilcox (NBRC111721),

Rhizodermea veluwensis Verkley & Zijlstra (NBRC111722), and Rhizoscyphus sp. (D.J. Read)

W.Y. Zhuang & Korf (NBRC111719).

The three dominant root-endophytic fungi isolated were identified based on morphological

characteristics and molecular analysis [30]. For the molecular analysis, a small amount of

mycelium was picked from the pure culture, crushed in 50 μl sterilized water, heated for 15 sec

in a microwave oven, and 1-μl samples were used as templates for PCR. Fifty micro liters of

PCR mixtures contained 25 μl of GoTaq master mix, 10 pmol of each primer for ITS regions

(ITS5 and ITS4) [30], and deionized water. PCR was performed on a Bio-Rad T100 thermal

cycler with the following protocol: an initial denaturing step at 94˚C for 4 min; 35 cycles at

94˚C for 30 sec, 52˚C for 50 sec, and 72˚C for 50 sec; and final elongation at 74˚C for 6 min.

Amplified samples were purified by a QIAquick PCR Purification Kit (Qiagen) and used for

sequencing with a Big Dye Terminator Cycle Sequencing FS Ready Reaction kit ver. 3.1 on an

ABI3100 genetic analyzer (Perkin-Elmer Applied Biosystems). Sequence data were deposited

in the DNA Data Bank of Japan (DDBJ accession nos. LC151458-60). A sequence similarity

search was performed for each series of obtained sequence data by using the BLAST program

at the National Center for Biotechnology Information, and each taxon name was determined

based on the result of the homology search. If identity according to the BLAST search was

below 95% and a taxon name could not be determined, the sequence dataset was produced

with the query sequence and the top 100 scoring sequences from the BLAST results. Phyloge-

netic trees (neighbor-joining) were produced from the dataset, and a taxon name was deter-

mined from each phylogenetic placement based on the clade.

To measure infection rates by arbuscular mycorrhizal fungi (Paris types; [31]) or fungal

endophytes (microsclerotia; [32,33]), roots collected in October 2006 were stained with trypan

blue and observed under the microscope [34]. Infection percentage of root length colonized

was calculated according to the gridline-intersect method [35,36]. Results of five replications

were averaged, and the standard errors were calculated.

Inoculation test of C. barbinervis seedlings with root fungal endophytes

Preparation of sterile seedlings. Fallen seeds of C. barbinervis were collected at the study

site in December 2006 and kept at 4˚C before use. Seeds were soaked with deionized water in a

vessel, and those that sank were used for the inoculation test. Seeds were dipped in 70% etha-

nol for 1 min, transferred into 15% hydrogen peroxide for 3 min, and dipped again in 70% eth-

anol for 1 min. Seeds were then rinsed with sterile deionized water and incubated on 3.5×
diluted Hoagland medium containing 1.5% agar (light: 14 h, 25˚C /dark: 10 h, 20˚C) (Koito-

toron, KOITO Manufacturing Co. Ltd.). Germination started after 2 weeks of incubation, and

seedlings at the one true leaf stage were used for the inoculation test.

Properties of heavy-metal-polluted soil and sterilization. Root-zone soil collected in

October 2006 was sealed within a plastic bag and sterilized by intermittent γ-irradiation (30

kGy). After sterilization, pH (H2O) and exchangeable Cu, Ni, Zn, Cd, and Pb were analyzed

according to the methods described previously [37] to evaluate the γ-ray sterilization effect on

chemical characteristics of soil. Exchangeable Cu, Ni, Zn, and Cd were extracted with 0.05 M

Ca(NO3)2 (60 ml) from dried soil (6 g) by shaking at 150 rpm, 30˚C, for 24 h. Exchangeable Pb

was extracted with 1 M ammonium acetate (100 ml, pH 4.5) from 10 g dried soil by shaking at

150 rpm, 30˚C, for 1 h. Results of three replications for pH (H2O) and five replications for
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exchangeable heavy metals were averaged, and the standard errors were calculated (S1 Table).

On a clean bench, sterilized soil (350 ml) was transferred into a sterilized Agripot (Kirin) and

sterile deionized water (30 ml) was added and used in the inoculation test.

Mycelial suspensions for the inoculation. Three dominant root fungal endophytes, P.

fortinii (NBRC111721), R. veluwensis (NBRC111722), and Rhizoscyphus sp. (NBRC111719),

were used for the inoculation test. These isolates were separately grown on 1% MA, and five

mycelial disks (6-mm i.d.) on the edge of each mycelium were inoculated into a 100-ml Erlen-

meyer flask containing 70 ml of 1% malt extract liquid medium. The medium was then stati-

cally incubated at 23˚C in the dark for 3 weeks and then filtered through a sterile tea ball to

obtain mycelia. The mycelia on the tea ball were fully rinsed with sterile deionized water to

remove medium and then homogenized in sterile deionized water by a homogenizer (Nihon-

seiki, Ltd.) on ice for 3 min. Each mycelial suspension was prepared to contain 15 mg of

mycelial dry weight (DW) per milliliter. Mixed mycelial suspension of the three root fungal

endophytes (5 mg DW of each) was also prepared, autoclaved and used as a control, in order

to account for the effect of nutrients supplied from dead mycelia on the seedling growth [38].

Inoculation test. Four sterile seedlings were aseptically transplanted to a pot containing

sterilized rhizosphere soil, and each mycelial suspension (500 μl) of root fungal endophytes

was inoculated close to the roots. The following mycelial suspensions were used for inocula-

tion: (1) P. fortinii; (2) R. veluwensis; (3) Rhizoscyphus sp.; (4) mixed suspension of the three

root fungal endophytes; and (5) autoclaved suspension (4) as a control. Three replicated pots

were prepared per condition. The 12 seedlings per condition were grown for 40 days (light: 14

h, 25˚C /dark: 10 h, 20˚C; Koitotoron) and used for the following measurements: the number

of leaves, height, and fresh weight (FW) of aboveground parts and roots. One seedling was ran-

domly selected from each pot (i.e., three seedlings per condition) and used for the following

measurements: root length, DW of aboveground parts and roots, and heavy metal and inor-

ganic element concentrations. Plant materials were pyrolyzed in concentrated HNO3 and

heavy metals (Cu, Ni, Zn, Cd, and Pb) and inorganic elements (P, Mg, Ca, K, Na, and Fe) were

analyzed by ICP-OES. Replication results were averaged, and the standard errors were

calculated.

After growth for 40 days, inoculants from roots were re-isolated and trypan-blue-stained

roots were examined under the microscope to check whether this experiment was successful.

For re-isolation, one seedling was randomly selected from each pot (i.e., three seedlings per

condition). For microscopic observation of trypan-blue-stained roots, another seedling was

randomly selected from each pot (four seedlings per condition).

Fungal siderophore detection using the chrome azurol S assay

Fungal siderophores capable of chelating Fe and other heavy metals [39] were detected using a

chrome azurol S (CAS) assay [40]. The root fungal endophytes P. fortinii, R. veluwensis, and

Rhizoscyphus sp. were separately grown on 1% MA and five mycelial disks (8-mm i.d.) on the

edge of each mycelium were inoculated into a 500-ml Erlenmeyer flask containing 400 ml of

1% malt extract liquid medium. The medium was incubated with shaking at 150 rpm at 23˚C

in the dark for 1 month. As a control, 1% MA agar disks were put into 1% malt extract liquid

medium and the medium was incubated as described above. After incubation, each liquid

medium was filtered through filter paper followed by a sterile 0.2-μm membrane filter (Advan-

tec), and the filtrate was used to measure siderophore production by the CAS assay [40]. Side-

rophore concentration in the filtrate was quantified by the standard curve using deferoxamine

mesylate (Calbiochem). Three replication results were averaged, and the standard errors were

calculated.
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Statistical analysis

Statistical analysis was conducted by using version 21.0.0.0 of the SPSS statistics software for

Macintosh (IBM). Differences of seedling growth variables, heavy metal concentrations, inor-

ganic element concentrations or transfer factors of heavy metals between inoculation condi-

tions were evaluated by one-factor ANOVA test (Tukey HSD). Differences were considered

significant at P< 0.05.

Results

Heavy metal concentrations of root-zone soil, leaves, branches, and fine

roots of C. barbinervis at our study site

In root-zone soil, Cu, Zn, and Pb concentrations were high throughout the year and Zn

slightly showed seasonal variation (S1 Fig); the Zn concentration was highest in December,

when the fallen leaves were supplied to the soil. Fine roots and branches contained higher Cu,

Zn and Pb concentrations throughout the sampling period than Ni and Cd. No strong seasonal

variations of heavy-metal concentrations were found in branches and fine roots (S1 Fig). In

leaves, the Zn concentration was markedly higher than those of other heavy metals throughout

the sampling period. Zn showed a seasonal variation in leaves; the Zn concentration was high-

est in November, when the leaves turn yellow (S1 Fig). Among transfer factors (ratios of root

concentration to root-zone soil concentration) of heavy metals (S2 Table), those of Zn were

highest in leaves and branches. In fine roots, the transfer factor of Cd was highest, although the

Cd concentration was not high (S1 Fig).

Root fungal endophyte isolation and fungal infections inside roots

Root fungal endophytes were isolated from fine roots of mature C. barbinervis trees, and the

detection rates are shown in Table 1. Throughout the sampling period, three fungal endophyte

species were dominant, and DNA analyses clarified that those fungal endophytes were P. forti-
nii, R. veluwensis, and Rhizoscyphus sp. Microscopic observation of trypan-blue-stained fine

roots collected in October 2006 revealed that infection rates by arbuscular mycorrhizal fungi

(mainly Paris types) and fungal endophytes (microsclerotia) were 53.8 ± 2.7% and 39.6 ± 2.7%,

respectively.

Effect of root fungal endophytes on C. barbinervis seedling growth and

concentrations of inorganic elements and heavy metals in the inoculation

test

In the inoculation test, we used three root endophytes, P. fortinii, R. veluwensis, and Rhizoscy-
phus sp., that were isolated from mature C. barbinervis trees growing at the mine site. After 40

days of incubation, we considered that our inoculation test was successful without contamina-

tion, because all root fungal endophytes were isolated from roots inoculated with root fungal

Table 1. Detection rates of fungi isolated from C. barbinervis roots.

Fungus June (%) August (%) October (%) Mean±SE (%)

Phialocephala fortinii 5 4 14 7.7 ± 3.2

Rhizodermea veluwensis 11 10 22 14.2 ± 3.8

Rhizoscyphus sp. 25 34 23 26.8 ± 3.4

The means of percentages in June, August, and October are shown with ±SE.

doi:10.1371/journal.pone.0169089.t001
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endophytes and no microorganisms were isolated from control roots. Our incubation time

was apparently sufficient for fungal endophytes to interact with roots, because the infection

rates of P. fortinii, R. veluwensis, Rhizoscyphus sp., and mixed inoculation of the three species

were 81.3 ± 2.5%, 82.9 ± 5.5%, 77.8 ± 4.7%, and 65.6 ± 4.8%, respectively.

Root fungal endophyte inoculation increased C. barbinervis seedling growth in heavy-metal

polluted soil (Fig 1, Table 2). In particular, P. fortinii and Rhizoscyphus sp. significantly increased

the number of C. barbinervis leaves, height, root length, and root FW compared with those

parameters in the control (P< 0.05). Additionally, P. fortinii significantly increased above-

ground part FW and Rhizoscyphus sp. significantly increased root DW. Rhizodermea veluwensis
significantly increased only the number of leaves (P< 0.05), but showed a tendency to increase

growth parameters such as height (P = 0.116) and aboveground part DW (P = 0.249). Mixed

inoculation of the three strains also showed a tendency to increase the number of leaves (P =

0.059), height (P = 0.138), and aboveground part FW (P = 0.230). In contrast, the growth of con-

trol seedlings was poor, with leaf chlorosis and inhibition of root tip growth.

After incubation, concentrations of plant nutrients (P, Mg, K, Na, and Fe) were analyzed in

aboveground parts (Fig 2A) and roots (Fig 2B). Concentrations of heavy metals (Cu, Ni, Zn,

Cd, and Pb), which were higher in root-zone soil than in unpolluted soil (S2 Table) [3,4], were

also analyzed in aboveground parts (Fig 3A) and roots (Fig 3B). In the aboveground parts, com-

pared with the control, K concentration was increased significantly by mixed inoculation of the

three strains (P< 0.05), and slightly by P. fortinii (P = 0.149), R. veluwensis (P = 0.203), and Rhi-
zoscyphus sp. (P = 0.054; Fig 2A). In contrast, the secondary macronutrient Ca and beneficial

nutrient Na were significantly decreased in roots by all four inoculation conditions (P< 0.05;

Fig 2B). All heavy metals (Fig 3B) were also decreased in the roots by all four inoculation condi-

tions (P< 0.05). The transfer factors shown in Table 3 indicate that all heavy metals were trans-

ferred at a greater rate to control roots as compared with fungal endophyte-inoculated roots.

Siderophore production by root fungal endophytes

Phialocephala fortinii and R. veluwensis produced siderophores, whereas Rhizoscyphus sp. did

not. Siderophore concentrations in the liquid medium of P. fortinii and R. veluwensis were

2.93 ± 1.46 μM and 13.0 ± 2.37 μM, respectively.

Fig 1. Root fungal endophyte inoculation increased C. barbinervis seedling growth in the inoculation test. Seedlings were grown for

40 days in sterilized heavy-metal-polluted soil. Scale bar represents 10 mm.

doi:10.1371/journal.pone.0169089.g001
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Table 2. Seedling growth parameters after the inoculation test.

Treatment Number of

leaves

Height

(mm)

Root length

(cm)

Aboveground part FW

(mg)

Root FW

(mg)

Aboveground part DW

(mg)

Root DW

(mg)

Control 5.0 ± 0.3 a 5.9 ± 0.4 a 10.8 ± 2.9 a 5.8 ± 1.1 a 1.8 ± 0.2 a 5.1 ± 1.3 a 0.8 ± 0.0 a

Phialocephala fortinii 11.1 ± 0.9 b 28.1 ± 3.7 c 123.0 ± 23.4 b 61.4 ± 10.8 b 49.2 ± 9.3 c 23.0 ± 4.0 a 10.7 ± 1.37

ab

Rhizodermea

veluwensis

10.9 ± 1.6 b 15.7 ± 3.0

ab

71.6 ± 22.7 ab 30.0 ± 7.6 ab 11.7 ± 3.1 ab 19.7 ± 5.1 a 5.5 ± 1.4 ab

Rhizoscyphus sp. 10.6 ± 1.4 b 18.5 ± 3.3

bc

134.5 ± 37.1 b 39.6 ± 11.8 ab 34.1 ± 12.5

bc

23.7 ± 7.9 a 11.2 ± 4.1 b

Mixture 9.3 ± 0.6 ab 15.3 ± 2.3

ab

71.5 ± 10.4 ab 32.4 ± 9.1 ab 21.6 ± 7.6

abc

13.0 ± 1.5 a 6.5 ± 1.6 ab

FW: fresh weight. DW: dry weight. Different letters indicate a statistically significant difference among treatments in ANOVA comparisons and post-hoc

Tukey HSD at P < 0.05. For number of leaves, height, shoot FW, and root FW, n = 12. For root length, shoot DW, and root DW, n = 3. The means are shown

with ±SE.

doi:10.1371/journal.pone.0169089.t002

Fig 2. Nutrient element concentrations in C. barbinervis seedlings in the inoculation test. (a)

Concentrations in aboveground parts, and (b) concentrations in roots. Different letters indicate a statistically

significant difference among treatments in ANOVA comparisons and the post-hoc Tukey HSD at P < 0.05.

Error bars represent ± SE.

doi:10.1371/journal.pone.0169089.g002
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Discussion

Because C. barbinervis grows in natural habitats at many mining sites [5], including the Hitachi

mine, C. barbinervis is considered to be a heavy-metal-tolerant tree species, similar to metal-

Fig 3. Heavy-metal concentrations in C. barbinervis seedlings in the inoculation test. (a)

Concentrations in aboveground parts, and (b) concentrations in roots. Different letters indicate a statistically

significant difference among treatments in ANOVA comparisons and the post-hoc Tukey HSD at P < 0.05.

Error bars represent ± SE.

doi:10.1371/journal.pone.0169089.g003

Table 3. Transfer factors (ratios of root concentration to soil concentration) of heavy metals in the inoculation test.

Treatment Transfer factor Cu Transfer factor Ni Transfer factor Zn Transfer factor Cd Transfer factor Pb

Control 0.44 ± 0.03 a 33.7 ± 0.04 a 4.38 ± 0.67 a 59.0 ± 1.03 a 2.32 ± 0.48 a

Phialocephala fortinii 0.23 ± 0.03 b 3.82 ± 0.03 b 1.65 ± 0.43 b 8.99 ± 0.48 b 0.32 ± 0.14 b

Rhizodermea veluwensis 0.25 ± 0.03 b 6.53 ± 2.32 b 1.74 ± 0.45 b 12.1 ± 3.85 b 0.56 ± 0.16 b

Rhizoscyphus sp. 0.18 ± 0.01 b 5.25 ± 1.11 b 1.80 ± 0.13 b 11.5 ± 2.14 b 0.41 ± 0.05 b

Mixture 0.24 ± 0.01 b 4.78 ± 1.25 b 1.67 ± 0.27 b 9.15 ± 1.59 b 0.42 ± 0.10 b

Transfer factor (ratio of root concentration to soil concentration used for the inoculation test) was calculated using each sample. The means are shown with

±SE. Different letters indicate a statistically significant difference among treatments in ANOVA comparisons and post-hoc Tukey HSD at P < 0.05. n = 3.

doi:10.1371/journal.pone.0169089.t003
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hypertolerant species, which can survive and reproduce on highly metal-enriched soils [41,42].

Concentrations of heavy metals (Cu, Zn, and Pb) were considerably high, especially in the fine

roots of mature trees of C. barbinervis growing at our study site (S1 Fig), compared with previ-

ously reported critical toxicity levels in land plants (Cu, 20–30 μg/g; Zn, 100–300 μg/g; Pb, 0.6–

28 μg/g) [43]. The concentrations measured in this study were also within the ranges of Cu,

Zn, and Pb concentrations in plants grown at contaminated sites (Cu, 2–1123 μg/g; Zn, 21–

2600 μg/g; Pb, 32–1506 μg/g) [44], even though the translocation of heavy metals from soil to

plant tissues was not high (S2 Table). However, without root fungal endophytes, C. barbinervis
seedlings could not grow well in soil from the site (Fig 1, Table 1), indicating that the heavy-

metal tolerance of C. barbinervis was conferred by the presence of root fungal endophytes.

Sites polluted with heavy metals are severe environments for the growth of both plants and

microbes. Root fungal endophytes show “weak harm or benefit” to plants, which means that

they can be weak pathogens or symbionts [45] according to their growing environments.

Under stressful environments such as heavy-metal polluted sites, where plants and microbes

need to survive together, the interactions between plants and root fungal endophytes would be

beneficial to both [46]. Our inoculation test using the dominant root fungal endophytes iso-

lated from C. barbinervis roots (Table 1), clarified that P. fortinii, R. veluwensis, and Rhizoscy-
phus sp. are symbionts under heavy-metal stress conditions. Root fungal endophytes could

enhance their own heavy-metal tolerance via extracellular (chelation, cell-wall binding) and/or

intracellular (binding to detoxicants, compartmentation) detoxification mechanisms [47,48].

For example, dark septate root endophytes (DSEs) like P. fortinii can produce the black bio-

polymer melanin, which can be synthesized from phenolics and binds heavy metals [49,50]. In

turn, heavy-metal binding to melanin (compartmentation in fungal cell wall) would enable

heavy-metal ions to be kept away from living plant cells [51].

As shown in the inoculation test (Figs 1 and 2, Table 2), growth enhancement and promo-

tion of uptake of the essential macronutrient K by root fungal endophytes are also effective

means of promoting heavy-metal tolerance in plant tissues: when plants grow extremely

quickly, concentrations of inorganic nutrients in plants decrease (dilution effect) without

keeping up nutrient absorption [1]. Thus, dilution of heavy metals in plant tissues resulting

from rapid plant growth may decrease the toxicity of heavy metals [52]. This suggestion was

also supported by the low transfer ratios of heavy metals from root-zone soil to roots inocu-

lated with root fungal endophytes (Table 3).

Siderophores, which are metal-chelating compounds [53,54], would be helpful in inhibiting

absorption of heavy metals into plant cells because siderophores released from roots into the

rhizosphere can form complexes with heavy metals that are not easily absorbed by plant roots.

In our study, P. fortinii and R. veluwensis showed an ability to produce siderophores, and their

siderophore production probably affects heavy-metal exclusion in the rhizosphere. However,

Rhizoscyphus sp., which also enhanced heavy-metal tolerance in our inoculation test, did not

show siderophore production abilities. In that case, there must be multiple mechanisms that

enhance heavy-metal tolerance in C. barbinervis.
DSE fungi are reported to improve heavy-metal tolerance in plants such as maize [55]; DSE

isolates from lead and zinc mining and smelting sites show high heavy-metal tolerance and

accumulate heavy metals in their mycelia, promising the enhancement of heavy-metal toler-

ance in plants as well [56]. Compared with DSEs such as those in the genus Phialocephala,

Rhizodermea and Rhizoscyphus are nonclavicipitaceous endophytes, which broadly and exten-

sively colonize shoots, roots, and rhizomes and some of which confer drought, heat, and path-

ogen tolerance in plants [24]. However, except for our study, Rhizodermea and Rhizoscyphus
have not been reported to symbiotically interact with plants growing under heavy-metal stress.

For example, Rhizoscyphus ericae is an ericoid mycorrhizal fungus that infects leafy liverworts
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or ectomycorrhizal and ericoid mycorrhizal tree roots [57,58]. Rhizodermea veluwensis is a

recently described species that was isolated from surface-sterilized roots of Erica tetralix,

Empetrum nigrum, and Vaccinium spp., plants of the family Ericaceae, and also Larix decidua
[59]. It belongs in Dermateaceae, Helotiales, Leotiomycetes, Ascomycota, but its teleomorph

was not found. DSEs can promote nitrogen uptake in plant cells [33,60]. We were unable to

analyze nitrogen uptake enhancement by root fungal endophytes due to an insufficient num-

ber of plant samples in our inoculation test. The ecological roles of root fungal endophytes

such as DSEs have been studied to a limited extent [23], and research conducted in natural

ecosystems should clarify whether root fungal endophytes protect their hosts from environ-

mental stresses.

Arbuscular mycorrhizal fungi that infect C. barbinervis roots [61] are also known to live in

a symbiotic relationship with approximately 80–90% of terrestrial plants [62]. They increase

heavy-metal tolerance of plants via reduction of heavy-metal uptake into plant cells (see review

[63]), via secretion of glomalin, which can bind heavy metals to exclude them from roots [64],

or via heavy-metal accumulation in the fungal cell wall and vesicles [65]. Generally, arbuscular

mycorrhizal fungi and root fungal endophytes coexist in plant roots [66,67]. Even though

arbuscular mycorrhizal fungi are known to be weak in heavy-metal tolerance compared with

DSEs [68] in heavy-metal-polluted areas such as our study site, in future research we should

consider the simultaneous effect of both fungal species on the enhancement of heavy-metal tol-

erance in plants.

Conclusions

We identified one reason why C. barbinervis can survive in heavy-metal-polluted soils such as

mining sites: root fungal endophytes can enhance the heavy-metal tolerance of C. barbinervis
via growth enhancement, K uptake and decrease of heavy-metal concentration in plant cells.

C. barbinervis is not a hyperaccumulator of heavy metals and is not used for phytoextraction.

However, it is useful for phytostabilization, which decreases heavy-metal bioavailability in soil

via precipitation of heavy metals into less soluble forms by plant and microbial metabolites or

accumulation in root tissues [69], resulting in the inhibition of heavy-metal dispersion outside

a polluted site. Mine sites, where heavy-metal removal is very difficult because of extremely

high concentrations, are suitable areas for tree planting as part of phytostabilization. Further-

more, root-endophyte inoculation would improve the success of rapid seedling establishment

at mine sites. In those cases, the plant and microbial species used should not be non-native, in

order to maintain regional plant diversity [69]. Our research suggests that the selection of tol-

erant plants together with their supporting microbes from among native species is the most

appropriate way to perform phytostabilization.
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S1 Fig. Heavy metal concentrations in root-zone soil and C. barbinervisorgans during the

sampling period. (a) Root-zone soil. (b) Fine roots. (c) Branches. (d) Leaves. Error bars

represent ± SE.

(TIF)

S1 Table. pH (H2O) and exchangeable heavy metals (mg/kg DW) in non-sterile and γ-ray

sterilized soils. Results are expressed as average ± SE.
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S2 Table. Transfer factors (ratios of concentration in plant organs to soil concentration) of

heavy metals in C. barbinervis. Transfer factor (ratio of leaf or branch or root concentration
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