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Objectives: Deficits in weight gain and linear growth are seen frequently among children in areas
where malnutrition and recurrent infections are common. Although both inflammation and
malnutrition can result in growth hormone (GH) resistance, the interrelationships of infection,
inflammation, and growth deficits in developing areas remain unclear. The aim of this study was to
evaluate relationships between low levels of systemic inflammation, growth factors, and anthro-
pometry in a case–control cohort of underweight and normal weight children in northern Brazil.
Methods: We evaluated data from 147 children ages 6 to 24 mo evaluated in the MAL-ED (In-
teractions of Malnutrition and Enteric Disease) case–control study following recruitment from a
nutrition clinic for impoverished families in Fortaleza, Brazil. We used nonparametric tests and
linear regression to evaluate relationships between current symptoms of infections (assessed by
questionnaire), systemic inflammation (assessed by high-sensitivity C-reactive protein [hsCRP]),
the GH insulin-like growth factor-1 (IGF-1) axis, and measures of anthropometry. All models were
adjusted for age and sex.
Results: Children with recent symptoms of diarrhea, cough, and fever (compared with those
without symptoms) had higher hsCRP levels; those with recent diarrhea and fever also had lower
IGF-1 and higher GH levels. Stool myeloperoxidase was positively associated with serum hsCRP.
hsCRP was in turn positively associated with GH and negatively associated with IGF-1 and IGF-
binding protein-3 (IGFBP-3), suggesting a state of GH resistance. After adjustment for hsCRP,
IGF-1 and IGFBP-3 were positively and GH was negatively associated with Z scores for height and
weight.
Conclusions: Infection and inflammation were linked to evidence of GH resistance, whereas levels
of GH, IGF-1, and IGFBP-3 were associated with growth indices independent of hsCRP. These data
implicate complex interrelationships between infection, nutritional status, GH axis, and linear
growth in children from a developing area.
� 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY li-
cense (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Conceptual model of the effect of inflammation on regulation of the GH-IGF-
1 axis. Lines in gray portray associations from preclinical studies and lines in red
portray findings from this study. Stimulatory effects or positive associations are
indicted (þ); inhibition or inverse associations are indicated by (�) signs. Preclinical
studies (gray lines) demonstrate effects of inflammation to induce GH resistance at
the level of the liver, resulting in decreased expression of IGF-1 and IGFBP-3; this
results in an increase in circulating GH by loss of negative feedback of IGF-1 on GH
release. IGF-1 is the key mediator of the action of the GH axis on linear growth. The
analysis from the present study’s cohort found multiple correlations (red arrows,
with P-values) consistent with these concepts. hsCRP was higher among children
with symptoms of illness and positively associated with stool MPO As expected
from the model, hsCRP was positively associated with GH, and negatively associ-
ated with IGF-1 and IGFBP-3. IGF-1 and IGFBP-3 were in turn positively associated
with HAZ, independent of hsCRP levels. GH, growth hormone; HAZ, height-for-age
Z score; hsCRP, high-sensitivity C-reactive protein; IGF, insulin-like growth factor;
IGFBP, IGF binding protein; MPO, myeloperoxidase.
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Introduction

Recurrent infections are associated with lower growth ve-
locity and stunting in children in developing areas of the world
[1]. This is supported by previous findings that demonstrated
temporal links between slowed growth and repeated infections
[2], as well as by more recent cohorts evaluated for growth
related to clinically relevant diarrheal [3–5] and respiratory [6,7]
infections. Enteric infections involving poor growth have been
linked to subclinical infections and may exhibit both systemic
inflammation and elevations in stool inflammatorymarkers such
as myeloperoxidase, a1 antitrypsin, and neopterin without overt
diarrheal symptoms [8]. The presence of systemic inflammation
during infection may play a role in growth suppression, as
similar linear growth deficits have been noted in other condi-
tions with high levels of systemic inflammation, such as Crohn’s
disease and juvenile idiopathic arthritis, in which poor growth is
associated with high levels of inflammatory markers, low levels
of important growth factors such as insulin-like growth factor
(IGF)-1, and poor responsiveness of the growth plate [9–12].

Preclinical models of inflammatory disease have demon-
strated direct relationships between systemic inflammation,
growth hormone (GH) signaling, and linear growth [13]. Higher
systemic inflammation is related to GH resistance at the level of
the liver as evidenced by the following:

� higher systemic levels of growth hormone [14],
� lower hepatic production of IGF-1 and IGF binding-protein-3
(IGFBP-3),

� lower systemic levels of IGF-1 and IGFBP-3, and
� slowed linear growth (gray lines in Fig. 1) [15].

Blocking systemic inflammation with antibodies against tu-
mor necrosis factor-a reversed each of these GH signaling out-
comes, suggesting direct relationships [15]. Links between
infections, inflammatory markers such as C-reactive protein
(CRP), and levels of IGF-1 recently have been demonstrated in a
cohort of young children followed in Zimbabwe [10]. Similarly, a
group of researchers in Uganda studied children presenting with
severe acute malnutrition (mean weight-for-height Z scores of
�4.2), reporting high levels of systemic inflammation and GH
and low levels of IGF-1 [16]. However, the degree of inflamma-
tion required for suppression of GH signaling is unclear.
Although major infections can involve elevations of CRP to
>300 mg/L [17], more common infections have been associated
with minor elevations in CRP, as tested in the more sensitive
assay “high-sensitivity” CRP (hsCRP), producing levels of 15 to
30 mg/L [18,19].

Thus, the relationship between lower levels of the systemic
inflammation and GH signaling in humans requires further
investigation. The aim of this study was to evaluate relationships
between low levels of systemic inflammation, growth factors, and
anthropometry in a case–control cohort of underweight and
normal weight children in northern Brazil. Our hypothesis was
that even low levels of inflammation would be associated with
GH resistance, including lower levels of IGF-1 and IGFBP-3 and
higher levels of GH through lack of feedback. A link between
inflammation and the GH–IGF-1 axis may have implications for
growth faltering among children in developing areas of theworld.

Methods

The present study was performed as an extension of the MAL-ED (In-
teractions of Malnutrition and Enteric Disease) study with an extended
biomarker study, both funded by the Bill and Melinda Gates Foundation. As part
of this overall project, a case–control study examining biomarkers of malnutri-
tion and intestinal infection was conducted. The present study represents an
ancillary trial of this biomarkers initiative.

The MAL-ED case–control study protocol and consent forms were approved
by the local institutional review board (IRB) at Universidade Federal do Cear�a, the
national IRB, Conselho Nacional de �Etica em Pesquisa, Bras�ılia, DF, Brazil, and the
IRB at the University of Virginia, VA. Between August 2010 and September 2012,
children were recruited for the case–control study at Promotion of Nutrition and
Human Development located in Fortaleza, Brazil. Further details including the
geographic location, population, demographic characteristics, environmental,
and socioeconomic status have been described elsewhere [20]. Malnourished or
“case” children were defined as having weight-for-age (WAZ) scores <�2 and
matched “nonmalnourished controls” were defined as having a WAZ >�1.
Children who required prolonged hospitalization or had serious health issues,
such as HIV, tuberculosis, neonatal disease, kidney disease, chronic heart failure,
liver disease, cystic fibrosis, congenital conditions, or enteropathy (e.g., Crohn’s
disease, celiac disease, ulcerative colitis, or malabsorption disease), diagnosed by
a physician; or those with a parent or primary caregiver with cognitive deficits or
who was <16 y of age were excluded. For mothers who were ages 16 to 17 y,
permission of their guardian or the child’s father was required for enrollment in
the case–control study. Of 484 children screened, 82 declined or failed to meet
enrollment criteria. After obtaining informed consent from the responsible
parent or guardian, 402 children ages 6 to 26 mo were enrolled (201 cases and
201 controls). Of these, 321 provided fecal samples within 1 mo of enrollment
and 292 provided initial blood plasma specimens. Anthropometry was assessed
at study visit 1. Age and anthropometric measures were used to generate Z scores
for length, weight, and weight-for-length according to the World Health Orga-
nization growth curves; height-for-age Z scores were referred to as HAZ by
convention [21]. Stunting was defined as HAZ <�2.

Cases in which blood draw or stool collection were postponed for >1 mo
were excluded. Additionally, for all analyses regarding interrelationships be-
tween variable categories (anthropometry, survey response, serum measures,
and stool measures), only variables obtained <7 d from each other were
included.

For the current analysis, cases and controls were compared for variables of
interest. With the exception of differences in anthropometry (which was true by
design), there were no differences between cases and controls with respect to
illness symptoms, hormones, or markers of inflammation. Thus, both groups
were combined into a single cohort for analysis.
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Blood was spun down and frozen at�80� before transport to the Ligand Core
Laboratory of the University of Virginia. The following assays were assessed using
the Immulite 2000, with intra- and interassay coefficients of variation (CVs) in
parentheses: hsCRP (4.2%, 7.4%), IGF-1 (2.3%, 3.8%), IGFBP-3 (2.6%, 4.3%), GH (2.5%,
2.8%), free T4 (2.9%, 4%), and thyroid-stimulating hormone (TSH: 3.6%, 4.7%).

Fecal biomarkers were included using commercially available enzyme-linked
immunosorbent assay kits for myeloperoxidase (MPO; Alpco, Salem, NH, USA), as
a marker of neutrophil activity in the intestinal mucosa; a-1 antitrypsin (A1 AT;
Biovendor, Candler, NC, USA) to indicate protein loss and intestinal permeability;
and neopterin (GenWay Biotech, San Diego, CA, USA) to indicate T-helper cell 1
activity. Each of these was quantified with standard curves run as recommended,
and with results being expressed per mg of stool. The intra- and interassay CVs
for these assays are: MPO (4.7, 9.7), A1 AT (4.5–6.3, 5–8.2), and neopterin (4.3–
11.7, 8.8–13.8).

Statistical analysis

All statistical tests were performed using SAS 9.4. Measures were assessed for
normality. In the case of participant characteristics, non-normally distributed
comparisons between groups (e.g., stunted versus nonstunted) were performed
using Wilcoxon Rank Sum test. For laboratory variables, the non-normally
distributed values were natural-log transformed before further analysis; values
were then back-transformed for reporting in tables. We used linear regression to
assess relationships between different laboratory variables (e.g., hsCRP and GH
axis) and between laboratory variables and anthropometry Z scores. All models
included adjustment for age and sex. Significance was considered for P < 0.05.

Results

Participant characteristics

Participant characteristics are shown in Table 1 by stunting
and wasting status. By study design, there was a high
Table 1
Participant characteristics for anthropometric and hormone results by stunting status

Characteristic, mean (SD)
unless otherwise noted

Overall Stunted (n ¼ 86) Nonst
(n ¼ 6

Maternal data
Age (y), median (IQR) 25 (22–32) 25 (20–32) 25.5
Income ($), median (IQR) 373 (300–540) 390 (270–600) 350
Education (y), median (IQR) 8 (6–11) 9 (6–11) 8
Height, cm 151.8 (6.4) 150.3 (6.6) 153.9
Weight, kg 57.3 (12.5) 55.8 (11.9) 59.3
BMI, kg/m2 24.9 (5.3) 24.8 (5.2) 25.1

Child data
Age (mo), median (IQR) 13.5 (9.1–19.1) 16.3 (11.7–19.9) 10.6
% female 48.3 46.5
Birthweight, kg 2.89 2.57
WAZ �1.31 (1.58) �2.39 (0.95) 0.17
HAZ �1.76 (1.38) �2.89 (0.75) �0.21
WHZ �0.52 (1.46) �1.20 (1.16) 0.39

Serum measures
GH (ng/mL), median IQR 1.71 (0.81–3.05) 1.8 (1.2–3.5) 1.6
IGF-1 (ng/mL), median IQR 33.4 (24.9–66.7) 32.0 (24.9–68.8) 34
IGFBP-3, mg/L 2.40 (0.94) 2.22 (0.99) 2.63
Free T4, mg/dL 1.09 (0.18) 1.11 (0.17) 1.08
TSH, mU/mL 3.18 (1.88) 3.01 (1.76) 3.43
hsCRP (mg/L), median IQR 1.12 (0.37–4.91) 1.09 (0.30–5.03) 1.13

Stool measures
Neopterin, median IQR 1335 (746–2174) 1168 (630–1961) 1793
a-1 antitrypsin, median IQR 10.4 (4.3–21.1) 10.2 (3.9–21.9) 10.7
Myeloperoxidase, median IQR 3439 (1478–6954) 3114 (1602–6606) 3881

Illness measures
Fever previous wk, % 35.6 34.9
Cough previous wk, % 20.1 24.4
Diarrhea previous wk, % 12.8 14

BMI, body mass index; hsCRP, high-sensitivity C-reactive protein; GH, growth hormon
protein; IQR, interquartile range; TSH, thyroid-stimulating hormone; WAZ, weight-fo
P value <0.05 is indicated in bold

* Demographic variables that were skewed were compared using Wilcoxon Rank S
y P value for comparison of log-transformed values.
prevalence of children with stunting in the cohort (58%); there
was a lower proportion of childrenwith wasting (16%). Children
with either stunting or wasting were significantly older than
unaffected children (16.3 versus 10.6 mo for stunting versus
nonstunting and 17.5 versus 13.7 mo for wasting versus non-
wasting; both P < 0.01). Children with stunting had lower
birthweights compared with those without stunting. For
stunting status, serum and stool measures only differed with
respect to IGFBP-3 levels, which were lower in stunted than in
nonstunted participants (2.22 versus 2.63 mg/L; P ¼ 0.034).
None of the laboratory measures differed by wasting status.
Because of the relationship between age and growth factor
levels, we performed linear regression for the relationship be-
tween stunting status and wasting status (separately), adjust-
ing for age. There remained no significant difference between
groups (data not shown).

Illness symptoms and serum measures

Table 2 displays the levels of hsCRP, IGF-1, and GH by the
presence of illness symptoms. There was a relatively high pro-
portion of childrenwho over the previous week had experienced
diarrhea (12%), cough (39%), and/or fever (34%). Levels of hsCRP
were higher among children who had experienced diarrhea or
cough over the previous day or week (all P< 0.01), whereas with
respect to fever, hsCRP levels were only higher among thosewith
overt diarrhea over the previous week (P¼ 0.017). Levels of IGF-1
were lower and GH levels were higher, among children with
diarrhea over the previous week (both P < 0.05) and those with
unted
2)

P value* Low weight-for-
length (<2 SD)
(n ¼ 23)

Normal weight-for-
length (n ¼ 125)

P value*

(22–31) 0.875 24.5 (22–31) 25.0 (22–32) 0.596
(300–481) 0.556 650 (500–1500) 622 (500–890) 0.596
(5–11) 0.824 8 (6–12) 8.5 (6–11) 0.657
(5.5) 0.001 148 (144–151.5) 152 (148–156.5) 0.014
(13) 0.082 53.5 (50–58.1) 57.0 (47.1–66.5) 0.288
(5.5) 0.636 24.8 (23.1–28.3) 24.1 (20.4–28.3) 0.912

(7.3–16.4) <0.001 17.5 (5.4) 13.7 (5.6) 0.004
50.8 0.607 34.8 50.8 0.148
3.31 <0.0001 2.67 2.93 0.106
(1.18) <0.0001 �3.28 (0.63) �0.95 (1.51) <0.0001
(0.83) <0.0001 �2.82 (1.00) �1.56 (1.55) <0.0001
(1.26) <0.0001 �2.58 (0.37) �0.15 (1.22) <0.0001

(0.7–2.4) 0.075y 1.73 (1.26–2.18) 1.69 (0.81–3.21) 0.976y

(24.9–60) 0.775y 33.3 (24.9–58.5) 33.5 (24.9–67.1) 0.616y

(0.82) 0.034 2.07 (1.06) 2.47 (0.90) 0.174
(0.18) 0.428 1.09 (0.20) 1.09 (0.17) 0.897
(2.03) 0.210 2.63 (1.65) 3.28 (1.90) 0.104
(0.42–4.18) 0.916y 0.51 (0.20–5.42) 1.13 (0.38–4.41) 0.504

(821–2595) 0.420y 841 (298–1816) 998 (518–2044) 0.276y

(6.4–20.3) 0.546y 10.3 (4.4–21.8) 10.9 (4.6–19.7) 0.653y

(1388–7085) 0.322y 2427 (1759–5647) 3481 (1474–7267) 0.925y

36.5 0.838 47.8 32.3 0.182
14.3 0.128 12.1 19.1 0.439
11.1 0.607 8.7 13.5 0.526

e; HAZ, height-for-age Z score; IGF, insulin-like growth factor; IGFBP, IGF binding
r-age Z score; WHZ, weight-for-height Z score

um.



Table 2
hsCRP, IGF-1, and GH levels in children by recent/current symptoms of infection

Illness symptom hsCRP IGF-1 GH

n Affected
children

Unaffected
children

P value* n Affected
children

Unaffected
children

P value* n Affected
children

Unaffected
children

P value*

hsCRPy,
mean (SD)

hsCRPy,
mean (SD)

IGF-1y,
mean (SD)

IGF-1y,
mean (SD)

GHy,
mean (SD)

GHy,
mean (SD)

Diarrhea
previous d

3/131 12.7 (1.63) 1.39 (4.90) 0.006 3/131 30 (1.4) 42.1 (1.8) 0.199 2/106 1.53 (1.08) 1.51 (2.76) 0.887

Diarrhea
previous wk

16/131 6.62 (4.39) 1.20 (4.26) 0.003 16/131 32.1 (1.5) 43.4 (1.8) 0.017 13/106 2.43 (2.20) 1.41 (2.77) 0.038

Cough previous d 28/131 3.46 (6.69) 1.16 (4.81) 0.001 28/131 42.9 (1.9) 42.3 (1.8) 0.781 21/106 1.74 (2.62) 1.46 (2.77) 0.455
Cough previous wk 51/131 2.46 (4.81) 1.06 (4.71) 0.003 51/131 40.0 (1.7) 42.9 (1.8) 0.518 39/106 1.79 (2.83) 1.36 (2.67) 0.185
Fever previous d 2/131 3.59 (20.91) 1.45 (4.90) 0.745 2/131 24.8 (1.0) 42.1 (1.8) <0.0001 2/106 2.54 (1.05) 1.49 (2.76) <0.0001
Fever previous 2 wk 45/131 3.36 (5.21) 1.15 (4.66) 0.017 45/131 38.9 (1.6) 43.4 (1.9) 0.257 37/106 1.72 (2.53) 1.40 (2.85) 0.302

GH, growth hormone; hsCRP, high-sensitivity C-reactive protein; IGF, insulin-like growth factor
P values <0.05 are indicated in bold

* P value by Satterthwaite, assuming unequal variance.
y Means and comparison between affected and unaffected children were performed using log-transformed values; back-transformed values of these are displayed.
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fever over the previous day (both P < 0.0001). Levels of IGF-BP3
were similar between children with and without illness symp-
toms (data not shown).

Correlates of hsCRP with hormones and stool measures

We next evaluated for the associations between interactions
between hsCRP and the GH axis by considering GH, IGF-1, and
IGFBP-3 as the outcomes and hsCRP as the independent variable
(Table 3). hsCRP was positively associated with levels of GH
(P ¼ 0.005) and negatively associated with IGF-1 (P ¼ 0.002) and
IGFBP-3 (P ¼ 0.008). hsCRP was not related to concurrent levels
of free T4 or TSH.

In evaluating for potential connections between stool
markers of inflammation and serum markers of systemic
inflammation, we assessed hsCRP as the outcome and stool
measures as the independent variables. StoolMPOwas positively
associated with serum hsCRP (P ¼ 0.002).

Correlates of anthropometric measures

Finally, we assessed for relationships between serum and
stool factors and growth indices (Table 4). hsCRP was not
significantly linked to anthropometric measures. GH levels were
negatively associated and IGFBP-3 levels were positively associ-
ated with HAZ, WAZ, and weight-for-height (WHZ; all P < 0.05);
IGF-1 levels exhibited a trend toward positive association with
HAZ and WAZ (both P ¼ 0.07). Following further adjustment for
Table 3
Linear regression of relationships between hsCRP* and growth hormone axis

b coefficient Confidence interval R2 P value

hsCRP as predictory

GH* 0.158 0.050–0.266 0.108 0.005
IGF-1* �0.091 �0.146 to �0.039 0.136 0.002
IGFBP-3 �0.162 �0.280 to �0.043 0.079 0.008

hsCRP as outcomey

Neopterin* 0.190 �0.149 to 0.529 0.017 0.294
a-1 antitrypsin* 0.024 �0.253 to 0.301 0.017 0.865
Myeloperoxidase* 0.358 0.121–0.595 0.081 0.003

GH, growth hormone; hsCRP, high-sensitivity C-reactive protein; IGF, insulin-
like growth factor; IGFBP, IGF binding protein
P values <0.05 are indicated in bold

* Log-transformed.
y All models further adjusted for age and sex.
current hsCRP, GHwas negatively associated (P< 0.01) and IGF-1
(P< 0.05) and IGFBP-3 (P< 0.01) were positively associated with
HAZ and WAZ, whereas GH and IGFBP-3 were additionally
associated with WHZ. Free T4, TSH, and stool measures were not
significantly linked to anthropometric measures.
Discussion

In a cohort of significant poverty from northeast Brazil, we
noted associations between a mild degree of systemic inflam-
mation as marked by higher levels of hsCRP and both higher
levels of GH and lower levels of IGF-1 and IGFBP-3. In turn,
higher GH and lower IGFBP-3 levels were associatedwith shorter
stature. These findings are consistent with a model of inflam-
mation driving hepatic resistance to GH signaling as noted in
preclinical studies (Fig. 1) [15]. To our knowledge, this is the first
study from an area with poverty and likely endemic infections
demonstrating both associations between inflammation and the
GH axis and between the GH axis and anthropometry in the
same cohort. Although preliminary, these data may have impli-
cations regarding downstream effects of systemic inflammation
and malnutrition in early childhood.

hsCRP elevations have been noted during minor acute in-
fections [18,19], as was noted in this study among children with
recent symptoms of illness. However, these symptomatic chil-
dren comprised the minority of the overall cohort. Nevertheless,
only among children with recent diarrhea had both hsCRP levels
higher and IGF-1 levels lower. Other sources of hsCRP elevation
beyond current infections in this cohort remain unclear.

In this study, we did not find a relationship between levels of
hsCRP and anthropometric measures themselves, but only to
growth factors. This underscores the complexity of these re-
lationships in that although current hsCRP is related to levels of
growth factors, current levels of GH, IGF, and IGFBP-3 levels
were related to height and weight independent of hsCRP levels,
suggesting that there are other important biological influences
on these processes as well. Linear growth is clearly a long-term
process and current elevations in hsCRP may not indicate the
long-standing inflammation that would be expected to be
required for clinically evident growth deficits. Additionally,
noninflammatory factors are important in growth factor pro-
duction, including genetics related to GH and its signaling.
Thus, further information is needed to elucidate the extent to
which infections and inflammation are responsible for any



Table 4
Linear regression of growth-related hormones with HAZ and WAZ*

Predictor HAZ WAZ WHZ

b coefficient 95% CI P value b coefficient 95% CI P value b coefficient 95% CI P value

hsCRPy 0.031 �0.118 to 0.181 0.680 0.062 �0.095 to 0.219 0.436 0.060 �0.076 to 0.120 0.383
GHy �0.305 �0.565 to �0.046 0.021 �0.359 �0.639 to �0.080 0.012 �0.275 �0.526 to �0.024 0.032
Model with hsCRP �0.354 �0.622 to �0.087 0.010 �0.431 �0.718 to �0.145 0.004 �0.336 �0.594 to �0.078 0.011

IGF-1y 0.039 �0.028 to 0.817 0.067 0.407 �0.038 to 0.852 0.073 0.292 �0.096 to 0.681 0.139
Model with hsCRP 0.448 0.010–0.886 0.045 0.485 0.026–0.945 0.026 0.361 �0.039 to 0.762 0.077

IGFBP-3 0.428 0.118–0.738 0.007 0.439 0.112–0.767 0.009 0.326 0.041–0.611 0.026
Model with hsCRP 0.451 0.127–0.776 0.007 0.496 0.155–0.836 0.005 0.384 0.089–0.679 0.011

GH, growth hormone; HAZ, height-for-age Z score; hsCRP, high-sensitivity C-reactive protein; IGF, insulin-like growth factor; IGFBP, IGF binding protein; WAZ, weight-
for-age Z score; WHZ, weight-for-height Z score
P values <0.05 are indicated in bold

* Each linear regression model included adjustment for sex and age. An additional model was analyzed for GH, IGF-1, and IGFBP-3 with further adjustment for hsCRP
as shown.

y Log-transformed.
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lower height in the children of this cohort. Furthermore, social
factors may also be important for both exposure to infections
and poor nutritiondwhich may contribute to lower growth in
this setting.

In addition to influencing growth factor production, systemic
inflammation can affect the responsiveness of the growth plates
themselves [13]. This is seen in preclinical studies demonstrating
suppressive actions of inflammatory cytokines on chondrocytes
corresponding to the length of exposure [12]. Malnutrition is
likely to play a role in growth plate responsiveness through
factors such as fibroblast growth factor (FGF)21, which is
elevated in fasting and directly inhibits GH binding to chon-
drocytes [22]; overexpression of FGF21 in mouse models results
in poor linear growth [23]. However, remaining issues regarding
differential effects of long-term malnutrition and inflammation
on FGF21 and growth plate response require further investiga-
tion [12]. Unfortunately, we were limited in serum supply and
unable to test FGF21 levels in these participants.

Some of the difficulties in separating the potential effects of
systemic inflammation and malnutrition on GH resistance rest
in that many cases of systemic inflammation occur alongside
malnutrition, including Crohn’s disease and subacute enteric
disease [1,11]. Cases of malnutrition in resource-poor areas of
the world frequently are associated with higher levels of sys-
temic inflammation as well, suggesting the potential for current
infections fueling poor weight gain [1,8,16,24]. Because GH is a
counter-regulatory hormone that mobilizes energy stores dur-
ing malnutrition, elevations in GH such as we observed can be
seen in states of undernutrition [16,24,25]. Under normal con-
ditions, IGF-1 and IGFBP-3 are produced by the liver in response
to GH. However, during states of pure malnutrition (such as in
anorexia nervosa), IGF-1 levels are low, demonstrating GH
resistance [25,26]. Although IGF-1 is commonly seen as a
marker of nutritional status, IGFBP-3 is more stable in states of
under nutrition and is more commonly seen as an indicator of
adequate GH signaling [27]. That hsCRP was associated with
higher GH levels and lower levels of IGF-1 and IGFBP-3 (sug-
gesting lower hepatic response to GH) suggests against poor
nutrition as the only reason for these associations, particularly
given the lower levels of IGFBP-3 [27].

We found higher levels of hsCRP in children with current or
recent symptoms of infection, including diarrhea, cough, and
fever. This has been noted in previous studies and is likely linked
to the immune response to underlying viral or bacterial infection
[28]. With the exception of those with current fever (who had
lower HAZ, WAZ, and WHZ), children with symptoms of infec-
tion did not have differences in anthropometry, potentially
underscoring that these episodes do not necessarily indicate a
pattern of recurring illnesses over time. However, as noted pre-
viously, repeated bouts of illness may lead to more prolonged
exposure to systemic inflammation and are associated with
faltering growth [2].

This study had multiple limitations. The original case–control
study defined malnutrition using WAZ instead of WHZ, likely a
more appropriateway to classify poor nutritional status. We only
analyzed cross-sectional measure of height instead of assess-
ments of linear growth over time. We did not directly assess for
respiratory pathogens among participants and were thus unable
to test for links between current infections and inflammation
and growth factor production. We had hsCRP as the only marker
of systemic inflammation and lacked serum levels of inflamma-
tory cytokines. We assessed random GH levels instead of the
more valid method of assessing stimulated levels; nevertheless
random levels are on average higher in states of GH resistance
when considered for a full cohort [16,24,25]. We were unable to
measure GH-binding protein as a further assessment of GH
regulation. We also lacked more sophisticated markers of
nutritional status, such as prealbumin (as a marker of mild
nutritional deficits), calorie counts, and direct measurement of
fat mass such as dual-energy x-ray absorptiometry analysis.
However, the study had strengths, including assessment of
multiple aspects of infection, systemic inflammation, growth
factors, and anthropometry in a single cohort.
Conclusions

We found both connections between current inflammation
and GH axis levels (with inverse relationships between hsCRP
and IGF-1 and IGFBP-3) and between current growth factors and
HAZ andWAZ. These data are consistent withmodels of infection
and inflammation suppressing growth factor expression and
ultimately suppressing growth. Further research is needed to
assess long-term relative effects of suppressing inflammation
and improving nutritional status on improving growth out-
comes, particularly in developing areas with high rates of linear
growth failure.
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