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ABSTRACT

Non-small cell lung cancer (NSCLQ) still constitutes the most common cancer-related cause of death
worldwide. All efforts to introduce suitable treatment options using chemotherapeutics or targeted
therapies have, up to this point, failed to exhibit a substantial effect on the 5-year-survival rate. The
involvement of epigenetic alterations in the evolution of different cancers has led to the development of
epigenetics-based therapies, mainly targeting DNA methyltransferases (DNMTs) and histone-modifying
enzymes. So far, their greatest success stories have been registered in hematologic neoplasias. As the
effects of epigenetic single agent treatment of solid tumors have been limited, the investigative focus
now lies on combination therapies of epigenetically active agents with conventional chemotherapy,
immunotherapy, or kinase inhibitors. This review includes a short overview of the most important
preclinical approaches as well as an extensive discussion of clinical trials using epigenetic combination
therapies in NSCLC, including ongoing trials. Thus, we are providing an overview of what lies ahead in the
field of epigenetic combinatory therapies of NSCLC in the coming years.
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Introduction Histones are nuclear proteins around which the DNA is
wrapped. Posttranslational modifications, such as addition or
removal of methyl or acetyl groups to amino acids within the
histones, can lead to a change of conformation and therefore
facilitate or hinder access of the transcription factor machinery
to the DNA.*®

Reversing the aberrant epigenetic patterns of cancer cells can
re-sensitize them to established treatment, e.g., chemotherapeu-
tics or radiation therapy. In this review, we provide an overview
of published and ongoing clinical combination trials using
epigenetic drugs in NSCLC.

Lung cancer is the leading cause of cancer-related deaths
worldwide. Despite continuous research and development of
new therapeutic regimens, the 5-year overall survival (OS) rate
of non-small cell lung cancer (NSCLC) remains at a mere
15%." Epigenetic therapy approaches offer novel, innovative
treatment options that may improve this troubling statistic,
namely with DNA methyltransferase inhibitors (DNMTi) and
histone-modifying agents. These classes of compounds have
been clinically tested as single agents and in combination with
chemotherapeutics, small-molecule inhibitor drugs, and differ-
entiating agents. Combination strategies often are used with
the rationale to epigenetically “prime” the cancer cells by treat-

ment with epigenetically active agents to the activity of the sub- DNA methylation

sequently administered second agent.”

DNA methylation usually occurs by transfer of a methyl
group to the cytosine of a cytosine-guanine dinucleotide (CpG),
e.g., of gene promoters. This allows the binding of different
proteins that ultimately prohibit the RNA polymerase to access
this area and can therefore silence the respective gene.’

DNA methyltransferases (DNMTs) transfer methyl groups to
cytosines by employing S-adenosyl methionine (SAM) as their
methyl donor. Both DNA hypo- and hyper-methylation are
found in cancer cells, the latter can lead to silencing of tumor
suppressor genes® or of genes that are involved in, e.g., metasta-
sis, angiogenesis, invasion, or immune response by T-cell rec-
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Table 1. Currently available DNA methyltransferase inhibitors. This table lists the
most important DNMTi used in research. Nucleoside analogs resemble nucleosides,
but lead to a chain termination when they are incorporated in the DNA. Antisense
oligonucleotide inhibitors hybridize with their complementary mRNAs, prevent
their translation and thereby the biosynthesis of certain proteins.”

DNA Methyltransferase Inhibitors

Substance Group Substance Name

Nucleoside analogs Decitabine (5-aza-2’-deoxycytidine,
Dacogen®, DAC)*"

Azacitidine (5-azacytidine, Vidaza®)*"

5-aza-fluoro-2'-deoxycytidine (FCdR)

CC486 (oral azacitidine)

Guadecitabine (SGI-110)

Sinefungin
Zebularine
Antisense oligonucleotide DNMT1 ASO
(ASO) inhibitors
MG98
Others 1-Hydrazinophthalazine
CBC12

Epigallocatechin gallate (EGCG)
Procainamide

Psammaplin A

RG 108

SGI-1027

Thioguanine

“Food and Drug Administration (FDA)-approved drugs +European Medicine
Agency (EMA)—approved drugs.

ognition.” Table 1 provides a list of currently investigated
DNMTi.

Azacitidine (AZA) and 5-aza-2'-deoxycytidine (decitabine),
the 2 clinically approved DNMT inhibitors (DNMTi), are gen-
erally considered the “flagships” of epigenetic therapy. After a
lengthy development period, they have finally become accepted
as new, non-intensive frontline treatment standards for (mostly
elderly) patients with myelodysplastic syndrome (MDS) and
acute myeloid leukemia (AML). In these 2 related myeloid
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neoplasias, remission rates, improvements in survival, and
quality of life are very encouraging. Their role in the treatment
of solid tumors is much less defined, necessitating active inves-
tigations, including their mechanisms of action.

Histone modifications: Enzymes and their inhibitors

Histone modifications are dynamic processes that are regulated
by so-called “writer” and “eraser” enzymes. These writers and
erasers either deposit or remove specific posttranslational mod-
ifications from histones, which in turn are recognized by “read-
ers.” The 2 most broadly studied chemical modifications of
histones, on which we focus in this review, are histone acetyla-
tion and histone methylation. Whether a histone modification
acts as a repressive or active mark depends on the chemical
group itself as well as its position within the histone. Fig. 1
depicts the most relevant modifications at histone H3, includ-
ing their function, the respective modifying enzymes, as well as
prototypical pharmacological inhibitors of these enzymes.

Histone acetyltransferases (HATs) add acetyl groups to
lysines and lead to an open conformation of the chromatin by
altering its charge, which supports active transcription.

The four different classes of histone deacetylases (HDAC I-
IV), on the other hand, are global mediators of transcriptional
repression. Like HATS, they also target non-histone proteins.
HDAC:s are overexpressed, or their recruitment is altered, in a
large variety of cancers, including NSCLC.® In vitro, HDAC
inhibitors (HDACIi) exhibit antineoplastic activity in cancer
cells by inhibiting proliferation and angiogenesis. Additionally,
they induce apoptosis by regulating both pro- and anti-apopto-
tic genes. Six different structural categories of HDACi have
been described, and drugs representing 3 of them have been
approved for cancer treatment: Vorinostat, belinostat, chida-
mide, and romidepsin for cutaneous and peripheral T-cell
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Figure 1. Amino acid sequence of histone H3 with active (green) and repressive (red) marks attached to lysine residues (K). Histone marks, such as acetyl and methyl
groups, are regulated by writers (e.g., EZH2) and erasers (e.g., LSD1, HDACs). Depending on their position, they can either lead to an active or an inactive chromatin con-
formation. The finely tuned regulation is often altered in human cancers. Epigenetic drugs, such as tranylcypromine or DZNep, inhibit the chromatin modifying enzymes
and may thereby influence gene expression and revert aberrant gene silencing. (KMT: histone lysine methyltransferase, KDM: histone demethylase, HDAC: histone deace-

tylase, HAT: histone acetyltransferase).
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Table 2. Currently investigated histone deacetylase inhibitors. This table depicts
the most important HDACi that are being used in research. They can be catego-
rized into 6 groups: hydroxamic acid based compounds, cyclic tetrapeptides,
short-chain and aromatic fatty acids, benzamides, electrophilic ketone, and others.

Table 3. Currently available histone methylation modifiers. This table depicts the
most important histone methyltransferase and demethylase inhibitors that are
being used in research. EZH2 catalyzes the addition of methyl groups to histone
H3 at lysine 27. LSD1 demethylates di- and tri-methylated H3K4.

Histone Deacetylase
Inhibitors®'-1%
Substance Group

Substance Name Targeted HDACs

Histone Methyltransferase and
Demethylase Inhibitors

Group Substance name

Hydroxamic acid based Givinostat (ITF2357) Class | and Il
compounds
Panobinostat (LBH 589)*" Class I and Il
Dacinostat (NVP-LAQ 824) Class I and Il
Oxamflatin Class I and Il
Abexinostat (PCl-24781) Class | and Il
Pracinostat (SB939) Class |, Il and IV
Belinostat (PXD101)*" Class | and Il
Quisinostat Class I and Il
Resminostat Class I and Il
Rocilinostat Class llb
Suberoylanilide hydroxamic Class I and Il
acid (SAHA, Vorinostat)*
Trichostatin A (TSA) Class land Il
Cyclic peptides Apicidin Class I and Il
Trapoxin A and B Class | and lla
Romidepsin (FK228, Class |
Depsipeptide)*
Short-chain and aromatic ~ (Sodium) 4-phenylbutyrate Class I and Il
fatty acids and their
salts
Sodium butyrate Class | and lla
Valproic acid/Valproate (VPA)  Class | and lla
Benzamides Chidamide’ Class |
Tacedinaline (CI-994) Class |
Mocetinostat (MGCDO0103) Class |
Entinostat (MS-275) Class |
Electrophilic ketone Trifluoromethylketone Class Il
Others Psammaplin A Class |

*FDA-approved drugs *EMA-approved drugs ‘Chinese FDA-approved drugs.

lymphoma,”'®'" and panobinostat for multiple myeloma."

Table 2 provides a list of currently investigated HDAC
inhibitors.

Histone methylation marks are deposited by histone lysine
methyltransferases (KMTs), which can be divided into non-
SET and SET-domain-containing KMTs (e.g, MLLI-5,
SET1A/B, SET 7/9). They can be removed by histone lysine
demethylases (KDMs), such as LSD-1 and -2, or JmJD-
domain-containing histone demethylases.'*'*

LSD1 demethylates mono- and di-methylated lysines 4 and
9 of histone H3. It is frequently overexpressed in NSCLC and
promotes proliferation and invasion.'> Again, the efficacy of
LSD1 inhibition is deduced from its success in hematology:
LSD1 inhibition was shown to remove the differentiation block
in AML cells'® and re-sensitize AML cells to all-trans retinoic
acid (ATRA)."” The first compound clinically used as an LSD1
inhibitor is tranylcypromine, a monoamine oxidase inhibitor
approved more than 50 y ago for treatment-refractory depres-
sion. More potent and specific LSD1 inhibitors are presently
under preclinical and early clinical development.'®

The methylation of lysine 27 of histone H3, H3K27, is regu-
lated by the enhancer of zeste homolog 2 (EZH2), the catalytic
domain of the polycomb repressive complex 2 (PRC2). Trime-
thylation of H3K27 by EZH2 leads to silencing of PRC2 target
genes that are involved in stem cell differentiation and embry-
onic development. EZH2 is overexpressed in a variety of can-
cers, including NSCLC. 3-Deazaneplanocin A (DZNep) is an

EZH2 inhibition 3-deazaneplanocin A (DZnep)
Tazemetostat (EPZ-6438)
GSK126

GSK2816126

GSK343

UNC-1999
Tranylcypromine (2-PCPA)
GSK LSD1

GSK2879552

ORY-1001

Pargyline

RN 1 dihydrochloride
SP2509

45C-202

EPZ-5676

LSD1 inhibition

Dual HDAC-LSD1 Inhibition
DOT1L inhibition

EZH2 inhibitor that leads to reduced trimethylated H3K27 lev-
els in breast cancer cells and the de-repression of aberrantly
silenced genes.'® Table 3 provides a list of currently investigated
histone methylation modifiers.

Epigenetic therapy in myeloid neoplasias and multiple
myeloma

Until now, epigenetic therapy has been most effective in hema-
tologic neoplasias. In a randomized phase 3 study in older
patients with mostly higher-risk MDS comparing azacitidine
(administered over 7 d every 4 weeks) to standard of care, the
2-year survival was 51% in the azacitidine arm compared to
26% in the standard of care arm.”’ In another randomized
phase 3 trial for newly diagnosed AML patients of 65 y and
older and more than 30% bone marrow blasts, azacitidine
(given at the same dose and schedule as for MDS) increased
median overall survival from 6.5 months in the conventional
treatment arm to 10.4 months in the azacitidine arm.*'

In a phase 3 trial with 170 MDS patients, decitabine led to a
higher response rate (17% vs. 0%) and a trend to longer pro-
gression-free survival (PFS) (12.1 vs. 7.8 months) when com-
pared to best supportive care.”> The EORTC Intergroup trial
06011 with 233 higher-risk MDS-patients of 60 y and older
comparing low-dose decitabine with sole best supportive care
resulted in improvement of PFS, AML transformation, and
quality of life.*” Decitabine is also active in older AML patients.
Particularly, when administered over 10 d decitabine induced
response rates almost comparable to standard induction che-
motherapy.****In a phase III trial comparing decitabine with
treatment choice (TC) in 485 newly diagnosed AML patients of
65 y and older with poor to intermediate risk cytogenetics, deci-
tabine led to an increase in complete remission rate (17.8% with
decitabine vs. 7.8% with TC) and longer OS.*

Last but not least, the HDAC inhibitor panobinostat signifi-
cantly increased PFS and complete remission rate in multiple mye-
loma when combined with bortezomib and dexamethasone.””
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Potential for epigenetic therapy in lung cancer

Epigenetic changes are an important feature in NSCLC devel-
opment, making them viable targets in lung cancer therapy.
Aberrant promoter methylation of genes like CDKN2A?8,
MLHI and MSH2*°, APC*°, RARB*, MGMT,” and many
others™ has been described in lung cancer. Furthermore, differ-
ent chromatin modifications can be used as prognostic
markers. For example, overexpression of class I HDACs* and
globally elevated H3 and H4 methylation are associated with a
poor prognosis®, whereas high dimethyl H3K4 levels and low
acetylated H3K9ac® appeared to confer a better prognosis.

Two groups of lung cancer patients might obtain particular
benefit from epigenetically active drugs: patients that are not fit
enough for aggressive chemotherapy and high-risk NSCLC
patients. The first group, i.e., patients not eligible for chemo-
therapy, might still be fit enough for the—usually less energy
draining—epigenetic therapy. Rather than being cytotoxic like
conventional chemotherapeutics, epigenetic therapies are
thought to induce apoptosis and/or differentiation by reversing
aberrant silencing or activation of genes. Elegantly enough, this
should in principle eliminate only cancer cells, leaving normal
cells untouched, resulting in fewer and less intense side effects.
The second group comprises high-risk NSCLC patients, i.e.,
those with shorter relapse-free survival (RFS), who seem to be
prone to relevant epigenetic alterations, e.g., harboring aberrant
DNA methylation of HISTI1H4F, PCDHGB6, NPBWR1, ALX1,
and HOXA9.”

Combination treatment including epigenetically active
agents: Preclinical studies

DNMTi**, HDACi*, inhibitors of EZH2,* and LSD1'* have all
been demonstrated to have anticancer effects in in vitro NSCLC
studies. However, single-agent clinical trials of these groups of
inhibitors in lung cancer patients showed mostly limited or
transient effects, or high toxicity*"**, which is why combination
therapies seem favorable. Epigenetic agents have been shown to
be able to “prime” cancer cells to standard chemotherapy, pos-
sibly by reactivation of tumor suppressor genes or DNA repair
pathways.* They can also be used to re-sensitize cancer cells
after the development of resistance, e.g., to tyrosine kinase
inhibitors (TKIs).** The following paragraphs provide an over-
view of some interesting preclinical studies using epigenetic
drugs in NSCLC.

Preclinical combination therapy with DNMTi

Azacitidine was shown to act synergistically with cytarabine
and etoposide in NSCLC cell lines.*” This combination led to a
further hypomethylation of CpG sites located within 2 tumor
suppressor genes (MGMT and THRB).

Li et al. observed a correlation between DNA promoter
methylation of the EGFR gene and TKI resistance in NSCLC
cell lines. DNMT inhibition using decitabine enhanced or even
restored sensitivity to gefitinib, resulting in growth inhibition
and apoptosis, as well as reduced EGFR protein expression.*®

Several proven or potential DNMTi (azacitidine, decitabine,
zebularine, hydralazine, epigallocatechin  gallate, and
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psammaplin A) caused radiosensitization in the NSCLC cell
line A549.%

Preclinical combination therapy with HDACi

Two novel HDAC inhibitors (ST2782 and ST3595) showed a
synergistic effect with taxanes, which act by stabilizing the
microtubuli in the spindle apparatus and disrupting mitosis.
Combination therapy was followed by an increase in growth
inhibition, apoptosis, and cell cycle delay at the G2/M-transi-
tion in different cancer cell lines, among them, the NSCLC cells
H460 and A549. This might be caused by a supportive effect of
acetylation on microtubular stabilization.***

HDAC: also led to downregulation of thymidylate synthase,
an enzyme involved in the folate cycle and a target of cytostatic
agents such as pemetrexed. High thymidylate synthase levels
correlate with pemetrexed resistance. When sequentially
treated with pemetrexed followed by ITF2357, a pan-HDAC],
several NSCLC cell lines showed a synergistic effect on growth
inhibition and apoptosis. Results were confirmed in xenograft
models derived from the adenocarcinoma cell line H1650.>°

The HDACi romidepsin was able to enhance the anti-tumor
effect of erlotinib in 9 NSCLC lines of different histology and
mutation status, including EGFR-, KRAS-mutant, and wild
type cell lines, as well as reduce tumor burden in NCI-H1299
xenograft models.”’ HDAC inhibition using entinostat (MS-
275) re-sensitized different TKI-resistant NSCLC cell lines to
gefitinib, probably by restoring E-Cadherin expression.”

The pan-HDAC-inhibitor Panobinostat did not only make
TKI-resistant A549-cells available to the antineoplastic activity
of Erlotinib, it also led to an increase in mono-, di- and trime-
thylation of histone H3 lysine 4 (H3K4), an indicator for a
crosstalk between HDAC inhibitor and LSD1.”> The same pan-
HDACI, panobinostat, was also able to prime NSCLC cell lines
to the differentiating effect of ATRA>* and, furthermore, com-
bining ATRA with the novel HDACi SL142 or SL325 sup-
pressed colony formation, induced apoptosis via Bax
expression, and increased caspase-3 activity in NSCLC cell
lines.>

The HDACi sodium valproate also enhanced the anti-
tumoral effect of cisplatinum-vinorelbine-based chemoradia-
tion in NSCLC cell lines.”® Trichostatin A (TSA) was also able
to radiosensitize NSCLC cell lines, promoting apoptosis and
G2/M-cell-cycle arrest.””

Preclinical combination treatment approaches targeting
aberrant histone methylation

Aberrant histone methylation is a relatively recently discovered
feature in NSCLC, which is reflected in the scarceness of studies
using agents affecting histone methylation.

Fillmore et al. could show that EZH2 knockdown as well as
indirect EZH2 inhibition using 3-deazaneplanocin A (DZNep)
were both able to prime NSCLC cell lines to the effect of the
topoisomerase inhibitor etoposide.”®

Even less research has until now been conducted concerning
aberrant histone demethylation in NSCLC. LSD1 knockdown
as well as LSD1 inhibition using pargyline suppressed invasion,
migration, and proliferation in lung cancer specimens;'’
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crosstalk between LSD1i and HDACI is known to play a role in
breast cancer.”® To our knowledge, there are as yet no studies
investigating combination therapies for lung cancer using
LSD1 inhibitors.

Preclinical epigenetic combination therapy

There is substantial crosstalk between the different epigenetic
regulator enzymes, e.g., between LSD1 and class I, II and IV
HDACs in breast cancer,”® as well as DNA methylation and
histone methylation.” Different histone modifications even
influence each other in yeast cells.’ These findings have led to
a number of epigenetic combination studies, but only few tar-
geting lung cancer.

The combination of the HDACi SAHA and the non-specific
EZH2 inhibitor DZNep decreased phosphorylation of proteins
essential for the EGFR pathway, increased apoptosis in NSCLC
cell lines and reduced tumor burden in HI1975 xenograft
mice.*

Combining the DNMTi azacitidine with the HDACi entino-
stat led to the reduction of tumor burden, increased expression
of pro-apoptotic genes and genes involved in cell cycle regula-
tion in an orthotopic lung cancer model.®”

These encouraging results stand in contrast to a series of
experiments on NSCLC cell lines and xenografts using aza-
citidine and entinostat as priming agents to chemotherapeu-
tics published by Vendetti et al. in 2014. The group found
no difference in the response to cisplatin, docetaxel, 17-
AAG (an antitumor antibiotic), or gemcitabine after epige-
netic priming in A549, H358, H838, or H1229 cells. And,
although epigenetic priming enhanced the response of A549
xenografts to irinotecan, no effect on A549 or H460 xeno-
grafts was seen when using cisplatin or docetaxel. Priming
even diminished the effect of irinotecan on H460 cells.
Application of azacitidine and entinostat did however
enhance the response to repeat treatment of irinotecan in a
patient derived adenocarcinoma xenograft. All in all, the
results of Vendetti et al. did not generally strengthen the
hypothesis of epigenetic chemosensitization. The authors
themselves note that efficacy might be context- and host-
dependent and encourage further investigation.®*

Clinical trials

Single-agent clinical trials using chromatin-modifying
drugs

The Canadian scientist Richard Momparler is one of the
pioneers in the epigenetic treatment of NSCLC patients. In
a trial in the 1990s using decitabine in 15 stage IV NSCLC
patients with no prior treatment, one patient survived more
than 81 months.®> After this astonishing observation, Mom-
parler et al. suggested a delayed mode of action of decita-
bine, which had almost been dismissed as a treatment
choice in NSCLC, and thus sparked a new interest in the
field. Since then, numerous clinical trials have studied the
single-agent effects of DNMTi’**® or HDACi”*® in
NSCLC. As mentioned earlier, however, clinical activity was
often limited due to transient effects or toxicity. Combining

epigenetic substances with established therapies might
increase efficacy and reduce side effects. Table 4 depicts
ongoing and published trials using epigenetic combination
therapies in NSCLC.

Combining DNMTi with erlotinib or cisplatinum

In a phase I trial with 30 patients with different tumor entities
including 2 patients with NSCLC, Bauman et al. showed that
azacitidine plus erlotinib was well tolerated. The phase 2 rec-
ommended dose (P2RD) was 150 mg erlotinib daily and
75 mg/m” azacitidine daily on days 1-4 and 15-18 of a 28-day
cycle.”

Schwartsmann et al. conducted a phase I trial with 21
patients with different tumor entities including 8 NSCLC
patients and a consecutive phase II trial with 14 inoperable,
non-pretreated stage III and IV NSCLC patients using decita-
bine and cisplatin. Apart from dose finding, they measured
adverse effects, response rate, and median survival. The dose-
limiting toxicity was myelosuppression, median survival was
15 weeks—a result comparable or slightly inferior to cisplatin
alone. The disappointing result might be partially explained by
a predominance of stage IV cancer patients.”

Combination therapy of NSCLC using HDACi

After conducting a phase I study with 21 NSCLC patients,
Jones et al. concluded that HDAC inhibition using vorinostat
combined with proteasome inhibition using bortezomib fol-
lowed by surgery was a feasible treatment option.”*

Another phase I study with 17 patients with different can-
cers, including 3 NSCLC patients, determined the phase 2 rec-
ommended dose (P2RD) of vorinostat and the receptor
tyrosine kinase inhibitor (TKI) sorafenib to be vorinostat
300 mg on days 1 to 14 and sorafenib 400 mg daily during a
21-day cycle. Using this dosing scheme, 12 additional NSCLC
patients were further evaluated. While the entire patient group
tolerated the drugs well, the NSCLC group showed one case of
grade V hemoptysis and one coronary event, the majority was
not able to finish 2 cycles.”

In a phase 1 trial, panobinostat plus erlotinib in 33 patients
with NSCLC and head and neck cancer was overall well toler-
ated, dose-limiting toxicities (DLTs) occurred in 2 patients
(one grade 3 nausea and grade 3 prolonged QT¢), but resolved
without interference. The combination also resulted in an OS
of 41 (estimated) vs. 5.2 months in patients harboring an epi-
dermal growth factor receptor (EGFR) mutation vs. wild type
EGFR patients. The trial therefore identified EGFR mutated
patients as especially susceptible to this combination
treatment.”

Although it could be safely administered, vorinostat com-
bined with erlotinib only prevented progression in 28 percent
of the patients at 12 weeks after treatment in a phase I/II study
with 33 NSCLC EGFR-mutant patients, who had progressed
after erlotinib treatment.”

In a phase II trial with 132 stage IIT and IV NSCLC patients
who had advanced after prior treatment (one or 2 previous che-
motherapy or chemoradiotherapy regimens), entinostat with
the TKI erlotinib did not exhibit a beneficial effect on the study



population. However, for those patients showing high E-cad-
herin levels at enrolment, the OS was longer compared to erlo-
tinib alone.”

Ninety-four patients with advanced NSCLC were enrolled in
the randomized, double blind, placebo-controlled phase II trial
by Ramalingam et al. comparing cisplatin/paclitaxel combined
either with vorinostat or placebo. The combination therapy
was superior regarding response rate (34% vs. 12.5%, P =
0.02), but not median PFS (6.0 vs. 4.1 months, P = 0.48) or OS
(13.0 vs. 9.7 months, P = 0.17).7°

Therapy approaches combining different epigenetically
effective drugs

The combination of decitabine with valproic acid in a phase I
trial with 8 NSCLC patients led to an increase of fetal hemoglo-
bin, which indicated reactivation of initially silenced B-globin
genes by hypomethylation. However, a phase II study was not
recommended because of grade 3 neurological toxicities in 2
patients including disorientation, lethargy, memory loss, and
ataxia at dose level 1.”

In 10 extensively pretreated, refractory advanced NSCLC
patients in a phase I/II trial, the combination of azacitidine and
entinostat was well tolerated. Following epigenetic treatment, a
complete remission was observed in one patient and a partial
remission in another, who remained with stable disease for
about 2 y after ending the study.* Median survival was
6.4 months. However, a subset of 10 “methylation signature”-
positive patients was identified, whose median survival
amounted to 10.4 months. These patients showed demethyla-
tion of at least 2 of 4 initially silenced NSCLC signature genes
(APC, RASSF1A, CDH13, CDKN2A) following treatment. Eight
of these “methylation signature”-positive patients had stable
disease or an objective response. Of the 16 identified “methyla-
tion signature”-negative patients, only 4 showed stable disease
and no objective responses were observed. Additionally, the
epigenetic treatment improved the response rate to subsequent
anti-cancer treatments, with 4 of 19 patients enjoying major
objective responses.*?

Ongoing combination clinical trials

A number of researchers are currently investigating epigenetic
combination therapies in NSCLC. The following section pro-
vides a summary of ongoing trials, including those that had to
be terminated early.

In a phase I study researchers will determine the phase 2 rec-
ommended dose (P2RD) of the DNMTi decitabine adminis-
tered together with the phytoestrogen genistein in patients with
solid tumors. The phase II part of this study aims to monitor
safety and preliminary efficacy in 48 stage III and IV NSCLC
patients.”®

Progression-free survival (PES) and response rate will be
evaluated in a currently recruiting phase II study using the
DNMTi 5-fluoro-2-deoxycytidine and the competitive cytidine
deaminase inhibitor tetrahydrouridine, with a target of 185
NSCLC patients.”

There are several ongoing trials using HDAC inhibitors. To
assess DLTs and MTD of vorinostat combined with
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gemcitabine plus either cis- or carbo-platin is the goal of a
phase I study monitoring 61 chemo-naive patients with
advanced NSCLC.*’

Several studies had to be terminated early: OS and PFS were
planned to be measured in a phase II trial using vorinostat in
combination with paclitaxel and carboplatin in 253 stage III
and IV NSCLC patients. The study had to be terminated as the
endpoint had not been achieved.*’ Another phase I/II study
was terminated for logistic reasons. It had aimed to determine
maximum tolerated dose (MTD) of belinostat combined with
standard chemotherapy (carboplatin, paclitaxel, and bevacizu-
mab induction) as well as OS and long-term safety in 7 stage
IV NSCLC patients.*” Another phase I study investigated beli-
nostat in combination with erlotinib in NSCLC patients; it was
terminated when the MTD was exceeded.®’

As expected, the current interest in HDAC inhibitors com-
bined with DNMT inhibitors is reflected in a number of ongo-
ing trials using both agent types. A phase II study will test the
priming ability of azacitidine combined with entinostat fol-
lowed by a variety of chemotherapeutic agents (docetaxel, gem-
citabine, irinotecan, pemetrexed) and is planning to include
165 advanced NSCLC patients.®*

A hundred and sixty-two advanced NSCLC patients have
enrolled in an all-epigenetic phase II study, in which MTD and
response rate of azacitidine combined with entinostat will be
determined.*

Importantly, another study (neither using a combination
therapy nor including NSCLC patients) has recently been initi-
ated: the first clinical trial in lung cancer (in this case small cell
lung cancer, SCLC) studying a novel LSD1 inhibitor,
GSK2879552. This irreversible selective inhibitor of LSD1 led
to growth inhibition in a number of SCLC cell lines. The
authors could show that certain cell lines harboring a specific
hypomethylation signature were more susceptible to LSDI1
inhibition than those lacking this signature. The anti-tumor
effect was confirmed in SCLC xenograft mice.*® One hundred
SCLC patients with recurrent or refractory disease after plati-
num-based chemotherapy regimen will be enrolled in a phase-
1 study examining the safety, including adverse events and
DLTs, and disease control rate of GSK2879552.%”

New immunotherapeutic approaches using epigenetic
therapies

One of the most interesting recent discoveries in hemato-
oncology is the induction of immune responses in cancer cells
by hypomethylating agents. In a follow-up observation of
patients with refractory NSCLC that the group of Wrangle had
treated with low-dose azacitidine and the HDAC inhibitor enti-
nostat in 2013, they noticed that a number of these patients had
above-average responses to subsequent therapies. Among
those, impressively robust remissions were induced by anti-
PDI-antibodies. It seemed that azacitidine exhibited a priming
effect to other treatment regimen in these patients.*> Encour-
aged by this observation and to examine the underlying molec-
ular changes, they treated NSCLC cells with 500 nM of
azacitidine for 72 h. Azacitidine induced the upregulation of
different immune-related pathways as well as the expression of
cancer/testis antigens and transcripts of HLA Class I antigens,
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which are important for tumor recognition and their destruc-
tion by cytotoxic T-cells. It also led to the upregulation of pro-
grammed cell death receptor ligand 1 (PD-L1), a key ligand-
mediator of immune tolerance. Usually the interaction of PD-
L1 with its receptor programmed cell death receptor 1 (PD-1)
acts as a checkpoint for immunological responses to inflamma-
tion. When cancer cells express PD-L1, it can enable them to
evade recognition and degradation by cytotoxic T-cells.*® Anti-
PD1 antibodies have already been demonstrated to induce
complete or partial remissions in NSCLC, e.g., in 5 of 49
NSCLC patients in a phase I study including different tumor
types.* However, a subset of NSCLC patients could be identi-
fied who did not respond to the treatment due to low PD-L1
expression.”” The authors then suggested a priming effect of
DNA hypomethylating agents to anti-PD-L1-antibodies, espe-
cially in those patients with low PD-L1 expression. Two
research groups have investigated the effect of azacitidine or
decitabine on colorectal and ovarian cancer cells. Very impres-
sive evidence suggests that the anti-tumor activity of these
DNMT] is at least partially based on the activation of endoge-
nous retroviral sequences, which express double-stranded
RNAs and thus trigger interferon responses that result in elimi-
nation of the tumor cells.”""?

The new angle on DNMTi has already led to the set-up of a
large phase II study, in which up to 120 patients with recurrent,
metastatic NSCLC will be recruited using azacitidine and enti-
nostat or orally administered azacitidine to prime the tumors
to the monoclonal anti-PD1 antibody nivolumab.”” Nivolumab
has been approved for NSCLC treatment in the EU in 2015 fol-
lowing the CheckMate-017-study.”® Two similar studies exist
using the PD-1 inhibitor pembrolizumab, approved for NSCLC
and melanoma treatment in the USA. A phase 1 study includ-
ing up to 90 patients with stage IIIB and IV NSCLC will test
the safety and efficacy of oral azacitidine administration in
combination with pembrolizumab vs. pembrolizumab and pla-
cebo.” Up to 158 patients will be enrolled in a phase 1b/2 dose
escalation study using the HDAC inhibitor entinostat com-
bined with pembrolizumab in patients with NSCLC and an
expansion cohort with NSCLC and melanoma patients.”

Summary and conclusions

In this review we describe present developments in the field of
epigenetic combination therapies. Combining epigenetic agents
with standard treatment may increase their efficacy. Epigenetic
drugs as single agents or combined with biologicals might result
in treatment options that are available to patients too unfit for
aggressive chemotherapy, due to age, reduced performance sta-
tus, and comorbidities. Efficacy of combining epigenetic drugs
with standard chemotherapy has been demonstrated in a pleth-
ora of preclinical studies. Only in recent years researchers
started to translate these findings into clinical testing, which is
why the majority of studies are still phase I and II trials. Differ-
ent approaches have been taken, mainly combining DNMTi or
HDACi with, e.g., chemotherapy, monoclonal antibodies, or
TKIs. Especially interesting is the involvement of hypomethy-
lating agents in immunological pathways and their priming
effect to anti-PD1-antibodies.

So far, epigenetic combination therapies have not brought
the desired breakthrough in NSCLC treatment. A couple of
studies had to be terminated due to intolerable toxicities or lim-
ited results. However, some trials were able to identify special
subgroups (e.g., patients with high E-cadherin levels) that
would benefit from a certain combination treatment. Others
showed promising results altogether. For instance, the synergis-
tic effect that has been observed when combining HDACi and
DNMTi’”® has sparked a special interest and is reflected in a
number of trials using both epigenetic drugs together in combi-
nation with standard therapy.

Also, new epigenetic drugs are constantly emerging, as dem-
onstrated by the recent discovery of histone methylation and
demethylation and agents modifying these marks, such as
EZH2 and LSD1 inhibitors. Combination therapies using these
inhibitors are already being tested in a preclinical setting and it
seems it is only a matter of time until clinical trials will be
designed. In conclusion, epigenetic therapies may yield great
opportunities in the treatment of NSCLC.
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