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Bipolar disorder (BD), characterized by recurrent mood swings between depression and mania, is a highly heritable and devastating
mental illness with poorly defined pathophysiology. Recent genome-wide molecular genetic studies have identified several
protein-coding genes and microRNAs (miRNAs) significantly associated with BD. Notably, some of the proteins expressed
from BD-associated genes function in neuronal synapses, suggesting that abnormalities in synaptic function could be one of the
key pathogenic mechanisms of BD. In contrast, however, the role of BD-associated miRNAs in disease pathogenesis remains
largely unknown, mainly because of a lack of understanding about their target mRNAs and pathways in neurons. To address this
problem, in this study, we focused on a recently identified BD-associated but uncharacterized miRNA, miR-1908-5p. We identified
and validated its novel target genes including DLGAP4, GRINI, STX1A, CLSTNI and GRM4, which all function in neuronal
glutamatergic synapses. Moreover, bioinformatic analyses of human brain expression profiles revealed that the expression levels of
miR-1908-5p and its synaptic target genes show an inverse-correlation in many brain regions. In our preliminary experiments, the
expression of miR-1908-5p was increased after chronic treatment with valproate but not lithium in control human neural progenitor
cells. In contrast, it was decreased by valproate in neural progenitor cells derived from dermal fibroblasts of a BD subject. Together,
our results provide new insights into the potential role of miR-1908-5p in the pathogenesis of BD and also propose a hypothesis that
neuronal synapses could be a key converging pathway of some BD-associated protein-coding genes and miRNAs.
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Bipolar disorder (BD) is a highly heritable, chronic, and
devastating mental illness characterized by recurrent mood
swings between depression and mania with intervening euthymic
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states. With a lifetime prevalence of 1~2%, BD is recognized as
the sixth leading cause of disability worldwide and also incurs
huge social and economic costs [1]. Although the underlying
pathogenic mechanisms are poorly defined, recent genome-
wide molecular genetic studies have identified many single-
nucleotide polymorphisms (SNPs) associated with BD in multiple
chromosomal regions [2-4]. These loci include several protein-
coding genes (e.g. ANK3, CACNAIC, NCAN, and ODZ4) that
are involved in various neuronal processes, such as calcium
signaling and synaptic development and function [5, 6]. Moreover,
studies on postmortem human brains and animal models of
BD show changes in the expression of synaptic proteins as well
as abnormalities of synaptic morphology and function [7-
10]. Together, these results suggest that ‘synaptic pathology (or
synaptopathy) could be one of the major features of BD.

MicroRNAs (miRNAs) are 21~25-nucleotide small non-
coding RNAs that regulate the expression of target mRNAs by
directly interacting with the ‘seed’ complementary sequences
in 3’ untranslated regions (3’'UTRs) [11]. miRNA binding
downregulates the expression of target mRNAs either by
decreasing their stability or by inhibiting translation. Notably, the
expression levels of many miRNAs are altered in postmortem
brains and blood samples of BD patients, suggesting a potential
role for miRNAs in BD pathophysiology [12-14]. In many cases,
however, it is unclear whether such changes in miRNA expression
have any causative role in BD or simply reflect disease progression
or patient medication. Independently, molecular genetic studies
have also identified several miRNAs associated with BD, such as
miR-499, miR-708, miR-1908, and miR-2113 [4, 15]. Although
these miRNAs could be potentially involved in BD pathogenesis,
the key target mRNAs that could mediate the pathogenic process
remain largely unknown. Importantly, it has been shown that
a single miRNA can regulate a specific biological function by
modulating the expression of a group of proteins interacting with
each other or participating in the same pathway [16]. Therefore,
we reasoned that identifying the target genes of BD-associated
miRNAs and understanding their enriched functions could
provide important insights into the key pathogenic mechanisms
of BD.

In this study, we tested this hypothesis by focusing on a recently
identified BD-associated, primate-specific but uncharacterized
miRNA, miR-1908-5p. We identified and validated its novel target
genes including DLGAP4, GRINI, STX1A, CLSTNI and GRM4,
which all function in neuronal glutamatergic synapses. Moreover,
our bioinformatic analyses showed inverse-correlations between
the expression levels of miR-1908-5p and its synaptic target genes

in multiple human brain regions. From a preliminary experiment,

https://doi.org/10.5607/en.2016.25.6.296

we also found that chronic treatment with valproate, a common
medication for BD, could increase the expression of miR-1908-
5p in control human neural progenitor cells (NPCs), while it
could decrease the level of miR-1908-5p in NPCs derived from
dermal fibroblasts of a BD subject. Together, our study identifies
the synaptic target genes of BD-associated miR-1908-5p, and
thereby provides another piece of evidence supporting the ‘synaptic
pathology” hypothesis of BD.

MATERIALS AND METHODS

Luciferase assays

The 3'UTR regions of human CLSTNI (NM_001009566.2,
1-1,426), DLGAP4 (XM_005260333.3, 1-1,602), GRASP
(XM_011537996.1, 1-636), GRINI (NM_007327.3,
1-1,235), GRM4 (XM_011514531.1, 1-947), and STXIA
(XM_011516541.1, 1-1,157) were PCR amplified from fetal or
adult brain cDNA libraries and subcloned into the psiCHECK-2
vector (Promega). Mutagenesis reactions of the GRM4 3’'UTR
construct were performed using the QuikChange XL II Site-
Directed Mutagenesis Kit (Agilent Technologies) to change the
three nucleotides of the miR-1908-5p seed match regions (position
4 to 6, CGC) into complementary sequences (GCG). HEK293T
cells in 24-well plates were transfected with 30 ng of psiCHECK-2
construct plus 20 pmol of either cel-miR-67 (negative control
miRNA) or miR-1908-5p duplex (miRIDIAN Dharmacon) using
Lipofectamine 2000 (Invitrogen). After 24 h, luciferase activities
were measured using the Dual Luciferase Reporter Assay System
(Promega).

Human neural progenitor cell culture and drug treatment
The control and bipolar patient iPS cell lines were generated
by transfection of integration-free episomal expression vectors
containing p53shRNA, Oct3/4, Sox2, Klf4, L-Myc and Lin28 as
described in Okita et al. [17]. The iPSC lines were maintained in
mTeSR1 medium (Stemcell Technologies). For differentiation of
iPSC to NPC, we followed Cho et al. with minor modifications [18].
In brief, iPSC colonies were detached with dispase and cultured
with STEMdiff Neural Induction Medium (Stemcell Technologies)
in a bacterial dish for 5 days to form EBs. EBs then were plated
onto matrigel-coated dishes in STEMdift Neural Induction
Medium for 7 days to form neural rosettes. The neural rosettes
were mechanically isolated and cultured in DMEM/F12 plus N2
and bFGE in order to form Spherical Neural Masses (SNMs). For
differentiation of SNMs to NPCs, SNMs were chopped using
a stainless steel blade (Dorco) and plated onto matrigel-coated
dishes in DMEM/F12 plus N2 and B27. NPCs were chronically
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exposed to 1 mM lithium chloride (Sigma-Aldrich) or valproic
acid sodium salt (Sigma-Aldrich) for a week.

RNA extraction and quantitative real-time reverse
transcription PCR

Total RNA was extracted from human NPCs using a miRNeasy
minikit (Qiagen) according to the manufacturer’s instruction.
From 50 ng of total RNA, cDNAs for RNU6B (internal control)
and miR-1908-5p were synthesized using TagMan microRNA
reverse transcription kit (Applied Biosystems). RNU6B and
mature miR-1908-5p were detected and quantified by a real-time
PCR instrument (CFX96 Touch, BIO-RAD) using the TagMan
microRNA assays (Applied Biosystems). The experiments were
performed in three independent technical repeats.

Bioinformatics analysis

The target genes of miRNAs were predicted by using the
TargetScan database (Release 7.0, http://www.targetscan.org) [19].
The predicted target genes were sorted by context++ scores of
the binding sites, and low scored target genes were discarded to
remove less likely target genes. To further restrict the target genes,
low-expressed genes whose expression levels were less than a
50" quantile of the average expression in mouse brain were also
discarded. The expression values of mouse brain were obtained
from 84 GDS datasets downloaded from the National Center for
Biotechnology Information Gene Expression Omnibus (NCBI
GEO). The gene ontology (GO) analysis for the remaining target
genes was carried out using DAVID software (v6.7, https://david.
nciferf.gov) [20]. GO terms with an adjusted p-value (Benjamini)
less than 0.05 were considered significant. Barplots were generated
using the R (v.3.2.3) package ggplot2 (v.2.0.0).

The miRNA sequencing data of the developing human brain
were downloaded from the BrainSpan database (http://www.
brainspan.org). This dataset contains 216 samples spatially
covering 16 brain regions and temporally spanning developmental
periods from 4 months to 23 years of age. Reads were normalized
to reads per million mapped reads (RPM) using the formula:

10°C

R="\1

where C is the number of reads mapped to one miRNA, N is
the total number of mapped reads in the sample, and L is the
length of the miRNA. The gene expression data of the human
brain were downloaded from the NCBI GEO (GEO accession
number GSE25219) [21]. This dataset contains 1,340 samples
spatially covering multiple brain regions and temporally spanning
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periods from 4 post-conceptional weeks to 82 years of age. The
expression levels of genes were assayed using the Affymetrix
GeneChip Human Exon 1.0 ST Array platform, and represented
as normalized log,-transformed signal intensity values. For brain
regions with both left and right hemispheres of the same donor
profiled, gene expression values were averaged. The samples in
the miRNA expression data and those in the gene expression data
were matched using the sample mapping table downloaded from
the BrainSpan database, and 213 matched samples were used for
analyses. To explore the regional expression pattern of miR-1908-
5p and its target genes, both the miRNA and gene expression
datasets were divided into 16 brain regions, with the samples
from the same brain region being grouped together. To investigate
correlations between the expression level of miR-1908-5p and
those of its target genes, Spearmans correlation coefticient was
calculated among the matched samples for each brain region.

RESULTS

Identification and validation of synaptic targets of miR-
1908-5p

miR-1908 is an intronic miRNA of the fatty acid desaturase
1 (FADSI) gene in human chromosome 11. miR-1908 is
transcribed and processed to generate two 21-nucleotide mature
miRNAs, miR-1908-3p and miR-1908-5p, which have different
sequences and thus potentially different target mRNAs (http://
www.mirbase.org/). According to the UCSC genome browser
(hg38), the genomic sequence of miR-1908 is poorly conserved.
Among 100 animal genomes, the seed sequences of miR-1908-
3p and miR-1908-5p are conserved only in humans and other
primates, which contrasts with well-conserved miRNAs, such as
miR-34a (Additional file 1: Figs. S1 and S2). Recently, Forstner
et al. [15] revealed a significant association of miR-1908 with
BD and performed pathway analysis of miR-1908 target genes
starting from only 67 targets predicted by TargetScan (Release
6.2) [22], which considers the conservation of miRNA binding
sites in 3'UTRs. However, this approach might have missed some
meaningful human targets of miR-1908, especially considering the
human and primate-specific conservation of miR-1908. Moreover,
TargetScan (Release 6.2) predicted the targets of only miR-1908-
5p and not miR-1908-3p.

To solve these problems and to better understand the genes and
biological pathways regulated by miR-1908-3p and miR-1908-
5p, we decided to use the newest version of TargetScan (Release
7.0) [19]. We found that TargetScan (Release 7.0) predicted a
total of 481 and 2,500 target genes of miR-1908-3p and miR-
1908-5p, respectively. In TargetScan (Release 7.0), targets are
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ranked based on the cumulative weighted context++ score, which
combines the contribution of 14 features irrespective of binding
site conservation [19]. To focus on the high-ranked and more
likely targets, we set thresholds for context++ scores and narrowed
down the gene list to 303 and 358 genes for miR-1908-3p and
miR-1908-5p, respectively (Additional file 1: Fig. S3). We further
restricted the targets by selecting brain-expressed genes (184 and
225 genes, respectively) and performed Gene Ontology (GO)
analysis (Fig. 1a and b). After applying adjusted p-value (Benjamini,
<0.05), we found some significant terms, including regulation
of cell development” and ‘regulation of axonogenesis’ in the
Biological Process category for miR-1908-3p targets (Fig. la and
Additional file 1: Fig. S4a). For miR-1908-5p, ‘synapse and ‘synaptic
vesicle related terms were significantly enriched in the Cellular
Component category (Fig. 1b and Additional file 1: Fig. S4b).

For the validation of putative miR-1908 targets, we decided to
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focus on the synapse related targets of miR-1908-5p, which was the
most significant term in our entire GO analysis (Additional file 1:
Fig. $4). Moreover, both human genetic and animal model studies
have proposed that abnormalities in neuronal synapses could be
one of the major pathogenic mechanisms of BD [8, 23, 24]. We
searched the literature and found that most of the putative synaptic
targets of miR-1908-5p are located in excitatory glutamatergic
synapses, either pre- or post-synaptic side (Fig. 1c). We selected
the top 6 synaptic genes based on the target rank from TargetScan
(Release 7.0) (Fig. 1¢) and cloned their 3'UTRs to generate
luciferase constructs. Each 3UTR of the 6 genes had at least two
putative miR-1908-5p binding sites (Fig. 1d). In HEK293T cells,
miR-1908-5p overexpression significantly decreased the luciferase
activities of constructs with DLGAP4, GRIN1, STX1A, CLSTNI,
and GRM4 3'UTRs (Fig. 1d). However, the expression of the
GRASP 3'UTR was not affected. It is not uncommon for miRNAs
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Fig. 1. Identification of synaptic target genes of miR-1908-5p and validation of binding sites with luciferase assays. (a) GO analysis of putative miR-
1908-3p target genes. The 481 miR-1908-3p targets predicted by TargetScan were narrowed down to 184 genes by selecting those with both context++
scores less than -0.2 and high brain expression (left panel). GO analysis with the 184 miR-1908-3p targets showed significant terms including regulation
of cell development and regulation of axonogenesis’ in the Biological Process category (right panel). (b) GO analysis of putative miR-1908-5p target
genes. The 2,500 miR-1908-5p targets predicted were narrowed down to 225 genes by selecting those with both context-++ scores less than -0.5 and high
brain expression (left panel). GO analysis with the 225 miR-1908-5p targets revealed synapse as the most significant term in the Cellular Component
category (right panel). (c) Pre- and post-synaptic localization of the putative miR-1908-5p target genes (color coded, upper panel). Some of the
interacting proteins (e.g. PSD-95) of miR-1908-5p synaptic targets are also shown (gray). We selected six synaptic targets of miR-1908-5p for further
analysis (lower panel). (d) Luciferase assays with the 3'UTRs of six synaptic targets of miR-1908-5p. The putative miR-1908-5p binding sites in the 3'UTRs
are shown (upper panel). miR-1908-5p decreased the luciferase activities of constructs with DLGAP4, GRINI, STXIA, CLSTN1,and GRM4 3'UTRs but
not with GRASP 3'UTR (lower panel). (n=6 from three independent experiments). (e) Validation of the miR-1908-5p binding sites in the GRM4 3’'UTR.
Mutations of both binding sites (M1/2), but not each binding site alone (M1 or M2), blocked the inhibitory effect of miR-1908-5p on the expression of
GRM4 3UTR. (n=6 from three independent experiments). (f) Conservation of the first (770~776) and second (803~809) miR-1908-5p binding sites in
the GRM4 3'UTR. The species with miR-1908-5p binding seed sequences are red-colored. (g) Conservation of the miR-1908-5p sequence. The species
with miR-1908-5p seed sequences are red-colored. All data are presented as mean+SEM. Statistical analyses are in Additional file 1: Table S1.
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to not affect the expression of mRNAs even with putative binding
sites, which might be explained by various factors including RNA
secondary structures [25]. Importantly, in the previous study by
Forstner et al., DLGAP4, GRINI, STX1A, CLSTN1, and GRM4
were missed in the list of 67 targets of miR-1908 because only the
miR-1908 targets with conserved binding sites were considered in
TargetScan (Release 6.2) [15].

Among those synaptic targets of miR-1908-5p, GRM4 is the
most interesting gene in terms of its known association with
mood disorders. GRM4 encodes metabotropic glutamate receptor
4 (mGluR4), a member of group III mGluRs, which is mainly
localized to the pre-synaptic side of glutamatergic synapses

and regulates synaptic transmission [26, 27]. GRM4 has been
associated with BD and schizophrenia [28]. Moreover, recent
studies showed increased expression of GRM4 in postmortem
brains and blood samples of major depressive disorder patients
[29, 30]. Therefore, abnormalities in the tight control of GRM4
expression might be involved in the pathogenesis of various mood
disorders. There are two putative miR-1908-5p binding sites (770-
776 and 803-809) in the GRM4 3'UTR. To identify the authentic
binding site, we generated more luciferase constructs with either
singly or doubly mutated binding sites (Fig. 1e). We found that
miR-1908-5p did not decrease the luciferase activity only when
both sites were mutated, suggesting that both sites are the authentic
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Fig. 2. Human brain expression of miR-1908-5p and its synaptic target genes. (a) Box plots showing the expression distribution of DLGAP4 in 16
human brain regions. The black line in each box indicates the median value. The lower and upper hinges of each box indicate the lower and upper
quartile values, respectively. The whiskers of each box indicate the most extreme data values within 1.5 times the interquartile range. The open circles
indicate the data values beyond the whisker limits. OFC, orbital prefrontal cortex; DFC, dorsolateral prefrontal cortex; VFC, ventrolateral prefrontal
cortex; MFC, medial prefrontal cortex; M1C, primary motor cortex; S1C, primary somatosensory cortex; IPC, posterior inferior parietal cortex; A1C,
primary auditory cortex; STC, superior temporal cortex; ITC, inferior temporal cortex; V1C, primary visual cortex; HIP, hippocampus; AMY, amygdala;
STR, striatum; MD, mediodorsal nucleus of the thalamus; CBC, cerebellar cortex. (b) The expression distribution of GRINI in 16 human brain regions.
(¢) The expression distribution of GRM4 in 16 human brain regions. (d) The expression distribution of miR-1908-5p in 16 human brain regions. (e)
Bar plots showing Spearmanss correlations between the expression level of miR-1908-5p and those of DLGAP4, GRINI,and GRM4 in 16 human brain
regions. (f) The brain regions with relatively stronger inverse-correlation (<-0.4) between miR-1908-5p and GRM4 are shown (upper panel). Scatter
plots showing the expression level for miR-1908-5p versus GRM4 in the striatum with linear regression line fit (Spearmans correlation coefficient, rho=-

0.655) (lower panel).

300

www.enjournal.org

https://doi.org/10.5607/en.2016.25.6.296



en

Synaptic Target Genes of miR-1908-5p

targets of miR-1908-5p in the GRM4 3'UTR (Fig. 1e). Notably, we
found that both binding sites are poorly conserved, especially the
second binding site (803-809), which exists only in humans and a
few primates (Fig. 1f and Additional file 1: Fig. S5). These results,
together with poorly conserved expression of miR-1908-5p (Fig.
1g and Additional file 1: Fig. S1), raise an interesting hypothesis
that the regulatory interaction between GRM4 and miR-1908-5p,
the two BD-associated components, could occur only in humans
and a few primates. Similarly, regulation of GRM4 expression by
a primate-specific miRNA, miR-1202, was recently reported [29].
Notably, most of the putative miR-1908-5p binding sites in the
3'UTRs of DLGAP4, GRIN1, STX1A and CLSTNI also exist only
in humans and other primates (http://targetscan.org/).

Human brain expression profiles of miR-1908-5p and its
synaptic target genes

The human and primate-specific interactions of miR-1908-
5p and its synaptic target genes prompted us to investigate their
expression profiles and correlations in the human brain. We first
investigated the regional expression profiles of DLGAP4, GRIN,
STXIA, CLSTNI, GRM4, and miR-1908-5p in human brain by
performing bioinformatic analyses on the developing human brain
miRNA and gene expression data from the BrainSpan database
(http://www.brainspan.org). DLGAP4, GRINI, STX1A, CLSTN1
and GRM4 were detected throughout all brain regions with some
gene-specific patterns (Fig. 2a~c and Additional file 1: Fig. S6a
and b). For example, the lowest median values of log, intensity of
DLGAP4 and GRINI were found in the cerebellar cortex (CBC)
(Fig. 2a and b), while the highest log, intensity of GRM4 was found
in the CBC followed by the mediodorsal nucleus of the thalamus
(MD) and striatum (STR) (Fig. 2¢). Although the expression of

miR-1908-5p was reported in some regions of the human brain,
including hippocampus and cerebellar cortex [15, 31], its overall
expression pattern has not been characterized. We found that miR-
1908-5p was detected in all brain regions, with the highest median
value of reads per million mapped reads (RPM) from the MD and
the lowest median value of RPM from the CBC (Fig. 2d).

Next, we investigated correlations between the expression level
of miR-1908-5p and those of its target genes. We reasoned that if
miR-1908-5p functions as an important regulator of DLGAP4,
GRINI, STXIA, CLSTNI and GRM4 in some brain regions,
their expression levels are likely to show an inverse-correlation.
To identify the brain regions showing such inverse-correlations,
we calculated Spearmans correlation among the samples for each
brain region. Notably, we found that most of the brain regions
show an inverse-correlation between the expression level of
miR-1908-5p and those of DLGAP4, GRINI, STX1A, CLSTN1
and GRM4 (Fig. 2e and Additional file 1: Fig. S6¢c). In the case of
GRM4, the inverse-correlation was relatively stronger (<-0.4) in
the orbital prefrontal cortex (OFC), primary auditory A1 cortex
(A1C), primary visual V1 cortex (V1C), hippocampus (HIP), STR,
and MD than other brain regions (Fig. 2e and f). The striatum
showed the strongest inverse-correlation (Spearmans correlation
coefficient, rho=-0.655), suggesting that miR-1908-5p could be, at
least partly, involved in regulating GRM4 expression in this brain
region (Fig, 2f).

Preliminary investigation of miR-1908-5p expression in
human neural progenitor cells after chronic treatment with
lithium or valproate

Lithium and valproate are the two most common medications
for BD [32]. Previously, it was shown that treatment with lithium
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I.E - 0.5 i
. |
£ o e
_ _ = NGRS
Control or BD subject Vehicle Li. VPA. L L
B\ B\
Treatment

Fig. 3. miR-1908-5p expression in control and BD human NPCs after chronic treatment with lithium or valproate (a) Schematic diagram showing our
experimental process. Human NPC lines derived from dermal fibroblasts of either a control or a BD subject were treated with vehicle or I mM lithium
(Li.) or valproate (VPA.) for a week. (b) gqRT-PCR analysis on the miR-1908-5p expression in control and BD NPCs after lithium or valproate treatment.
The results were normalized to the vehicle-treated conditions for each NPC line. miR-1908-5p expression in control NPCs was increased by about 70%
after valproate treatment, while it was decreased by about 60% in BD NPCs. The experiments were performed in three independent technical repeats
(n=3). All data are presented as mean + SEM. Statistical analyses are in Additional file 1: Table S1.
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or valproate could change the expression levels of several miRNAs
in the rat hippocampus and human lymphoblastoid cell lines
[33, 34]. Therefore, we decided to investigate whether miR-1908-
5p expression could also be affected by these drugs in human
neural progenitor cells (NPCs). First, we established two human
NPC lines derived from dermal fibroblasts of either a control or
a BD subject. We then treated the cultured NPCs with vehicle
or 1 mM lithium or valproate for a week (Fig. 3a). During this
period, no overt difference in growth and morphology of the
NPCs was observed among the different treatment conditions
(data not shown). After the chronic drug treatment, total RNAs
were purified and processed for quantitative real-time reverse
transcription PCR (qRT-PCR) to measure the levels of mature
miR-1908-5p. We found that valproate, but not lithium, increased
miR-1908-5p expression by about 70% in control NPCs (Fig.
3b). In contrast, valproate, but not lithium, decreased miR-1908-
5p expression by about 60% in BD NPCs (Fig. 3b). Together, we
found that miR-1908-5p expression might be possibly affected
in the opposite direction in control and BD NPCs after chronic
treatment of valproate. Further experiments with more control
and BD NPC lines are necessary to confirm this intriguing but

preliminary result.
DISCUSSION

BD is a highly heritable (at least 80%) and polygenic disease,
meaning that there are many risk alleles with small effects [6,
35]. Therefore, understanding the common functional pathways
of BD-associated genes, rather than focusing on each, might
provide better insight into the key pathophysiology of BD.
Indeed, abnormalities in calcium signaling have been considered
as a potential pathogenic mechanism for BD based on the
identification of both common and rare variants in genes encoding
calcium channels [6, 36]. In a similar manner, synaptic pathology’
has been proposed to be involved in the pathogenesis of BD. For
example, BD-associated ANK3 gene encodes ankyrin-G protein
that localizes to dendritic spines, tiny protrusions on neuronal
dendrites representing excitatory post-synapses, to regulate their
structure and function [5]. In addition to the genetic association,
altered expression of synaptic proteins, and abnormalities in
synaptic morphology and function have been observed in
postmortem human brains and animal models of BD [7-10].
Our study provides another piece of evidence supporting this
‘synaptic pathology” hypothesis by demonstrating that a recently
identified BD-associated and primate-specific miRNA, miR-1908-
5p, could regulate the expression of genes functioning in neuronal
glutamatergic synapses.

302

www.enjournal.org

Notably, none of the synaptic target genes of miR-1908-5p
identified in this study were listed in the original study by Forstner
et al. [15] where they used the previous version of TargetScan
(Release 6.2) that considered the conservation of miRNA binding
sites in 3"UTRs. Their approach could have missed meaningful
targets of miR-1908-5p, especially considering that miR-1908-5p
expression itself is limited to humans and other primates. Indeed,
we found that the validated miR-1908-5p binding sites in the
GRM4 3’'UTR are also poorly conserved. In addition, Lopez et al.
recently demonstrated that a primate-specific miRNA, miR-1202,
regulates GRM4 expression through a poorly conserved binding
site in the 3’'UTR, and could be involved in major depressive
disorder [29]. Therefore, for the poorly conserved and disease-
associated miRNAs, investigating the putative targets relevant to
the disease, regardless of the binding site conservation, might be a
better initial approach [16].

Among the miR-1908-5p synaptic targets, GRINI and GRM4
were previously shown to be associated with BD [28, 37]. GRIN1
encodes ionotropic glutamate receptor N-methyl-D-aspartate
(NMDA) type subunit 1 (GluN1), an essential subunit of
heteromeric NMDA receptors in glutamatergic post-synapses.
Our bioinformatic analysis of human brain expression profiles
revealed that there is a strong inverse-correlation between miR-
1908-5p and GRINI in the ventrolateral prefrontal cortex
(VEC), anatomical and functional changes of which have been
associated with the abnormal emotional processing in BD [38,39].
Meanwhile, the striatum showed the strongest inverse-correlation
between miR-1908-5p and GRM4. The striatum is a critical
component of the brain reward circuitry, and its biochemical,
anatomical and functional changes have been observed in BD
[39-41]. Therefore, it is tempting to speculate that miR-1908-5p
might be, at least partly, involved in BD pathogenesis by regulating
the expression of GRINI and GRM4 in these brain regions and
thereby affecting their synaptic function.

As a preliminary study, we compared the expression levels of
miR-1908-5p in human NPCs derived from dermal fibroblasts
of control and BD subjects under vehicle- and drug-treated
conditions. Interestingly, we found that chronic treatment with
valproate, but not lithium, increased the miR-1908-5p expression
in control NPCs. In contrast to the control NPCs, valproate
treatment decreased miR-1908-5p expression in BD NPCs.
Although it is known that lithium and valproate exert their
therapeutic efficacy by targeting both common and specific
biological pathways [42-44], the detailed mechanisms that explain
how miR-1908-5p expression was selectively affected by valproate,
and how NPCs from control and BD subjects showed the opposite
changes are not clear at this moment. Recently, Kuang et al. showed
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that miR-1908 expression is not correlated with its host gene,
FADSI, in human adipocytes [45]. Instead, miR-1908 has its own
promoter regions where NF-kappaB activated by tumor necrosis
factor a (TNF-a) binds and regulates the transcription of miR-
1908 [45]. TNF-a is a pro-inflammatory cytokine and involved in
various cellular processes by binding to specific receptors, TNFR1
and TNFR2 [46, 47]. One of the downstream action of these
receptors is activation of transcription factors like NF-kappaB
[48]. Notably, it has been repeatedly reported that BD patients,
especially during manic episodes, show elevated serum levels of
inflammatory markers including TNF-a [46, 49, 50]. Therefore, it
will be interesting in future studies to investigate the role of miR-
1908-5p in mediating the effect of elevated TNF-a during BD
pathogenesis and the potential interaction between valproate
and TNF-a signaling [51] in regulating miR-1908-5p expression
during BD treatment.

In conclusion, we focused on a recently identified BD-associated
miRNA, miR-1908-5p, and identified and validated its novel target
genes functioning in neuronal glutamatergic synapses. Further
studies, such as functional experiments using human induced
pluripotent stem cell (iPSC)-derived neurons, will help us better
understand the role of miR-1908-5p in synaptic function and
its potential implications for BD. We also propose that similar
approaches could be applied to other BD-associated miRNAs, such
as miR-499, miR-708, and miR-2113 [4, 15] since none of their
target mRNAs has been directly validated yet. When combined,
these studies will provide more insights into the molecular basis
of BD pathophysiology and potentially into better diagnostic and
therapeutic approaches for this devastating mental illness.
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Supplementary Figure 1 Conservation of the miR-1908-3p and miR-1908-5p sequences among 100 aminal genomes. The red and blue boxes indicate seed and full

sequences of the mature miRNAs, respectively.
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Supplementary Figure 2 Conservation of the miR-34a-3p and miR-34a-5p sequences among 100 aminal genomes. The red and blue boxes indicate seed and full

sequences of the mature miRNAs, respectively.
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Supplementary Figure 3 The thresholds of context++ scores for miR-1908-3p and miR-1908-5p putative target genes predicted by TargetScan. The thresholds of -0.2 and -
0.5 were selected for miR-1908-3p and miR-1908-5p to narrow down the target gene list to 303 and 358, respectively.
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Supplementary Figure 4 GO analysis of miR-1908-3p and miR-1908-5p target genes. There was no significant term in the Molecular Function and Cellular Component
categories from miR-1908-3p targets (a). There was no significant term in the Molecular Function and Biological Process categories from miR-1908-5p targets (b).
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Supplementary Figure 6 Human brain expression of STX1A and CLSTN1, and their Spearman’s correlations with miR-1908-5p. The expression distribution of STX1A (a)
and CLSTNL1 (b) in 16 human brain regions. (c) Bar plots showing Spearman’s correlations between the expression level of miR-1908-5p and those of STX1A and CLSTN1 in
16 human brain regions.
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Supplementary Table 1 Summary of statistical analyses for the experiments.

Assay/Measurement Values (mean+SEM, n) Statlsptl\c/::Jzzt e Figure
Luciferase assay for DLGAP4, control miR (1+0.03, 6) Unpaired two-tailed Figure 1d
miR-1908-5p synaptic DLGAP4, miR-1908-5p (0.76+0.03, 6) Student’s t-test,
target genes GRINL1, control miR (1+0.04, 6) **P<0.01, **P<0.001
GRIN1, miR-1908-5p (0.63+0.02, 6)
STX1A, control miR (1+0.04, 6)
STX1A, miR-1908-5p (0.78+0.04, 6)
CLSTN1, control miR (1+0.05, 6)
CLSTN1, miR-1908-5p (0.73+0.04, 6)
GRASP, control miR (1+0.04, 6)
GRASP, miR-1908-5p (1.14+0.06, 6)
GRM4, control miR (1+0.03, 6)
GRM4, miR-1908-5p (0.62+0.03, 6)
Luciferase assay for GRM4 WT, control miR (1+0.04, 6) Unpaired two-tailed Figure 1le
GRM4 binding sites GRM4 WT, miR-1908-5p (0.76+0.04, 6) Student’s t-test,
GRM4 M1, control miR (140.02, 6) *P<0.05, *P<0.01,
GRM4 M1, miR-1908-5p (0.82+0.03, 6) *+P<0.001
GRM4 M2, control miR (140.03, 6)
GRM4 M2, miR-1908-5p (0.88+0.04, 6)
GRM4 M1/2, control miR (1+0.06, 6)
GRM4 M1/2, miR-1908-5p (0.93+0.09, 6)
gRT-PCR for miR-1908- | Control, vehicle (1+0.00, 3) Unpaired two-tailed Figure 3b
5p in human NPCs Control, lithium (1.2140.09, 3) Student’s t-test,
Control, valproate (1.68+0.08, 3) *P<0.05
BD, vehicle (1+0.00, 3)
BD, lithium (1.00+0.15, 3)
BD, valproate (0.43+0.09, 3)




