Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1991 Jul 1;88(13):5774–5778. doi: 10.1073/pnas.88.13.5774

Hormonal induction of all stages of spermatogenesis in vitro in the male Japanese eel (Anguilla japonica).

T Miura 1, K Yamauchi 1, H Takahashi 1, Y Nagahama 1
PMCID: PMC51960  PMID: 2062857

Abstract

The importance of gonadotropins and androgens for spermatogenesis is generally accepted in vertebrates, but the role played by specific hormones has not been clarified. Under cultivation conditions, male Japanese eels (Anguilla japonica) have immature testes containing only premitotic spermatogonia, type A and early-type B spermatogonia. In the present study, a recently developed organ-culture system for eel testes was used to determine in vitro effects of various steroid hormones on spermatogenesis. After 9 days of culture in serum-free, chemically defined medium containing 11-ketotestosterone (10 ng/ml), a major androgen in male eels, type A and early-type B spermatogonia began mitosis, producing late-type B spermatogonia. After 18 days, zygotene spermatocytes with synaptonemal complexes appeared, indicating that meiosis had already started by this time. In testis fragments cultured for 21 days, round spermatids and spermatozoa were observed with spermatogenic cells at all stages of development. Addition of 11-ketotestosterone to the culture medium also caused a marked cytological activation of Sertoli cells. No other steroid hormones tested had such stimulatory effects. These results, together with our earlier observations, suggest the following sequence for the hormonal induction of spermatogenesis in eel testes; gonadotropin stimulates the Leydig cells to produce 11-ketotestosterone, which, in turn, activates the Sertoli cells leading to the completion of spermatogenesis. This is, thus, an example of an animal system in which all stages of spermatogenesis have been induced by hormonal manipulation in vitro.

Full text

PDF
5774

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe S. I. Meiosis of primary spermatocytes and early spermiogenesis in the resultant spermatids in newt, Cynops pyrrhogaster in vitro. Differentiation. 1981;20(1):65–70. doi: 10.1111/j.1432-0436.1981.tb01157.x. [DOI] [PubMed] [Google Scholar]
  2. Callard I. P., Callard G. V., Lance V., Bolaffi J. L., Rosset J. S. Testicular regulation in nonmammalian vertebrates. Biol Reprod. 1978 Feb;18(1):16–43. doi: 10.1095/biolreprod18.1.16. [DOI] [PubMed] [Google Scholar]
  3. Colombo G., Grandi G., Romeo A., Giovannini G., Pelizzola D., Catozzi L., Piffanelli A. Testis cytological structure, plasma sex steroids, and gonad cytosol free steroid receptors of heterologous gonadotropin (hCG)-stimulated silver eel, Anguilla anguilla L. Gen Comp Endocrinol. 1987 Feb;65(2):167–178. doi: 10.1016/0016-6480(87)90162-6. [DOI] [PubMed] [Google Scholar]
  4. Hadley M. A., Byers S. W., Suárez-Quian C. A., Kleinman H. K., Dym M. Extracellular matrix regulates Sertoli cell differentiation, testicular cord formation, and germ cell development in vitro. J Cell Biol. 1985 Oct;101(4):1511–1522. doi: 10.1083/jcb.101.4.1511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hansson V., Calandra R., Purvis K., Ritzen M., French F. S. Hormonal regulation of spermatogenesis. Vitam Horm. 1976;34:187–214. doi: 10.1016/s0083-6729(08)60076-x. [DOI] [PubMed] [Google Scholar]
  6. Kalt M. R. In vitro synthesis of RNA by Xenopus spermatogenic cells I. Evidence for polyadenylated and non-polyadenylated RNA synthesis in different cell populations. J Exp Zool. 1979 Apr;208(1):77–96. doi: 10.1002/jez.1402080110. [DOI] [PubMed] [Google Scholar]
  7. Khan I. A., Lopez E., Leloup-Hâtey J. Induction of spermatogenesis and spermiation by a single injection of human chorionic gonadotropin in intact and hypophysectomized immature European eel (Anguilla anguilla L.). Gen Comp Endocrinol. 1987 Oct;68(1):91–103. doi: 10.1016/0016-6480(87)90064-5. [DOI] [PubMed] [Google Scholar]
  8. Parvinen M., Wright W. W., Phillips D. M., Mather J. P., Musto N. A., Bardin C. W. Spermatogenesis in vitro: completion of meiosis and early spermiogenesis. Endocrinology. 1983 Mar;112(3):1150–1152. doi: 10.1210/endo-112-3-1150. [DOI] [PubMed] [Google Scholar]
  9. Risley M. S., Miller A., Bumcrot D. A. In vitro maintenance of spermatogenesis in Xenopus laevis testis explants cultured in serum-free media. Biol Reprod. 1987 May;36(4):985–997. doi: 10.1095/biolreprod36.4.985. [DOI] [PubMed] [Google Scholar]
  10. Steinberger A. In vitro techniques for the study of spermatogenesis. Methods Enzymol. 1975;39:283–296. doi: 10.1016/s0076-6879(75)39026-5. [DOI] [PubMed] [Google Scholar]
  11. Steinberger E. Hormonal control of mammalian spermatogenesis. Physiol Rev. 1971 Jan;51(1):1–22. doi: 10.1152/physrev.1971.51.1.1. [DOI] [PubMed] [Google Scholar]
  12. TROWELL O. A. The culture of mature organs in a synthetic medium. Exp Cell Res. 1959 Jan;16(1):118–147. doi: 10.1016/0014-4827(59)90201-0. [DOI] [PubMed] [Google Scholar]
  13. Tindall D. J., Rowley D. R., Murthy L., Lipshultz L. I., Chang C. H. Structure and biochemistry of the Sertoli cell. Int Rev Cytol. 1985;94:127–149. doi: 10.1016/s0074-7696(08)60395-2. [DOI] [PubMed] [Google Scholar]
  14. Tres L. L., Kierszenbaum A. L. Viability of rat spermatogenic cells in vitro is facilitated by their coculture with Sertoli cells in serum-free hormone-supplemented medium. Proc Natl Acad Sci U S A. 1983 Jun;80(11):3377–3381. doi: 10.1073/pnas.80.11.3377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Yamamoto K., Yamauchi K. Sexual maturation of Japanese eel and production of eel larvae in the aquarium. Nature. 1974 Sep 20;251(5472):220–222. doi: 10.1038/251220a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES