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The influence of direct current (DC) stimulation on radioactive calcium trafficking in sciatic nerve in vivo and in vitro, spinal cord,
and synaptosomes was investigated. The exposure to DC enhanced calcium redistribution in all of these preparations. The effect
was dependent on the strength of the stimulation and extended beyond the phase of exposure to DC. The DC-induced increase
in calcium sequestration by synaptosomes was significantly reduced by cobalt and rupture of synaptosomes by osmotic shock.
Although both anodal and cathodal currents were effective, the experiments with two electrodes of different areas revealed that
cathodal stimulation exerted stronger effect. The exposure to DC induced not only relocation but also redistribution of calcium
within segments of the sciatic nerve. Enzymatic removal of sialic acid by preincubation of synaptosomes with neuroaminidase, or
carrying out the experiments in sodium-free environment, amplified DC-induced calcium accumulation.

1. Introduction

For the past twenty years, there has been a growing interest
in noninvasive methods to stimulate the nervous system.
One of them, rediscovered over fifteen years ago [1, 2],
involves passing of the polarized, low-intensity current (1–
3mA) via electrodes located either on the scalp or in the
proximity of the spinal cord. The effects occur relatively
fast and often outlast the period of stimulation [3–6]. The
consequences of DC stimulation are complex and seem to
affect differently axonal [7] and synaptic components of the
nervous system [4, 6, 8, 9]. The influence on the axon is
presumably mediated by depolarization or hyperpolarization
of the membrane [7, 8, 10]. Initial investigations of synaptic
effects determined that hyperpolarization and depolarization
increased and reduced the amount of neurotransmitter at
neuromuscular junction, respectively [11, 12]. Recent research
revealed that synaptic modulation exerted by DC is likely
to occur via LTP- and LTD-like mechanisms implicated in
synaptic plasticity [13–15]. While DC stimulation of the brain

helps to ameliorate symptoms of psychological disorders
[16–20], the exposure of the spinal cord to DC modulates
spontaneous activity of the neurons [5, 8, 21] changing
corticospinal interactions [5, 8, 21]. Those modulations are
likely responsible for DC-induced improvement in the recov-
ery after spinal cord injuries [5, 6, 9, 22–25]. It is well
established that alteration of neuronal functions relies heavily
on the spatially organized calcium signaling and changes
in intracellular calcium concentration [26–28]. The release
of neurotransmitters [29], neuronal migration [30], synaptic
plasticity [31, 32], and organization of neuronal networks [33]
are just a few specific examples of the processes which require
very strict and precise control of calcium homeostasis and
distribution within the neuron. Indeed, individual calcium
channels are advantageously localized in the proximity of
other signaling molecules (e.g., glutamate receptors, Ca2+
channels, and nitric oxide synthase), organized along the
internodal axolemma under the myelin sheath in discrete
“axonal nanocomplexes” [34]. Although overactivation of
nanocomplexes during disease can lead to an excessive
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increase in intracellular Ca2+ [35, 36], the influence of DC
on these nanocomplexes and subsequent discreet elevation
of intracellular calcium concentration could contribute to
plasticity of neuronal networks, as observed in the CNS
during induction of LTP and LTD [37].Thus, one can assume
that the influence of DC stimulation on CNS is at least
partially mediated by modulation of the intracellular calcium
concentration. Indeed, as reported by Ranieri and collabora-
tors [14], the intensity of LTPwas significantly changed by the
exposure to DC. In subsequent, parallel experiments, Ahmed
and Wieraszko [6] reported DC-induced modulation of the
release of glutamate, a major neurotransmitter involved in
induction and maintenance of LTP [38]. Conceding a strong
influence of DC on neuronal activity in the brain [15, 39, 40]
and spinal cord [5, 8, 9, 21], current investigation was focused
on the influence of DC exposure on calcium trafficking in
neuronal preparations in vivo and in vitro.

The changes in intracellular calcium concentration can
be detected with either fluorescent probes [41, 42] genetically
encoded calcium indicators [43] or radioactive tracer [44].
Most of the fluorescent probes enter the cell as hydrophobic
esters and become charged in the cytoplasm.Therefore, their
intracellular location and movement can be significantly
altered by subsequent exposure to DC. Genetically encoded
calcium indicators represent very promising but challenging
method still under development [41, 42]. As confirmed by
Islam and collaborators [44], the changes in calcium distri-
bution in neuronal tissue can be estimated with radioactive
calcium. However, their [44] radiographic quantitative data
analysis is less reliable than determination of labelled calcium
in the tissue prepared for qualitative scintillation counting.
Additionally, the usage of autoradiography would be difficult
for some of the preparations used and compared in our
experiments. Therefore, as a method of choice in determi-
nation of the influence of DC exposure on the translocation
of calcium in different preparations in vivo and in vitro, we
used radioactive calcium. Its relocation from the incubation
medium into the cellular compartment can be reliably and
reproducibly followed both in vivo and in vitro.

2. Methods

2.1. In Vivo Experiments. We have used three different neu-
ronal preparations to verify the hypothesis that exposure of
neuronal tissue toDC stimulationmodifies the concentration
of intracellular calcium. As the first initial approach, we
used the in vivo model system used by us previously [8].
Following exposure of the sciatic nerve in anesthetized mice,
the petroleum jelly/silicone oil mixture was applied on the
tissue to form a Ringer’s solution-containing chamber with
segment of the nerve inside of it (Figure 1(a), according to [8],
modified). One rectangular electrode made of stainless steel
(7mm× 15mm)was placed below the sciatic nervewhichwas
insulated from the rest of the body by piece of rubber located
underneath the electrode. The DC reference electrode was
attached to the abdominal skin. The petroleum jelly/silicone
oil mixture was used to create a second, smaller centrally
located chamber on surface of stimulating plate (Figure 1(b)).
The larger and smaller chambers were electrically insulated

from each other with jelly/silicone oil mixture except for
connection through the nerve. The segment of the sciatic
nerve inside of smaller chamber and two segments of the
sciatic nerve outside of the small chamber were termed as
“inner” and “outer segments,” respectively. For technical rea-
sons only the pieces of the sciatic nerve from inner chamber
and outer chamber distal to stimulating electrode were taken
for subsequent analysis. The plate electrode was connected
to either anodal or cathodal DC stimulator (ActivaDoseII,
Iontophoresis delivery unit). 45Ca2+ has been added to the
central chamber to achieve the final concentration of 300 nM.
Control experiments revealed that the seal was effective
and there was practically no leak of radioactivity. Following
stimulation period (0.8mA, 20min), the inner and outer
segments of the sciatic nerve were dissected out, washed
superficially in 100ml of cold Ringer’s solution, dried on
the filter paper, weighted, measured in length, and homog-
enized in glass/glass homogenizer. The radioactivity of each
homogenate was evaluated with the scintillation counter
(Beckman Coulter LS 6500) and expressed in counts per
minute per mm of the nerve (cpm/mm).

2.2. In Vitro Experiments

2.2.1. The In Vitro Experiments on Dissected Segments of
Sciatic Nerve. As previously demonstrated by us, sciatic
nerves maintained in vitro according to our procedure
preserve evoked activity [5]. The nerve dissected out from
anesthetized animal (2-3 cm) was preincubated at least one
hour in Ringer’s solution prior to experimental procedure
to allow for sealing of cut, axonal ends [45]. The influence
of DC stimulation on 45Ca2+ accumulation and distribution
within stimulated sciatic nerve was tested in a specially
designed chamber (Figure 2), which was divided into two
separate small pools with partition made of jelly/silicone
oil mixture used for in vivo experiments as well. The only
electrical connection between these two chambers was pos-
sible by the tissue of sciatic nerve which extended from one
chamber to the other penetrating through insulating barrier
(Figure 2(a)). Each pool had an electrode (10 × 6mm) at
the bottom and these electrodes were connected to either
anodal or cathodal currents generated by ActivaDoseII,
Iontophoresis delivery unit. 45Ca2+ (45CaCl2, PerkinElmer,
approximately 300.0 nM in the chamber) was always added to
the chamber termed “inside.” Following DC stimulation (3󸀠,
0.1mA), the nerve was cut at the partition, and the amount
of 45Ca2+ was determined in the nerve as described above
for in vivo experiments.The distance between two electrodes
used for in vitro stimulation was much shorter than the same
distance in in vivo experiments.Therefore, tomake the results
more comparable, the intensity of the current was adjusted
accordingly. The amount of 45Ca2+ in Ringers of the outside
chamber was also evaluated.

2.2.2. Segments of the Spinal Cord. The segments of the spinal
cord (2-3 cm long) have been dissected from anesthetized
animals, attached to the wooden stick as in our previous
experiments [6], and placed in the plastic tube containing
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Figure 1: The accumulation of 45Ca2+ by DC-stimulated sciatic nerve in vivo; (a) an experimental set up. The exposed segment of the sciatic
nerve was surrounded by the barrier made of hydrophobic petroleum jelly/silicone oil mixture which formed the external pool (A). The
second smaller (internal) pool (B) was made of the same petroleum jelly on the stimulation plate (C) inserted underneath the sciatic nerve.
The stimulation plate (15 × 20mm) was insulated from the tissue by the rectangular piece of the rubber located under the stimulation plate
(omitted for the clarity from the picture). This experimental arrangement allowed keeping outer and inner segments of the sciatic nerve in
different chambers whichwere electrically isolated from each other except for the connectionmade by the nerve itself. (b) 45Ca2+ accumulated
in the inner and outer segments (cpm/mm) in control experiments (no stimulation, black), and when either anode (red) or cathode (green)
was connected to the stimulation plate (∗𝑝 < 0.001, one-way ANOVA followed by Dunn’s test). (c)The total accumulation of 45Ca2+ in inner
and outer segments (∗∗𝑝 < 0.001, Mann–Whitney U Sum Rank test, control versus “anode in” and “cathode in” for combined segments). In
this legend and all subsequent figure legends, the numbers inside of the bars indicate the number of separate experiments.

identical, stainless steel electrodes (30× 7mm; 210mm2 each,
the distance between electrodes was 9mm, Figure 3(a)).

2.2.3. Synaptosomes. Synaptosomeswere obtained fromcere-
bral cortex according to modified procedure described by
Sawynok and collaborators [46]. The tissue has been homog-
enized in 0.23M sucrose (1 : 10, tissue/sucrose ratio) in
the teflon/glass homogenizer and centrifuged for 10min at
5000×g. The pellet has been discarded and the supernatant
was centrifuged for 20󸀠 at 19000×g.The supernatant was dis-
carded and the pellet (synaptosomal fraction) was suspended
in Ringer’s solution and used for the experiments. This
procedurewould yield suspension of synaptosomal vesicles of
0.5–0.6𝜇m in diameter. The synaptosomal fraction (1000𝜇l
corresponding to 250mg of wet tissue) was transferred to
the plastic tube used for the experiments with the segments
of the spinal cord (see above). The synaptosomes were
stimulated after addition of 45Ca2+ (final concentration was
approximately 300 nM) for 3󸀠 with DC varying in control
experiments from 1 to 4mA,while 45Ca2+ was already present
in the solution. In all subsequent experiments, synaptosomes
were stimulated for 3󸀠 with 3mA current. In some experi-
ments, brain synaptosomes were stimulated in the presence

of 5mM cobalt. In alternative sets of experiments, 45Ca2+ was
not present in the solution during the stimulation, but it was
added 6 hrs after cessation of stimulation.The impact ofmod-
ified composition of Ringer’s solution by substituting NaCl
with osmotically equivalent choline chloride was also tested.
The influence of partial, enzymatic removal of sialic acid from
the surface of brain synaptosomes on DC-induced 45Ca2+
accumulation was assessed in separate set of experiments.
The mixture of synaptosomes was incubated for 3 hrs at
33∘C with neuroaminidase from Vibrio Cholerae (0.2U/ml;
Sigma). Then, the accumulation of 45Ca2+ by control and
DC-stimulated synaptosomes was evaluated. It has been of
paramount importance to determine if the integrity of synap-
tosomes was compromised by DC stimulation.Therefore, the
DC-induced 45Ca2+ accumulation was compared between
stimulated, control fraction of synaptosomes and fraction of
synaptosomes exposed to osmotic shock. It is well known that
synaptosomes burst in hypoosmotic environment transform-
ing fraction of synaptosomes into suspension of membranes
[47]. The synaptosomal suspension was transferred from
isoosmotic Ringer’s solution to water which would cause
hypoosmotic destructions of synaptosomes. At the comple-
tion of all DC stimulation experiments, the synaptosomal



4 Neural Plasticity

Inside Outside

Nerve
Partition

Electrode Electrode

45Ca2+

DC +/−

(a)

(c
pm

/m
m

)

(c
pm

/m
l)

outer segment
Nerve

inner segment
Nerve Ringer

outer chamber

400

300

200

100

0

150

100

50

0

∗∗∗

Control
Anode in
Cathode in

(b)

(c
pm

/m
m

)

600

400

200

0
Inner + outer segments

38 26 30

∗∗∗

Control
Anode in
Cathode in

(c)

Figure 2:The accumulation of 45Ca2+ by theDC-stimulated sciatic nerve in vitro. (a) An experimental setup.ThePetri dish (3 cm in diameter)
was divided into two parts with partitionmade of hydrophobic petroleum jelly/silicone oilmixture.Therewas a stainless steel electrode placed
at the bottom of each part (6 × 10mm). The segment of the sciatic nerve was extended through the partition. The only electrical connection
between two parts of the Petri dish was through the sciatic nerve.The electrodes were connected to DC power supply delivering 0.1mA for 3󸀠.
The reference electrode wasmuch closer (approximately 8–10-fold) than in in vivo experiments.Therefore, to compensate for the distance and
equalize experimental conditions, the intensity of stimulation for these experiments was adjusted accordingly. 45Ca2+ was always added to the
same part called “inner chamber.” (b) 45Ca2+ accumulation in the inner and outer segments exposed to either anodal or cathodal stimulation
delivered to inner chamber.The anodal DC stimulation induced statistically significant increase in 45Ca2+ accumulation in the outer segment
(∗𝑝 < 0.001, Mann–Whitney U test) and in Ringer’s solution collected from outer chamber (∗∗𝑝 < 0.03, Mann–Whitney U test). The anodal
and cathodal stimulations induced a similar increase in the segment of the nerve located in the inner chamber, although those increases were
not statistically significant. Note the increase in the concentration of 45Ca2+ in the outer chamber (right side of Figure 1(b)).This diagram has
two separate scales to express the amount of 45Ca2+ in the nerve (cpm/mm, left scale) and the concentration of 45Ca2+ in the Ringers of the
outer chamber (cpm/ml, right scale). (c) The total accumulation of 45Ca2+ in the inner and outer chambers; ∗∗∗𝑝 < 0.001 as compared with
control, and 𝑝 < 0.036 as compared with “anode in”; Mann–Whitney U test.

suspension was filtered under vacuum (Whatman GF/B
filters, soaked for 1 hr in 0.1% polyethylenimine solution
before experiment), and the radioactivity remaining on the
filters was counted in the scintillation vials after addition of
scintillation fluid (Beckman Coulter LS 6500).

2.2.4. Stimulation with the Electrodes of Different Sizes. It is
well documented that polarity of direct current is crucial
for its effect [8, 48, 49]. Therefore, in separate experiments,
the influence of anodal and cathodal stimulation on calcium

accumulation by the spinal cord or synaptosomal suspension
was tested in the tube with two electrodes of different
sizes (Figure 6(a)). While one of the electrodes consisted
of stainless steel plate (210.00mm2), the second electrode
was made of stainless steel wire (11.75mm2). The distance
between these two electrodes was 9mm (Figure 6(a)). Fol-
lowing the addition of 45Ca2+ (300 nM in the chamber)
and stimulation (3mA, 3󸀠), the fraction of synaptosomal
suspension or segments of the spinal cord were superficially
washed and homogenized and the amount of radioactivity
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Figure 3: The 45Ca2+ accumulation by the segments of the spinal cord stimulated in vitro by two electrodes of the same size. (a) An
experimental setup. Two stainless steel plates (30 × 7mm) were placed 9mm apart inside of the plastic tube and connected to the source
of DC. The segment of the spinal cord, attached to the wooden stick, was placed between two electrodes. (b) Accumulation of 45Ca2+ in
the segment of the spinal cord (in cpm/mm) following 3mA, 3󸀠 stimulation. The increase in stimulated spinal cord (190.9%) is statistically
significant (∗𝑝 < 0.029, 𝑡-test).

was determined as described above. The type of test used for
statistical analysis and calculated probability are illustrated in
Table 1.

3. Results

3.1. Axonal, DC-Induced Accumulation of 45Ca2+ In Vivo. In
vivo experiments revealed that exposure to DC considerably
enhanced accumulation of 45Ca2+ by stimulated segment
of the sciatic nerve located directly on the stimulation
plate (inner segment, Figure 1). We used the term “anodal”
or “cathodal stimulation” when the anode or cathode was
connected to this plate, respectively. Anodal stimulation was
more efficient in enhancing calcium accumulation. Over 90%
of accumulated calcium could be recovered in the inner
segment, although there was some accumulation in the outer
segment as well, especially in the case of anodal stimulation.
Since there was no leak of Ringer’s solution between the inner
and the outer chambers, the only source of 45Ca2+ in the outer
segment could be redistribution of 45Ca2+ within the axon
[28]. This relocation seemed to be more extensive in the case
of anodal stimulation. The presence of 45Ca2+ in the outer
segments indicates that calcium, accumulated by the nerve
under DC influence, was electrophoretically driven along the
length of the axon further away from the site of the exposure
towards anodal or cathodal end of the nerve.There was some
negligible relocation of 45Ca2+ from inner to outer chamber
in control experiments (no stimulation) as well (Figure 1(b)).
The difference between anodal and cathodal stimulation was
statistically insignificant, although it became greater when
the amounts of calcium accumulated by inner and outer

segments were added together (Figure 1(c)). Anodal stimula-
tion was significantly more efficient in stimulation of 45Ca2+
accumulation than cathodal stimulation. Statistical analysis
(one-way ANOVA followed by Dunn’s test, ∗𝑝 < 0.001)
revealed that the difference between inner control segment
versus “anode in” and “cathode in”was statistically significant
at 𝑝 < 0.008 and 𝑝 < 0.03, respectively (Mann–Whitney U
Rank Sum test). The difference between control and “anode
in” and “cathode in” for combined segments (C) was also
statistically significant (∗∗𝑝 < 0.001; Mann–Whitney U
Sum Rank test). It should be emphasized that there were
several factors which could influence recorded data. Some
of those factors which were very difficult to control included
fluctuation in the temperature of the exposed, dorsal part of
the animal’s body, the amount of the moisture in the vicinity
of the plate, pulsation of the blood vessels, and movements
due to breathing.

3.2. DC-Induced Accumulation of 45Ca2+ by Axons In Vitro.
The results of the subsequent in vitro experiments essentially
reinforced the data obtained in vivo. Those experiments
were designed differently (Figure 2(a)) and allowed for much
more precise control of experimental conditions. Clearly,
anodal stimulation wasmore effective in enhancing of 45Ca2+
accumulation in the nerve segment (∗𝑝 < 0.001, Mann–
Whitney U test, Figures 2(a) and 2(b)) and in the chamber
(𝑝 < 0.03, Mann–Whitney U test, Figures 2(a) and 2(b)).
The anodal current not only facilitated significant relocation
of calcium ions within the axon but markedly increased
the displacement of calcium ions from the nerve to the
outer chamber (Figure 2(b)). Figure 2(c) depicts combined
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Table 1: Neuronal preparations and statistical tests used to evaluate DC-induced calcium relocation.

Type of experiment Statistical test Probability
(i) Axon in vivo
Anodal versus cathodal One-way ANOVA followed by Dunn’s test 𝑝 < 0.001

Anode in versus control in Mann–Whitney U Rank Sum test 𝑝 < 0.008

Cathode in versus control in Mann–Whitney U Rank Sum test 𝑝 < 0.03

Cathode versus anode (combined segments) Mann–Whitney U Sum Rank test 𝑝 < 0.001

(ii) Axon in vitro
Inner and outer chambers versus “anode in” Mann–Whitney U Sum Rank test 𝑝 < 0.036

Inner and outer segments combined versus control Mann–Whitney U Sum Rank test 𝑝 < 0.001

(iii) Spinal cord in vitro 𝑡-test 𝑝 < 0.029

(iv) Synaptosomes
45Ca present during stim ANOVA followed by Holm-Sidak 𝑝 < 0.001
45Ca added 6 hrs after stim 𝑡-test 𝑝 < 0.003
45Ca in the presence of cobalt 𝑡-test 𝑝 < 0.001
45Ca/neuroaminidase/stim versus no neuroaminidase/stim 𝑡-test 𝑝 < 0.006

Na+ versus no Na+, no stim ANOVA followed by Dunn’s test 𝑝 < 0.001

Na+ versus no Na+, stim. 𝑡-test 𝑝 < 0.029

Osmotic shock 𝑡-test 𝑝 < 0.003

Different electrodes Mann–Whitney U Sum Rank test 𝑝 < 0.001

results obtained from inner and our chambers (𝑝 < 0.036,
Mann–Whitney U test). The control, nonstimulated seg-
ments showed relatively high accumulation of 45Ca2+ which
might be the result of incomplete sealing of cut, exposed ends
of the nerve [45].

3.3. DC-Induced Accumulation of 45Ca2+ by Spinal Cord
In Vitro. The tissue of isolated spinal cord is too delicate
and fragile to be reliable and reproducibly placed in the
chamber designed for sciatic nerve (Figure 2). Therefore, the
spinal cord attached to the wooden stick for better stability
(Figure 3(a)) was tested only for total accumulation of 45Ca2+
during exposure to DC (3󸀠, 3mA). Like the sciatic nerve,
the isolated segments of the spinal cord, located between
two electrodes of the same size, accumulated more 45Ca2+
when exposed to DC stimulation (190.9%, ∗𝑝 < 0.029,
𝑡-test, Figure 3(b)). The effect was significant, although
experimental design did not allowdistinguishing between the
influences of anodal and cathodal currents.

3.4. DC-Induced 45Ca2+ Accumulation by Synaptosomes. In
the pursuit of further characterization of the influence of DC
stimulation on 45Ca2+ trafficking, we used fraction of synap-
tosomes which can be prepared and tested in a very repro-
duciblemanner. Similarly as sciatic nerve and the spinal cord,
synaptosomes also accumulated more 45Ca2+ when exposed
to DC. As depicted in Figure 4(a), increasing the intensity
of the stimulating current induced proportional increase in
45Ca2+ accumulation. Although 4mA was the most effective
within the tested range of intensities, 3mA were employed
in most of the other experiments. Synaptosomes damaged
by osmotic shock and stimulated subsequently with DC
accumulated over 500% less of 45Ca2+ (533% ± 163%, 𝑛 = 3,

𝑝 < 003, 𝑡-test). Therefore, one can conclude that since 4mA
induced the highest calcium accumulation, there was no
damage to synaptosomes by 3mA current. The effect of DC
stimulation was not limited to the duration of the stimulation
but extended at least 6 hrs beyond the period of exposure.
As depicted in Figure 4(b), DC-stimulated synaptosomes still
accumulated 400%more calciumwhichwas added 6 hrs after
finishing the stimulation (𝑝 < 0.003, 𝑡-test, compared to
nonstimulated controls tested after 6 hrs with experimental
samples). Apparently, the accumulation of calcium occurred
at least partially via calcium channels since it was significantly
attenuated by 5mM cobalt (𝑝 < 0.001, 𝑡-test, Figure 4(b)).
Extracellular positively charged calcium ions are attracted
by negatively charged molecules of sialic acid which is a
major component of glycocalyx. Enzymatic partial removal
of sialic acid with neuroaminidase significantly enhanced
DC-induced calcium accumulation (Figure 5(a), 𝑝 < 0.006,
𝑡-test).

3.5. The Influence of Na+ and Size of the Electrodes on
DC-Induced Calcium Trafficking. The change in the ionic
environment of the preparation by omitting Na+ ions also
affected 45Ca2+ accumulation. The osmolarity of the incu-
bation solution remained the same since sodium ions were
replaced with equivalent concentration of choline chloride.
The synaptosomal suspension accumulated more 45Ca2+ in
the absence of sodium. The effect was relatively minor
although statistically significant even without any electrical
stimulation. However, application of DC to synaptosomes
in sodium-free environment almost tripled the amount
of accumulated 45Ca2+ (Figure 5(b)). In the experiments
described so far, each preparation was stimulated by two
electrodes of identical size. In order to differentiate between
the effects of anodal and cathodal stimulation, synaptosomes
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Figure 4: The influence of different experimental conditions on
45Ca2+ accumulation by synaptosomes. (a) Accumulation of 45Ca2+
by fractions of synaptosomes stimulated for 3min by DC ranging
from 1 to 4mA. The results are presented as % of the differ-
ence between stimulated and nonstimulated preparations. ANOVA
followed by Holm-Sidak, 𝑝 < 0.001; ∗1 versus 2mA n.s.; ∗∗2
versus 3mA, 𝑝 < 0.001; ∗∗∗3 versus 4mA, 𝑝 < 0.04, 𝑡-test.
(b) The accumulation of by stimulated synaptosomal suspension
while 45Ca2+ was either present in the tube during stimulation (red)
or added to the tube 6 hrs after cessation of stimulation (blue);
∗𝑝 < 0.003, 𝑡-test, as compared to nonstimulated control. The
accumulation of 45Ca2+ in the presence of 5mM cobalt (green);
∗∗𝑝 < 0.001, 𝑡-test, compared to synaptosomes stimulated in the
presence of 45Ca2+.

and segments of sciatic nerve were stimulated in vitro by
exposure to DC generated by two electrodes of different sizes
(Figure 6(a)). The connection of anode or cathode to the
smaller electrode (wire) generated more intense anodal or
cathodal current, respectively. The lower panel in Figure 6(a)
illustrates the relative size of both electrodes and hypothetical
lines and density of flowing current. Although both polarities
enhanced accumulation of 45Ca2+ by synaptosomes, cathodal
stimulation was much more effective (Figure 6(b), ∗𝑝 <
0.001, Mann–Whitney U test). The stimulation of the seg-
ment of sciatic nerve with two electrodes of different sizes
yielded results very similar to stimulation of synaptosomal
suspension (Figure 6(c)). The application of the cathodal
current to the wire resulted in much greater concentration
of radioactivity in the nerve (∗𝑝 < 0.001, Mann–Whitney
U test) than anodal current. It has to be emphasized that, in
the case of both of these preparations, namely, synaptosomes
and sciatic nerve, the results represent sole accumulation of

45Ca2+ as it was impossible to measure any translocation of
accumulated calcium in this experimental arrangement.

4. Discussion

Considering the goal of our experiments, the employment
of radioactive calcium seemed to be more appropriate than
widely used calcium imaging [41]. Firstly, we wanted to
compare three preparations: two in vitro and one in vivo.
Considering technical challenges of calcium imaging [41], it
has been concluded that using relatively simple but quan-
titative method for radioactive calcium determination will
yield the data which can be compared with higher confi-
dence. Secondly, calcium indicators have their own calcium-
buffering abilities influencing free calcium concentration
[42]. Undoubtedly, the employment of 45Ca2+ seems to be
much less invasive and damaging for cytoplasm than calcium
imaging. Additionally, using radioactive calcium overcame
the problem arising from limited dynamics of the radiometric
imaging (saturation of different probes depending on their𝐾𝑑
values).

Finally, even a slight change in free calcium concentration
due to calcium-induced calcium release may hypothetically
obscure the data collected with calcium imaging procedures
[50] more than that with radioactive tracer. Thus, it has been
decided that in spite of its drawbacks the method of using
45Ca2+ would be the most suitable one to achieve objectives
of intended experiments.

Our method provided information about DC-induced,
bulk relocation of calciumwithin an axonor between external
environment (an incubation medium) and internal compart-
ment of the stimulated neuronal preparation. Although one
can be tempted to assume that an increase in radioactivity
inside neuronal preparation is due to elevation in calcium
accumulation, it may not be the only explanation. The DC-
induced increase in internal radioactivity can only be the
result of radioactive calcium accumulation. This can reflect
an increase in radioactive and exogenous, nonradioactive
calcium accumulation, an increase in the radioactive and
endogenous calcium exchange, or combination of both of
these processes occurring simultaneously during and/or after
stimulation. Regardless of the interpretation, it is apparent
that calcium metabolism and homeostasis were significantly
modified by DC stimulation. The evaluation of 45Ca2+ accu-
mulation and relocation does not allow us to determine the
destination of the calcium entering the cell and the cellular
origin of the endogenous calcium which may exchange with
radioactive ions. Nevertheless, we are convinced that the
most of the observed increase in radioactivity results from
increase in radioactive calcium accumulation. The rise in
the exchange rate of endogenous/radioactive calcium would
likely be significantly hampered by relatively slow diffusion
of calcium [51, 52] within cytoplasm of the axon. In contrast,
the DC-induced movement of 45Ca2+ calcium observed in
our preparationswasmassive and relatively fast. Additionally,
we also observed an increase in radioactivity when 45Ca2+
was added 6 hrs after the stimulation. If the increase in
radioactive calcium would be the result of exchange, it
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Figure 5: The modification of 45Ca2+ accumulation by synaptosomes either treated for 3 hrs with neuroaminidase (enzyme) or incubated in
sodium-free Ringer’s solution. (a) Treatment of synaptosomes with neuroaminidase (0.2U/ml) significantly increased DC-evoked 45Ca2+
accumulation, as compared with nontreated ones and also by stimulated controls; ∗𝑝 < 0.006, 𝑡-test. (b) The omission of sodium ions
from Ringer’s solution enhances 45Ca2+ accumulation in DC-stimulated and nonstimulated synaptosomes. The control, nonstimulated
synaptosomes accumulated more 45Ca2+ in Na+-free Ringer’s solution (black bar), than in the presence of sodium (green bar); ∗𝑝 < 0.001,
ANOVA followed by Dunn’s test; ∗∗𝑝 < 0.001. Stimulated synaptosomes accumulated less calcium in the presence of sodium (red bar), than
in Na+-free solution (blue bar), 𝑝 < 0.029, 𝑡-test.

would take place during stimulation and would most likely
end before subsequent addition of 45Ca. Therefore, since an
increase was still observed 6 hrs later, it was probably due to
persistent change in channels, carriers, or pumps responsible
for the transport of calcium across the cellular membranes.
The DC-induced increase in relocation of 45Ca2+ in our
preparations was dramatically reduced by cobalt, a general
blocker of calcium channels. We believe that this reinforces
our original assumption that the intracellular increase in
radioactive calcium is a result of increased accumulation,
not just an exchange, although our data do not allow us
to draw any conclusions about possibility and intensity of
this process. Nevertheless, this underlines the advantage of
our technique which permits, in opposite to radiometric
measurements, the determination of calcium source in this
type of experiments. In conclusion, one can strongly advocate
the idea that involvement of exchange process is likely to be
minimal since it would involve relatively fast relocation of
calcium from different intracellular compartments and move
it out of the cell.

Our data in support of in vivo experiments on brain
tissue [44], and human keratinocytes [53], convincingly show
that the exposure to DC stimulation enhances accumula-
tion/exchange of calcium by biological preparations. It was
observed in vivowith the intact sciatic nerve and in vitro with
the segments of sciatic nerve, spinal cord, and synaptosomes.
The DC-induced amplification in 45Ca2+ accumulation was
much lower in the segments of the sciatic nerve and spinal
cord than in synaptosomes. This difference is most likely
related to considerably higher accessibility of the membranes

of synaptosomes as compared to axons of the spinal cord
surrounded by meninges and sciatic nerve embedded in
epineurium. It also indicates that DC-induced increase in
synaptosomal fraction is mostly due to calcium accumula-
tion, not binding to external surface of synaptosomes, espe-
cially that it was attenuated by the presence of cobalt, which
blocks most of the calcium channels [54], and was almost
abolished by rupture of synaptosomes by osmotic shock [47].
Much greater accumulation of 45Ca2+ by synaptosomes than
by other preparationsmay be also related to geometry of these
structures. Synaptosomes represent symmetrical, spherical
vesicles which accumulate calcium into a single limited space
without the ability to redistribute it along its length, while
sciatic nerve and spinal cord are elongated preparations
allowing entering calcium to be relocated along their long
axis further away from the point of entry. This was clearly
evident in sciatic nerve in vitro, where radioactive calcium
was detected in the inside segments, as well as the outside
segment and even in the solution of the chamber containing
outside segment.This indicated that the forces responsible for
redistribution of calcium were strong enough to draw it even
outside of the tissue. Although the spinal cord was too fragile
for this type of experiments, we assume that redistribution of
calcium would be similar to what was observed in the sciatic
nerve.

The increase in the strength of stimulation from 1 to 4mA
was followed by a gradual statistically significant enhance-
ment in 45Ca2+ accumulation (Figure 4(a)). The trend of
enhanced 45Ca2+ accumulation parallel to the increased
strength of the stimulation was clear, although the difference
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Figure 6: Accumulation of 45Ca2+ by synaptosomes and segments of the sciatic nerve stimulated with two electrodes of different areas. (a)
An experimental setup. The stainless steel plate (210mm2) was inserted into the plastic tube at the distance of 9mm from the stainless steel
wire (11.75mm2). The preparations (synaptosomes or segments of the sciatic nerve attached to the wooden stick) were placed in the tube and
stimulated with DC (3󸀠, 3mA).The anode or cathode of DC was connected to either the wire or the plate.The broken lines in the lower panel
of the figure illustrate hypothetical flow of the current. (b)The accumulation of 45Ca2+ by synaptosomes, while anode (black) or cathode (red)
was connected to the wire. (c) The accumulation of 45Ca2+ by the segments of the sciatic nerve, while anode (black) or cathode (red) was
connected to the wire; ∗𝑝 < 0.001; Mann–Whitney U test.

between 1 and 2mA was not statistically significant. The
increase in calcium accumulationwas observedwhen the cal-
cium was present during stimulation and was also recorded
when calcium was added several hours after termination of
the stimulation. Although both anodal and cathodal stimula-
tions were similarly effective with both electrodes of the same
size, cathodal stimulation produced greater change when one

of the electrodes was much larger than the other. While the
concentration of radioactive calcium in our preparations was
in the range of 3-4 nM, the concentration of endogenous
calcium in the axon is in the range of 40–100 nM [55, 56].
Due to nearly 35-fold dilution of radioactive calcium, the
accumulation/relocation of 1 nM of 45Ca2+ observed in our
experiments would reflect relocation of approximately 35
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nanomoles of endogenous calcium. One has to also realize
that the effect of DC-induced relocation of calcium to the
cytoplasm, where most of the calcium targets are located,
can be significantly influenced by endoplasmic reticulum and
mitochondria [56]. While the concentration of endogenous
cytoplasmic calcium is in the range of 100 nM, micromolar
and even millimolar concentrations are observed in endo-
plasmic reticulum andmitochondria, respectively.Those two
intracellular compartments have the ability to buffer intra-
cellular calcium concentration reducing its toxicity [27, 56]
and could sway DC-induced elevation in calcium trafficking.
Our data supports and extends the results obtained in vivo
by Islam and collaborators [44] who demonstrated that
anodal stimulation applied in either single (30 𝜇A, 30min)
or repetitive (5 times every 24 hrs) paradigms of stimulation
induced an increase in 45Ca2+ accumulation. The increase in
vivo [44] was not the same in all brain structures and yielded
damaged cells after repeated stimulations. Considering very
high accumulation of 45Ca2+ induced by 4mA current (Fig-
ure 4(a)) and very low accumulation by osmotically damaged
synaptosomes, it seems very unlikely that there was any DC-
induced damage of synaptosomes, even by 4mA. Since in
Islam et al.’s [44] in vivo experiments and in some of our
experimental design the increase in calcium accumulation
and relocation was also observed when it was applied after
cessation of DC stimulation, it is clear that not only DC
itself but also the processes initiated by its application
(e.g., trafficking of channels and receptors, relocation of
internal organelles [57, 58]) persist beyond the period of
stimulation and contribute to the observed effects. Our data
obtained with sciatic nerve also unequivocally indicate that,
as previously reported [59], not only the trafficking but also
electrophoretically induced [60] redistribution of the calcium
following its entrance to the preparation was modified by DC
stimulation. This has been demonstrated by the experiments
employing segments of sciatic nerve in vivo and in vitro.
In both cases, the increase in calcium accumulation was
noticed not only in the segments directly bathed in 45Ca2+
but also in the adjacent areas. Calcium entering the axon
is being relocated by DC to the adjacent segment of the
sciatic nerve and even out of the axon to the extracellular
Ringer’s solution. This is particularly discernible in vitro
in the case of anodal stimulation. One can speculate that
positively charged, anodal electrode pushed calcium ions into
the axon, while those ions were simultaneously pulled by
negative, cathodal electrode on the other side of the partition
resulting in the elevation of calcium concentration in the
outer segment and even in extracellular Ringer’s solution
in the outer chamber. The inner segment under the anode
would have 45Ca2+ ions moving towards the cathode, away
from inner segment. This repulsive action of anode towards
positive calcium ions would be amplified by negativity of the
entire outer segment. The negativity of the outer segment
could even attract some radioactive calcium ions to Ringer’s
solution in the outer chamber (indeed, there is a slight
increase). The cathode under inner segment would make
the inner segment negative. This negativity combined with
repulsive action of anode under the outer segment would

push 45Ca2+ ions into the nerve, but the movement of ions
towards the outer segment would be attenuated by positivity
of the anode under outer segment. Thus, the increase in
45Ca2+ accumulation in the outer segment may be reduced
by positivity of the entire outer segment. Therefore, in the
case of cathodal stimulation, there was enhanced calcium
accumulation in the inner segment but insignificant calcium
redistribution. Hence, application of DC clearly enhanced
calcium accumulation and polarity-dependent redistribution
within the axon. The tangible content of 45Ca2+ in the axon
in vivo could be influenced by bidirectional exchange of
axonal 45Ca2+ with the interstitial fluid. Some calcium could
diffuse back from the nerve to the interstitial fluid. It was
technically impossible to measure this amount since it would
be immediately diluted by the mixture of the interstitial
fluid and Ringer’s solution added to keep the preparation
moist. As demonstrated by our previous electrophysiological
experiments [8], this rapid calcium relocation could affect the
amplitude of the compound action potential (CAP) recorded
in vivo from DC-stimulated nerve [8]. The redistribution of
calcium observed in current experiments and alterations in
the amplitude of CAP [8] were both clearly related to the
polarity and the strength of applied DC current. Moreover,
the time frame of DC exposure required for both types
of the changes to become apparent (1–3min) was almost
identical.Those correlations constitute a crucial link between
DC-induced modulation of CAP and cellular background of
this modulation observed as a change in the free calcium
concentration/relocation inside of stimulated tissues.

Since movement of radioactive calcium is very slow
following its injection into squid axon [61, 62], it is most
likely driven by diffusion without participation of the axonal
transport. In our experiments, anodal and cathodal stim-
ulations significantly accelerated calcium relocation, most
likely through electroosmosis in the axons and Schwann cells
[63]. Since changes in DC-induced calcium redistribution
were immediately apparent, it is unlikely that they resulted
from the modification of the axonal transport. However,
delayed, long-lasting effects of DC exposure on the axonal
transport cannot be excluded and are worthy of further
research. Although our results were obtained on sciatic nerve,
the rate of movement would be most likely similar in other
components of the nervous system.

Considering changes in calcium ionic activity following
injury to the nervous system [64, 65], consequences of
an increase in intracellular calcium concentration during
and following DC exposure can be massive. As a second
messenger, calcium ions are involved in several processes
crucial for neuronal physiology including recovery of neu-
ronal tissue from traumatic injury [5, 9, 25].The involvement
of calcium in neuronal excitability, synaptic activity and
plasticity, extension of filopodia, formation of new synaptic
contacts, guidance of synaptic sprouting [31], and receptor
trafficking represents only a partial list of processes regulated
by an increase in intracellular calcium concentration. The
exposure to DC stimulation and subsequent free calcium
elevation can alter not only biochemistry of the cell but also
its morphology [59, 60]. The exposure of neurons in culture
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to DC changes the location of intracellular organelles which
favor cathode during their repositioning [60]. Those changes
which also included polarization of the entire cell were
evident within 1 hr of exposure and determined themigratory
pattern of neurons during subsequent development [59].
As DC exposure dramatically enhances calcium trafficking
through the membranes, it becomes an extremely potent tool
which can significantly alter neuronal action [4, 6, 8, 9, 25].

The incubation of synaptosomes with neuroaminidase
which removes sialic acid from extracellular glycoproteins
and gangliosides modified DC-induced 45Ca2+ accumula-
tion. Sialic acid, which contributes to charged cloud on the
cellular surface generated by glycocalyx, is especially impor-
tant for nervous system function. It participates in neuroglial
interactions [66], synaptic plasticity [67], and excitability [68]
and is a structural component of sodium [69, 70] and calcium
[71] channels. Remarkably, removal of sialic acid significantly
alters exchange of ions in several biological preparations [72].
As evident fromour data, depleting sialic acid and subsequent
change in the charge of the membrane noticeably amplify
ability of the calcium to penetrate through this modified
membrane. As cobalt, known blocker of presynaptic calcium
channels [46], reduced calcium accumulation, we propose
that at least partial enhancement of the DC-induced calcium
penetration through the membrane occurs via calcium chan-
nels. Alternative explanation could be offered assuming that
charged calcium channels [72] could be persistently modi-
fied/activated after being electrophoretically relocated in the
membrane by DC as reported for other functional proteins
[70, 72]. Interestingly, an elevation in 45Ca2+ accumulation
was also observed in the experiments conducted in Na+-free
Ringer’s solution.There was over 200% (233.3%)more 45Ca2+
in synaptosomes stimulated in Na+-free Ringer’s solution
than in control suspension stimulated in the presence of
sodium. Moreover, in agreement with previously reported
data [73], nonstimulated controls accumulated 25.5% more
45Ca2+ in Na+-free environment. The calcium concentration
in neurons is regulated by plasma membrane Ca2+ATPase
and Na+/Ca2+ exchanger [73–75]. While Ca2+ATPase is
more involved in calcium homeostasis, Na+/Ca2+ exchanger
counteracts significant changes in calcium concentration to
prevent its toxicity [75]. The concentration of calcium inside
of preparations evaluated in our experiments is apparently the
results of dynamic equilibrium established by all processes
which are forcing calcium in and out of intracellular space.
It is clear that DC stimulation is shifting this equilibrium
towards calcium accumulation/exchange which then exceeds
exclusion of intracellular calcium. In support of this notion,
we observed, as mentioned above, increased 45Ca2+ accu-
mulation in Na+-free environment. Clearly, reduced Na+
concentration affects the DC-modulated dynamics of cal-
cium equilibrium. One can speculate that Na/Ca exchanger
[74, 75] removes accumulated 45Ca2+ less effectively when
the counterion (Na+) is missing. Alternatively, it is tempting
to suggest that DC stimulation opens calcium channels and
there is a massive influx of 45Ca2+ into the synaptosomes.
This massive influx and subsequent enhancement in intracel-
lular calcium concentration stimulate compensatory activity

of Na/Ca exchanger which increases pumping of calcium out
in an attempt to readjust calcium concentration to its original
equilibrium. However, in the absence of Na+ the activity of
this exchanger is attenuated and calcium entering synapto-
somes during DC stimulation remains inside. Apparently,
the Na/Ca exchanger works also without DC stimulation,
since control synaptosomes in Na+-free Ringer’s solution
accumulated more 45Ca2+ than controls in Ringer’s solution-
containing sodium ions. Remarkably, treatment with neu-
roaminidase has similar effect. This would suggest that the
presence of sialic acid is essential for full activity of the Na/Ca
exchanger.

The geometry and size of the electrodes critically influ-
enced the data. One can assume that the density of the current
is inversely related to the surface area of the electrodes.
Therefore, using electrodes of different sizes which would
subsequently generate polarized currents of uneven strength
would help to determine which of the two polarities is more
effective. In stimulated sciatic nerve and synaptosomes (Fig-
ure 6), cathodal current was muchmore efficient than anodal
in increasing calcium accumulation. While stimulation of
synaptosomes with two electrodes of the same size (Fig-
ure 4(a), 3mA) amplified accumulated radioactivity approx-
imately 1,200-fold, cathode connected to the wire increased
it by almost 2,000-fold (Figure 6(c)). This observation may
be vitally important for future clinical applications of DC
stimulation.The issue related to the geometry of electrodes is
the relation between the electrodes and spatial position of the
neurons in stimulated preparation. This factor may play very
different role in synaptosomes, sciatic nerve, and the spinal
cord. As mentioned before, the synaptosomes represent
spherical structure. One can assume that the applied current
would influence all of them in a very similar way. On the
contrary, the nerve was stimulated by perpendicular current
and the application ofDCparallel to the axis of the axon could
have different still unknown consequences.While longmotor
neurons run in the spinal cord parallel to its long axis, short
interneurons may be spatially arranged in a variable way.
Therefore, our experiments with the spinal cord represent
the model reminiscent of the experimental arrangement
used in vivo experiments to stimulate brain [44]. In both
cases, stimulated tissue demonstrated increased concentra-
tion of 45Ca2+ which persisted beyond the period of stimula-
tion.

While application of DC is an emerging and very
formidable procedure to persistently modify function of the
nervous system [76], one has to realize that DC-induced
redistribution of calcium ions is an indicative of elec-
trophoretic processes which occur within the axon under the
influence of direct current. Other ions, charged molecules,
subcellular structures, and even some organelles can be
redistributed under the influence of this current as well [62].
As such, if used in clinical setting, DC stimulation has to
be applied with high attentiveness. It has been demonstrated
that excessive calcium accumulation may be detrimental for
cell physiology [56]. Also, the enhanced calcium accumula-
tion can exert quite opposite effects on neuronal plasticity
depending on the rate of calcium accumulation and its final
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concentration induced by physiological process or experi-
mental procedure [37].
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effects of transcranial direct current stimulation of the human
motor cortex,” Journal of Neurophysiology, vol. 97, no. 4, pp.
3109–3117, 2007.

[49] M. A. Nitsche, L. G. Cohen, E. M. Wassermann et al., “Tran-
scranial direct current stimulation: state of the art 2008,” Brain
Stimulation, vol. 1, no. 3, pp. 206–223, 2008.

[50] D. Lipscombe, D. V.Madison,M. Poenie, H. Reuter, R.W. Tsien,
and R. Y. Tsien, “Imaging of cytosolic Ca2+ transients arising
from Ca2+ stores and Ca2+ channels in sympathetic neurons,”
Neuron, vol. 1, no. 5, pp. 355–365, 1988.

[51] P. F. Baker and A. C. Crawford, “Mobility and transport of
magnesium in squid giant axons,” Journal of Physiology, vol. 227,
no. 3, pp. 855–874, 1972.

[52] B. S. Donahue and R. F. Abercrombie, “Free diffusion coefficient
of ionic calcium in cytoplasm,” Cell Calcium, vol. 8, no. 6, pp.
437–448, 1987.
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