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In this issue of Circulation Research, Lautner et al1 report on the biochemical and 

physiological characterization of a novel peptide of the renin–angiotensin system, the 

heptapeptide Ala1-Arg2-Val3-Tyr4-Ile5-His6-Pro7 alamandine, in rats, mice, and humans. 

Just a decade ago, most students of the renin–angiotensin system considered this hormonal 

system a linear biochemical cascade whereby renin acting on angiotensinogen (Aogen) 

initiates angiotensin (Ang) II production through the intermediate step of Ang I degradation 

by angiotensin-converting enzyme. The discovery of the biological actions ofAng-(1–7),2 

the identification of the Mas receptor as the binding protein mediating the inhibitory actions 

of Ang-(1–7) on Ang II,3 and the demonstration that the cardioprotective actions of 

angiotensin-converting enzyme 2 are attributable to its actions on hydrolyzing Ang II into 

Ang-(1–7)4 have drastically changed this perception. Not mentioned in this report is the 

newly discovered Ang-(1–12), which is cleaved from Aogen by a yet-to-be-defined nonrenin 

enzyme.5,6 Ang-(1–12) is then converted to Ang II largely by chymase in the human heart, 

thus completing a non–renin-dependent Ang II-forming mechanism in human heart 

tissue.6–8 Ang-(1–7), Ang-(1–12), and other Ang peptides, Ang III and Ang IV, originate 

from 12 amino acids from the 485 amino acids of human Aogen. Although extensive 

research has confirmed a critical role of renin in the liberation of Ang I from Aogen, 

numerous other studies have suggested that there exist other proteases capable of cleaving 

the substrate6–11 (Figure).

Over the past 10 years, progress in mass spectrometric techniques has provided the 

opportunity to identify other angiotensin peptides such as Ang A and alamandine, 
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attributable to substitution of aspartic acid with alanine in position 1. The new peptide 

alamandine differs from Ang-(1–7) only by the presence of an alanine residue, which results 

from a presumed carboxylase action on the aspartate residue in the amino terminus. A 

similar substitution of alanine for aspartate has been reported for the new angiotensin 

peptide Ang A, which has vasoconstrictive effects similar to those of Ang II. These new 

findings contrast with past research, which found that the amino acid composition in 

position 1 did not seem to play a dominant role in the biological, immunologic, or receptor 

binding activity of the Ang II molecule.12,13 It is of interest that mass spectrometry analysis 

demonstrates that the ratio of Ang A to Ang II, which cannot be distinguished by 

conventional immunoassay analysis, is higher in patients with end-stage renal disease 

compared with normal subjects.1 In a similar fashion, the authors report that alamandine is 

increased in patients with chronic end-stage renal disease. In the present article, the authors 

demonstrate that the heart has the capacity for decarboxylation of exogenously given Ang-

(1–7) administered to spontaneously hypertensive rat hearts, suggesting that this is not a 

mutation of Aogen but rather a decarboxylation that occurs after Ang-(1–7) formation. What 

controls this decarboxylation in the disease state for both Ang A and alamandine is 

unknown.

Another intriguing finding of the present investigation is the connection to the family of 

Mas-related G-protein–coupled receptor (MrgD), which have been known to be expressed in 

the sensory neurons of the dorsal root ganglia.14 It has been postulated that they are involved 

in the sensory perception of painful stimuli. The pathway to this connection is presented in a 

series of in vitro functional studies that suggest similarities of vasorelaxation to Ang-(1–7), 

but surprisingly, treatment with the Mas antagonist A-779 does not block the alamandine-

induced vasorelaxation (Figure 2C), as previously described for Ang-(1–7). However, 

binding of alamandine to MrgD receptor is blocked by D-Pro7-Ang-(1–7), the MrgD ligand 

β-alanine, and PD-123319 but not by the Mas antagonist A-779. In addition, the 

vasorelaxation is preserved in aortic rings of Mas-deficient mice. On the basis of previous 

reports that Ang-(1–7) is a weak agonist of the MrgD receptor,15 the authors proceeded 

along this line of investigation. These findings now raise a series of intriguing questions on 

the regulatory role of the MrgD receptor and the modified Ang peptides: (1) What is the 

precise biological significance of what is likely a diversity of the carboxylase activity in 

disease states? (2) To what extent is the heterogenicity of MrgD receptor expression in the 

vessel wall in health or disease a mediator of acute or chronic changes in the functional 

activity of the system? (3) To what degree do species differences (ie, rodents versus humans) 

influence the expansion of knowledge of how the carboxylase activity regulates Ang peptide 

modification? (4) To what degree do these diverse pathways leading to the modification of 

Ang peptides provide evidence for independent regulation and actions in various tissues, 

plasma, and other body fluids? Whether the process of biotransformation of the aspartate 

residue in position 1 occurs downstream or upstream of Ang I remains an additional critical 

unanswered question, given our past16 and recent findings7,8,17,18 of additional steps in the 

generation of Ang II by the presence of alternative intermediate peptides and enzyme 

pathways upstream of Ang I (Figure). Much work remains in what now is clearly a never-

ending story for angiotensin peptides in cardiovascular disease.
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Figure. Summary of newly characterized pathways upstream from angiotensin (Ang) I in 
humans
ACE indicates angiotensin-converting enzyme.
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