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Abstract
Iron is an essential element in biology, required for numerous cellular processes. Either too much or too little iron can be 
detrimental, and organisms have developed mechanisms for balancing iron within safe limits. In mammals there are no controlled 
mechanisms for the excretion of excess iron, hence body iron homeostasis is regulated at the sites of absorption, utilisation and 
recycling. This review will discuss the discoveries that have been made in the past 20 years into advancing our understanding 
of iron homeostasis and its regulation. The study of iron-associated disorders, such as the iron overload condition hereditary 
haemochromatosis and various forms of anaemia have been instrumental in increasing our knowledge in this area, as have 
cellular and animal model studies. The liver has emerged as the major site of systemic iron regulation, being the location where 
the iron regulatory hormone hepcidin is produced. Hepcidin is a negative regulator of iron absorption and recycling, achieving 
this by binding to the only known cellular iron exporter ferroportin and causing its internalisation and degradation, thereby 
reducing iron efflux from target cells and reducing serum iron levels. Much of the research in the iron metabolism field has 
focussed on the regulation of hepcidin and its interaction with ferroportin. The advances in this area have greatly increased our 
knowledge of iron metabolism and its regulation and have led to the development of novel diagnostics and therapeutics for iron-
associated disorders.

Iron in Biology
Iron is an essential element in biology. Its ability to readily 
undergo redox cycling between its two predominant oxidation 
states, Fe3+ (ferric) and Fe2+ (ferrous), underlies its functional 
importance as a cofactor required for the activity of many 
essential enzymes and other molecules. In particular, iron is 
contained within the functional haem group, a component in 
the electron transport chain as well as the oxygen carrying 
molecule haemoglobin. Indeed, most of the iron in the 
human body (approximately 65%) is contained within the 
haemoglobin carrying red blood cells. Even though iron 
is plentiful on Earth, most of it is in the largely insoluble 
and biologically unavailable Fe3+ state, hence organisms 
have evolved intricate mechanisms of acquiring iron from 
their environment. In this review the mechanisms by which 
mammals absorb iron from their diet as well as how iron 
homeostasis is regulated to maintain body iron levels within 
safe limits will be discussed. 

The study of diseases associated with iron deficiency or iron 
overload have been key to increasing our understanding of 

iron homeostasis and its regulation. Iron deficiency is the most 
common nutritional deficiency world-wide. According to the 
World Health Organisation, an estimated 25% of the world’s 
population suffer from iron deficiency anaemia.1   Much of 
this anaemia is due to poor dietary intake of iron but infectious 
disease and other causes of chronic inflammation can also 
reduce iron absorption and availability by mechanisms that 
will be discussed later. Reduced iron availability causes 
iron-restricted erythropoiesis in the bone marrow leading to 
anaemia, characterised by smaller red blood cells containing 
less haemoglobin. The reduction in oxygen supply to the 
tissues caused by anaemia can lead to weakness, fatigue and 
cognitive impairment.1

In addition to the detrimental effects of iron deficiency, iron 
overload can also be detrimental to health. Iron overload is 
usually genetically inherited and caused by primary defects in 
molecules regulating iron homeostasis and termed hereditary 
haemochromatosis (HH). Other forms of iron overload, termed 
secondary iron overload, are not due to primary defects in iron 
homeostatic mechanisms and can have a variety of acquired 
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causes that will be discussed later. Excess iron accumulation 
in tissues can lead to tissue damage and disease, including 
liver fibrosis, diabetes mellitus, arthropathy, endocrine 
dysfunction and cardiomyopathy.2 Mutations in the HFE gene 
are the most common cause of HH, with homozygosity for the 
p.C282Y mutation affecting around 1 in 200 individuals of 
northern European descent.3-7 While the p.C282Y mutation is 
relatively common in northern European populations, it is less 
common in southern Europeans8, 9 and rare in non-Europeans.10 
Biochemical indicators of iron overload include elevated 
serum ferritin levels, serum iron and transferrin saturation.11, 

12 Serum ferritin is a marker of tissue iron loading, ferritin 
being a cellular iron storage protein. Transferrin is an iron 
transport protein that is often saturated with iron in conditions 
of iron overload. When the HFE gene was discovered in 
1996, very little was known about the molecular mechanisms 
responsible for the absorption of iron and maintenance of iron 
homeostasis.3 Since this time, the identification of other forms 
of iron overload and anaemia and elucidation of their causes 
have been instrumental in determining the mechanisms 
regulating iron absorption and homeostasis.

Iron Absorption
Approximately 2 mg of iron is absorbed daily in the duodenum 
and proximal jejunum. This is balanced by losses resulting 
from the desquamation of skin, sloughing of intestinal 
epithelial cells and blood loss. The human body has no 
controlled mechanisms for the excretion of iron and the levels 
are balanced by regulating iron absorption. Iron in the diet can 
be in the form of haem or non-haem iron. As most non-haem 
iron in the diet is in the ferric form, it first needs to be reduced 
to Fe2+ before it can be absorbed; this can be achieved by the 
actions of the membrane bound ferric reductase duodenal 
cytochrome B (DCYTB or CYBRD1), which is expressed 
on the apical brush border membrane of intestinal epithelial 
cells.13 Ferrous iron is then transported across the apical 
membrane of enterocytes by the divalent metal transporter 
1 (DMT1), an integral 12 transmembrane domain protein 
that has the ability to transport a number of divalent cations 
including Fe2+.14, 15 To enter the systemic circulation iron must 
cross the basolateral membrane of intestinal enterocytes. This 
is achieved by the only known iron exporter, ferroportin, a 
12 transmembrane domain protein, encoded by the SLC40A1 
gene.16-18. Ferroportin is also required for the release of 
iron from other cell types, in particular macrophages and 
hepatocytes where it is also highly expressed.18 The release 
of ferrous iron from stores by ferroportin is assisted by the 
copper-containing ferroxidase enzyme caeruloplasmin19 or, in 
the intestine, by its membrane-bound counterpart hephaestin.20 
These enzymes oxidise Fe2+ to Fe3+ before the iron binds to 
the iron-transport protein transferrin.

Iron Uptake by Tissues
Iron is transported in the circulation bound to transferrin, 
although circulating iron can also exist in a non-transferrin 
bound form, especially when serum iron levels are high 
and transferrin is saturated, as is the case in HH and other 
iron loading conditions.21 Transferrin receptor 1 (TFR1) is 
expressed ubiquitously on the cell surface and is responsible 
for taking up transferrin-bound iron through well studied 
mechanisms that involve receptor mediated endocytosis.22 
Once internalised the endocytic vesicles are acidified, 
allowing iron to be released from transferrin, and the apo-
transferrin, still bound to TFR1, recycled back to the cell 
surface where it is released.22 Iron exits the endosome and 
enters the cytoplasm of cells via DMT1. The ferrireductase 
six-transmembrane epithelial antigen of the prostate 3 
(STEAP3) also facilitates this process by reducing Fe3+ to 
Fe2+ prior to transport through DMT1.23 The levels of many 
iron metabolism related proteins, including TFR1 and DMT1, 
are regulated at the post-transcriptional level via the iron 
responsive element/iron responsive protein (IRE/IRP) system. 
IRE-stem loop structures in the 3’ untranslated regions (UTRs) 
of these mRNAs bind to IRPs 1 or 2 under conditions of iron 
deficiency and stabilise the mRNA, enhancing translation of 
the proteins and increasing iron uptake. IREs are also present 
in the 5’UTRs of ferritin and ferroportin mRNAs among others 
and in contrast to TFR1 and DMT1, the translation of these 
proteins are repressed under iron deficient conditions. More 
details of this important and elegant system for balancing 
cellular iron homeostasis can be found elsewhere.24

The erythroid bone marrow has a high demand for iron, 
hence mutation or deletion of genes involved in the uptake 
of transferrin-bound iron in humans and mice lead to varying 
degrees of anaemia due to a decrease in the transport of iron 
into cells. For example, deletion of TFR1 in mice results 
in embryonic lethality due to severe anaemia.25 Mutations 
in DMT1 lead to microcytic anaemia in mice and rats.15, 26 
Humans with DMT1 mutations also develop microcytic 
anaemia, however, unlike in mice and rats, this is also 
accompanied by liver iron overload.27 STEAP3 mutations also 
cause a form of microcytic anaemia in humans and mice.28

Recently, a mechanism for the uptake of non-transferrin-bound 
iron (NTBI) was proposed that involves the zinc transporter, 
ZIP14 (SLC39A14).29 Mice with ablation of SLC39A14 had 
markedly reduced uptake of NTBI in the liver and pancreas 
and ablation of SLC39A14 also prevented iron loading of the 
parenchymal cells in the liver and pancreas of mouse models 
of HH.29

Iron Recycling
As mentioned earlier, most of the iron in the human body 
is contained within red blood cells. The iron released from 



Regulation of Iron Homeostasis

Clin Biochem Rev 37 (2) 2016   53

these cells, when they reach the end of their lifespan, is 
a major source of systemically available iron that can be 
reused for the production of new erythrocytes in the bone 
marrow. Reticuloendothelial macrophages are responsible 
for engulfing senescent erythrocytes in a process termed 
erythrophagocytosis.30   During this process red blood cells 
are digested in the phagolysosome. From here, iron released 
from haem, by as yet unknown mechanisms, is transported 
into the cytosol via natural resistance associated macrophage 
protein 1 (NRAMP1), a divalent metal transporter and 
paralogue of DMT1.31 Haem itself can also be transported 
across the phagolysosomal membrane via a recently described 
haem transporter, a homologue of the Caenorhabditis elegans 
haem-responsive gene 1 (HRG1).32 Once in the cytosol, iron 
can be released from haem by the actions of haem oxygenase 
1.33 The resultant iron liberated from the breakdown of red 
blood cells can then either be stored in ferritin or released 
back to the systemic circulation by ferroportin-mediated 
transport across the plasma membrane.

Systemic Regulation of Iron
Maintaining the optimal levels of iron in the circulation is 
critical for the functioning of cells and tissues. For example, 
too little iron can lead to iron restricted erythropoiesis and 
consequent anaemia, whereas too much can lead to tissue iron 
overload and related diseases. 

Regulating iron levels during infections is also important in 
the innate immune response to pathogens. To meet the body’s 
requirements for iron, elaborate mechanisms have evolved 
to sense iron levels and adjust iron absorption and recycling 
accordingly to maintain iron homeostasis. These mechanisms 
also respond to inflammatory/infectious stimuli, as well 
as hypoxia and erythropoietic signals, to either decrease 
or increase iron availability. The mechanisms regulating 
systemic iron homeostasis are largely centred on the liver 
and involve two molecules, hepcidin and ferroportin, that 
work together to regulate the flow of iron from cells into the 
systemic circulation. The diagram in figure 1 summarises the 
most important players involved in the systemic regulation of 
iron homeostasis.

As mentioned previously, ferroportin is the only known 
cellular iron export protein. It is expressed most highly 
in macrophages, duodenal enterocytes and hepatocytes, 
important cell types involved in iron recycling, absorption, 
storage and regulation.18   The expression of ferroportin 
can be controlled at the transcriptional, translational and 
post-translational levels. The ferroportin mRNA contains a 
functional IRE in its 5’UTR and, similar to H and L ferritin, its 
translation is repressed under iron deficient conditions, with 
resultant reduction in cellular iron export.18 Transcription of 
the macrophage ferroportin gene can be promoted by haem34 

and inhibited by inflammatory stimuli.35 At a systemic level the 
most important mechanism regulating ferroportin involves the 
liver-expressed iron regulatory hormone hepcidin. Hepcidin 
was originally identified in plasma and urine as a small, 
25 amino acid, highly disulphide bonded, liver-expressed 
antimicrobial peptide.36, 37 It soon became apparent that it 
also played a major role in the regulation of systemic iron 
homeostasis.38-40  In 2004 it was shown that hepcidin functions 
to reduce cellular iron export by binding to ferroportin and 
causing its internalisation and degradation.41 Hepcidin 
binding to ferroportin induces the rapid ubiquitination and 
internalisation of the hepcidin-ferroportin complex, thereby 
reducing cell surface expression and iron export.42, 43 Since 
the discovery of hepcidin in 2000, it has become apparent 
that its interaction with ferroportin is critical for systemic iron 
regulation and that perturbations in this hepcidin-ferroportin 
axis are the basis for many iron-associated disorders.44

Iron Disorders
Primary iron overload
HFE-associated HH (HFE-HH or type 1 HH), the most 
common form of HH, has autosomal recessive inheritance.3 
It wasn’t until 2003 that hepcidin deficiency as a cause of 
the iron overload was first uncovered.45 It was shown that 
patients and animal models of HFE-HH had lower expression 
of hepcidin in the liver compared to controls.45, 46 These 
observations also indicated that the liver plays a major role 
in the pathophysiology of HH and the systemic regulation of 
iron homeostasis.

After the HFE gene was identified in 1996, it became 
immediately apparent that there were forms of primary iron 
overload that were not caused by mutations in the HFE gene. 
Among these non-HFE forms were cases of severe, early 
onset, juvenile haemochromatosis (JH), that had previously 
been recognised as distinct from the typical HFE form of 
disease.47 The gene for a subset of JH (also known as type 2A 
HH) mapped to chromosome 1,48 and the gene (HFE2) was 
eventually found to encode hemojuvelin (HJV) or RGMc, a 
glycosylphosphatidylinositol (GPI) anchored protein in the 
repulsive guidance molecule (RGM) family of proteins.49  
Patients with HFE2 mutations also had low levels of serum 
hepcidin, indicating that hepcidin deficiency also underlies 
this more severe form of iron overload.49 Another less 
common form of JH (type 2B) is caused by mutations in the 
gene encoding the iron-regulatory hormone hepcidin itself 
(HAMP).50 Patients homozygous or compound heterozygous 
for mutations in HAMP cannot regulate the surface expression 
of ferroportin systemically and hence develop severe, early 
onset iron overload due to constitutively active ferroportin. 
The importance of HJV and hepcidin as a cause of JH and 
their roles in regulating iron homeostasis have been confirmed 
by the analysis of mouse models of these diseases.51, 52
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Figure 1. The regulation of hepcidin and iron homeostasis. 
Schematic showing the major molecules and pathways involved in the regulation of hepcidin (HAMP) gene expression in 
hepatocytes and the functions of hepcidin in regulating the surface expression of the iron export protein ferroportin (FPN) in other 
cell types. The major molecules and pathways responsible for the iron, inflammation and erythropoietic regulation of HAMP 
in hepatocytes are depicted at the top of the figure. The role of hepatocyte-derived hepcidin in regulating iron absorption in 
duodenal enterocytes and iron recycling in macrophages via its interaction with FPN is depicted at the bottom of the figure. Small 
red circles represent iron. IL-6, interleukin 6; IL-6-R, IL-6 receptor; JAK, Janus kinase; STAT3, signal transducer and activator 
of transcription 3; BMP6, bone morphogenetic protein 6; BMP-R, BMP receptor; HJV, hemojuvelin; MT-2, matriptase-2; HFE, 
haemochromatosis protein; TF, transferrin; TFR1, TF receptor 1; TFR2, TF receptor 2; GDF15, growth differentiation factor 
15; TWSG1, twisted gastrulation; ERFE, erythroferrone; SMAD, mothers against decapentaplegic homologue; DMT1, divalent 
metal transporter 1; DcytB, duodenal cytochrome B; Heph, hephaestin; CP, caeruloplasmin; RBC, red blood cell.



Regulation of Iron Homeostasis

Clin Biochem Rev 37 (2) 2016   55

The first form of non-HFE HH to be genetically characterised 
was TFR2-HH or type 3 HH.53 Mutations in the gene encoding 
transferrin receptor 2 (TFR2) have been shown to cause disease 
phenotypically very similar to HFE-HH but with slightly 
earlier onset.54, 55 Studies in patients and animal models of 
TFR2-HH have also shown that, similar to HFE-HH, reduced 
hepcidin relative to iron stores underlies the iron overload.56-58 
TFR2, a paralogue of TFR1, is expressed predominantly in 
hepatocytes and rather than being responsible for the uptake 
of transferrin-bound iron, is involved in the regulation of 
hepcidin in response to iron, although the mechanisms 
involved are not fully understood. Recent research has also 
suggested that TFR2 has another functional role in erythroid 
cells, where it is also expressed, being involved in the 
differentiation of red blood cells.59, 60

Patients have also been described with homozygous or 
compound heterozygous mutations in both the HFE and 
TFR2 genes, with earlier onset severe iron overload, similar 
to JH.61 Mouse models with deletion of both Hfe and Tfr2 
recapitulate this severe iron overload and show that it is due 
to markedly reduced hepcidin, suggesting that HFE and TFR2 
can function independently to regulate hepcidin.62, 63

Autosomal dominant forms of iron overload have also been 
described.64 Mutations in ferroportin (SLC40A1) have been 
linked to an autosomal dominant form of iron overload, 
termed ferroportin disease or type 4 HH.65-67 Interestingly, 
mutations which affect different aspects of ferroportin 
function lead to two distinct subtypes of ferroportin disease, 
which have differing patterns of iron overload.68 Mutations 
which cause defects in the iron transport ability of ferroportin 
lead to classical ferroportin disease, which is characterised by 
normal or only mildly elevated transferrin saturation and iron 
loading predominantly in reticuloendothelial cells.69, 70 An 
atypical form of ferroportin disease is caused by mutations 
that lead to hepcidin insensitivity of ferroportin and has a 
phenotype more similar to the autosomal recessive forms 
of HH, with elevated transferrin saturation and iron loading 
predominantly in hepatocytes.70, 71  

Secondary iron overload
Iron overload that is not caused by primary genetic defects 
in the regulation of iron homeostasis is referred to as 
secondary iron overload. Secondary iron overload may occur 
due to a variety of causes. These include the ingestion of 
large amounts of dietary iron, repeated blood transfusions 
and various haematological conditions that result in the 
increased absorption and storage of excess iron. Clinically, an 
important cause of secondary iron overload is repeated blood 
transfusion due to inherited haemoglobinopathies, such as the 
thalassaemias.72 The buildup of excess iron over time is a major 
cause of morbidity in thalassaemia patients and treatment with 

iron chelators is a mainstay treatment to combat iron overload 
related disease.73 In addition to iron overload caused by blood 
transfusions, non-transfusion dependent iron overload can 
occur in some haemoglobinopathies due to increased iron 
absorption. In β-thalassaemia, ineffective erythropoiesis and 
an expanded erythroid compartment can influence systemic 
iron homeostasis by suppressing liver hepcidin, with resultant 
increased iron absorption.74, 75

Iron deficiency
Genetic forms of iron deficiency can be caused by mutations 
in genes involved in the regulation of iron transport and 
metabolism. As mentioned previously, mutations in STEAP3 
and DMT1 lead to microcytic anaemia,27, 28 Iron refractory 
iron deficiency anaemia (IRIDA), a form of anaemia that is 
resistant to oral iron therapy, is caused by mutations in the 
transmembrane protease, serine 6 (TMPRSS6) gene, which 
encodes matriptase-2, a membrane bound serine protease 
expressed predominantly in hepatocytes that has been shown 
to regulate hepcidin expression.76-78 In contrast to patients with 
HH, patients with IRIDA have abnormally elevated levels of 
serum hepcidin, resulting in suppression of iron absorption 
and recycling.76 

BMP Signalling in Iron Regulation
The bone morphogenetic protein-mothers against 
decapentaplegic homologue (BMP-SMAD) signalling 
pathway has emerged as the major signalling pathway 
responsible for the iron-regulated expression of hepcidin.79 
BMPs are part of the transforming growth factor beta (TGF-β) 
superfamily of ligands and similar to TGF-β, signal through 
cell-associated receptors and downstream SMAD proteins to 
regulate gene expression. Type I and II BMP receptors are 
serine-threonine kinase receptors; upon BMP binding, the type 
II receptors activate the type I receptors by phosphorylation. 
Different combinations of 3 type I and 3 type II BMP 
receptors are involved in BMP signalling. Once activated 
the type I receptors then phosphorylate receptor regulated 
SMADs (R-SMADs), which bind to the common mediator 
SMAD (SMAD4) and the complex then translocates to the 
nucleus to regulate the expression of target genes (Figure 1).80 
The functionally related R-SMADs 1, 5 and 8 are utilised by 
the BMP signalling pathway, whereas the R-SMADs 2 and 3 
are utilised by the TGF-β pathway. The inhibitory SMADs 
(SMAD 6 and 7) are paralogous to other SMAD proteins and 
function to reduce signalling through the BMP and TGF-β 
pathways by competitively binding with either the BMP 
receptors or other SMAD proteins.80

The first clue to the role of the BMP-SMAD pathway 
in hepcidin regulation came with the observation that 
hepatocyte-specific ablation of SMAD4 in mice led to severe 
iron overload.81 Further research showed that HJV is a BMP 
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co-receptor that enhances signalling through the SMAD 
pathway.82 Loss of HJV, as in patients with JH, results in 
greatly reduced BMP signalling and low hepcidin expression. 
HJV can also be cleaved by proprotein convertases and exist 
as a secreted soluble form (sHJV) that can compete with 
cell associated HJV and inhibit BMP-SMAD signalling to 
reduce hepcidin expression.83, 84 In terms of iron-regulated 
signalling it has been shown that HJV can utilise type II 
receptors BMPRII and ACTRIIA and type I receptors ALK2 
and ALK3.85 Hepatocyte-specific deletion of Alk2 or Alk3 in 
mice results in iron overload, confirming the importance of 
these type I receptors in the regulation of iron homeostasis.86 
Similarly, simultaneous deletion of BmprII and ActrIIa 
results in iron overload, whereas individual deletion of the 2 
genes does not, suggesting that these type II receptors have 
redundant functions in the regulation of hepcidin and iron 
homeostasis.87 Other molecules involved in iron homeostasis 
are also important components in BMP-SMAD signalling. 
Matriptase-2 was shown to be a negative regulator of hepcidin 
expression by reducing BMP-SMAD signalling via cleavage 
of HJV.78    It has been suggested that HFE may enhance 
BMP-SMAD signalling via an interaction with the BMP 
type 1 receptor ALK3.88   It is likely that TFR2 also alters 
SMAD signalling through mechanisms that are not entirely 
understood but may involve BMP6.89

Many BMPs can upregulate hepcidin expression in vitro, 
including BMPs 2, 4, 5, 6, 7 and 9.90 The BMP that appears 
to be most physiologically relevant to the regulation of 
iron homeostasis is BMP6. It was shown that iron regulates 
the expression of BMP6 in the liver91 and that knockout of 
Bmp6 in mice results in severe iron overload due to hepcidin 
deficiency.92, 93 Which cell types contribute to BMP6 expression 
and how it is upregulated by iron are not yet fully understood, 
although it has been suggested that BMP6 expressed in non-
parenchymal cells of the liver can be regulated by iron and 
may function in a paracrine manner to regulate hepcidin in 
hepatocytes.94

Other evidence suggests that the BMP-SMAD pathway 
is central to hepcidin and iron regulation. For example 
the inhibitory SMAD, SMAD7 has been shown to be a 
potent inhibitor of hepcidin expression.95 Another potential 
negative regulator of hepcidin is the known BMP inhibitor 
BMP-binding endothelial cell precursor-derived regulator 
(BMPER).96 Recently the SMAD adapter protein endofin 
was shown to be important for enhancing signalling through 
the BMP-SMAD pathway to regulate hepcidin.97 There is 
now a large body of evidence to implicate the BMP-SMAD 
signalling pathway in the iron-dependent regulation of 
hepcidin and iron homeostasis.

Inflammatory Regulation of Iron Homeostasis
The regulation of iron homeostasis by inflammatory stimuli 
is important in the innate immune response to infections and 
cancers. Increasing hepcidin levels during infection has the 
effect of sequestering iron in tissues and reducing serum iron 
levels, effectively withholding iron from invading pathogens. 
Over prolonged periods of time, such as during chronic 
inflammation, this can result in reduced iron availability for 
the production of red blood cells and resultant anaemia. It is 
thought that elevated hepcidin levels are a major contributor 
to the anaemia of chronic disease, the most common form of 
anaemia in hospitalised patients.98, 99

It has been shown that liver hepcidin is upregulated by 
inflammatory stimuli.98, 100 The inflammatory cytokine 
interleukin 6 (IL-6) is largely responsible for this process, 
as the characteristic hypoferraemic response to an acute 
inflammatory stimuli was completely ablated in mice lacking 
IL-6.101 Elegant transgenic mouse experiments showed that 
the signal transducer and activator of transcription 3 (STAT3) 
signalling pathway is responsible for the IL-6-mediated 
regulation of hepcidin in the liver.102 Other inflammatory 
cytokines have also been proposed as hepatic hepcidin 
regulators, such as IL-1103 and IL-22,104, 105 however, the role 
of these cytokines in inducing the hypoferraemic response to 
inflammation in vivo is less clear.106

Erythropoietic and Hypoxic Regulation of Iron 
Homeostasis
As the majority of iron in the human body is required for 
the production of red blood cells, it is not surprising that 
erythropoiesis and the regulation of iron homeostasis are 
intrinsically linked. It has been known for a long time that 
erythropoietic demand increases iron absorption,107  although 
the mechanisms underlying this association have only 
recently been uncovered and are still not fully understood. 
Erythropoiesis and hypoxia have the effect of suppressing 
liver hepcidin expression to increase iron absorption.98

Tissue hypoxia can result from anaemia and can lead to the 
production of the major erythropoiesis stimulating hormone 
erythropoietin (EPO). It has been suggested that hypoxia itself 
can directly suppress hepcidin transcription in the liver via 
the induction of hypoxia inducible factors108 and via effects 
on matriptase-2 and BMP-SMAD signalling.109 It has also 
been suggested that EPO can directly suppress hepcidin in 
hepatocytes,110 although others have suggested a more indirect 
effect of EPO via the stimulation of erythropoiesis and release 
of a hepcidin-suppressive humoral factor.111 Several erythroid-
derived factors have been suggested, including growth 
differentiation factor 15 (GDF15) and twisted gastrulation 
(TWSG1), both of which are released by erythroid precursors 
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and can suppress hepatic hepcidin gene expression.74, 112 More 
recently another candidate erythroid-derived regulator of 
hepcidin has been proposed, erythroferrone (ERFE), which 
is expressed by erythroid precursors and represses hepcidin 
during stress erythropoiesis.113 Following bleeding, it was 
shown that Erfe deficient mice fail to suppress hepcidin and 
recover from anaemia more slowly than wild-type mice.113 

Diagnostics and Therapeutics for Iron Disorders
The increase in our knowledge about the mechanisms 
regulating iron absorption and homeostasis has led to new 
diagnostic and therapeutic possibilities for iron-related 
disorders. Serum iron, transferrin saturation and serum 
ferritin measurements have been the mainstay blood tests for 
assessing iron levels. With the discovery of hepcidin, new 
diagnostic tests have been developed for measuring serum 
levels that may soon enter routine clinical practice for the 
differential diagnosis of various forms of iron overload and 
anaemia.114

While the HFE gene test has been around for nearly 20 years,3 
the discovery of genes for non-HFE forms of HH and anaemia 
and recent advances in DNA sequencing means that it is now 
becoming increasingly possible to genetically diagnose these 
more unusual iron-associated disorders.115

The hepcidin-ferroportin axis is a very attractive target for the 
development of novel therapeutics for treating iron disorders. 
For example, hepcidin agonists can be used to treat iron 
overload caused by hepcidin deficiency, such as the various 
forms of HH or iron loading anaemias such as thalassaemia. 
Smaller hepcidin-based peptides (minihepcidins) have been 
developed, that have shown some success in preventing 
iron overload in mouse models of HH.116 Targeting the 
upstream regulator of hepcidin, TMPRSS6, using either lipid 
encapsulated small interfering RNAs (siRNAs)117  or antisense 
oligonucleotides,118 has proven successful in treating iron 
overload in mouse models of HH and β-thalassaemia.

Hepcidin antagonists may be equally beneficial in treating 
iron deficiency anaemia that is related to abnormally elevated 
hepcidin, such as IRIDA or the anaemia of chronic disease. 
The Speigelmer lexaptepid, an RNA-like molecule, binds to 
and inhibits hepcidin and has shown promise in clinical trials 
for the treatment of the anaemia of chronic disease.119

Conclusions
In summary, this review has highlighted the major 
breakthroughs that have occurred in the past 20 years or so, 
that have greatly enhanced our understanding of how iron 
absorption and homeostasis are regulated. A combination 
of clinical medicine, basic cellular and animal model based 

research has been largely responsible for these discoveries. 
While our understanding of iron regulation is now more 
complete, there are still many aspects that are unknown and 
new players to be discovered that will form the basis of future 
research in this area.

Competing Interests: None declared.
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