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Abstract Introduction: The objective of this study was to investigate whether 10 phospholipids/metabolites
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previously identified as prospectively predictive of mild cognitive impairment (MCI) or dementia in
whites would also be predictive in a mostly African-American cohort.
Methods: We repeatedly measured 188 phospholipids/metabolites in plasma samples of 221 partic-
ipants of the Atherosclerosis Risk in Communities study, 97%African American, who were followed
between 2004–2006 and 2011–2013.
Results: After a mean follow-up of 7.3 years, 77 were classified as having MCI and 18 as having
dementia. Our study failed to replicate previous findings in this mostly African American cohort,
in that the 10 phospholipids/metabolites only achieved a C statistic/AUC of 0.609 in predicting devel-
opment of MCI or dementia (compared to 0.96) and 0.607 in distinguishing normal from MCI or de-
mentia at the follow-up visit.
Conclusion: A panel of 10 phospholipids/metabolites previously associated with incident dementia
was not predictive of MCI or dementia in an independent cohort.
� 2016 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
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1. Introduction

Alzheimer’s disease (AD) is the most common cause of
dementia in the elderly. In individuals transitioning from
normal cognition to mild cognitive impairment (MCI) or
thor. Tel.: 612-626-0299; Fax: 612-625-1121.

nnili@umn.edu

16/j.dadm.2016.09.003

he Authors. Published by Elsevier Inc. on behalf of the Alzhe

commons.org/licenses/by-nc-nd/4.0/).
dementia, the brain undergoes metabolic changes during
the pathophysiological progression of AD and/or other
neurodegenerative diseases. Many of these metabolic
changes in the brain and/or cerebrospinal fluid, a surrogate
of brain environment, have been detected in plasma [1–3].
Therefore, metabolomic characterization of plasma in
individuals transitioning from normal cognition to MCI or
dementia is important for two general reasons: (a) to
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define altered metabolomic pathways and networks that are
affected by AD and other neurodegenerative diseases that
contribute to cognitive impairment, which may provide
novel therapeutic targets for development of disease-
modifying drugs and (b) to identify biomarkers to aid in
the prediction of subsequent cognitive impairment, espe-
cially during the early stages when therapeutic interventions
are more likely to be effective [3–15].

The significance of early detection has spurred a growing
interest in the discovery of biomarkers for prediction of
future development of MCI and dementia. Graham et al.
[10] reported that polyamine and L-arginine metabolism
predicted development of AD dementia up to 2 years later
in individuals with MCI. Ore�si�c et al. demonstrated that
a panel of 3 metabolites, phosphatidylcholine (PC)
(16:0/16:0), an unidentified carboxylic acid, and 2,
4-dihydroxybutanoic acid, was predictive of progression to
AD dementia up to 3.6 years later in individuals with MCI
[5]. Mapstone et al. identified a panel of 10 phospholipids
that predicted development of amnestic MCI (aMCI) or
AD dementia over 2 or 3 years [12]. Mielke et al. reported
that high levels of sphingomyelins and ceramides predicted
development of cognitive impairment in individuals with
normal cognitive function up to 9 years later [13]. These
plasma metabolomic studies, conducted using diverse
methods to characterize plasma metabolites, all support
the notion that identifiable metabolomic changes in plasma
precede the development of clinical cognitive symptoms
such as MCI or dementia. Although there are certain advan-
tages of using various metabolomic methods, namely,
comprehensive coverage of metabolites and discovery of
novel biomarkers, the homebrew nature of many of these
methods has made it challenging for other investigators to
reproduce the findings in independent cohorts.

Recently, Casanova et al. failed to replicate Mapstone’s
findings [12] discovered using a commercially available
kit (Biocrates Absolute-IDQ P180 [Biocrates, Life Science
AG, Innsbruck, Austria]) [16]. Neither study considered
race as biological variable. Health disparities between Afri-
can Americans and white Americans in rates of MCI and de-
mentia, in the patterns of cognitive function decline, and in
prevalence of certain risk factors for dementia such as hyper-
tension have been previously described [17]. Therefore, the
objective of our study was to investigate whether the bio-
markers that were prospectively predictive of MCI and de-
mentia in whites in the previously published Mapstone
study would also be predictive in African Americans.
2. Methods

2.1. Study design

The ARIC study is a prospective cohort study investi-
gating the etiology of atherosclerotic diseases in a middle-
aged, predominantly biracial population. In 1987–89,
15,792 men and women aged 45–64 years were recruited
from four communities in theUnited States. The entire cohort
was invited for follow-up examinations in 1990–92 (visit 2),
1993–95 (visit 3), 1996–98 (visit 4), and 2011–2013 (visit 5).
A detailed study design descriptionwas published previously
[18]. In 2004–2006, 1130 ARIC participants were recruited
for the ARIC Brain Magnetic Resonance Imaging (MRI)
study, an ancillary study to the ARIC cohort [19,20]. In
2011–2013, participants underwent a detailed cognitive
assessment in the context of the ARIC-Neurocognitive Study
(NCS; taken place in conjunction with ARIC visit 5) with the
general aimof evaluating their cognitive performance and the
prevalence of MCI and dementia. For the present study, we
selected 221 ARIC participants who participated in the
ARIC Brain MRI visit and ARIC-NCS provided blood sam-
ples during the Brain MRI examination, had normal cogni-
tion at the time of the ARIC Brain MRI visit (see the
definition below), were not taking anticonvulsant and anti-
psychotic medications, which can affect the mass spectros-
copy analyses, and did not have severe depressive
symptoms (Center for Epidemiological Studies-Depression
[CES-D] scale � 9). A large majority of the ARIC Brain
MRI participants with stored samples were African Ameri-
cans. For the ARIC Brain MRI visit, participants underwent
a comprehensive neuropsychological battery. Among other
tests, participants completed the mini-mental state examina-
tion (MMSE), the delayedword recall (DWR) test, digit sym-
bol Substitution (DSS), and word fluency (WF) tests [19].
Scores for the last three tests were standardized to the distri-
bution of tests obtained at the ARIC visit 2. A global cogni-
tive score was calculated as the average of the standardized
scores and standardized to amean of 0 and standard deviation
of 1, also following the distribution of scores at ARIC visit 2
[21]. We considered participants to have normal cognition at
the ARIC Brain MRI visit if their MMSE score was.23 for
African Americans and .24 for whites and if their global
cognitive z score was above 21.5. We chose these cutoff
points as they have been used in other settings to define cogni-
tive impairment [22,23]. The ARIC Study, the ARIC Brain
MRI Study, and ARIC-NCS were approved by the institu-
tional review board of each participating center. Informed
consent was obtained from participants at each study visit.
2.2. MCI and dementia

At ARIC visit 5, as part of the ARIC-NCS, participants
underwent a detailed neurocognitive battery, which included
the MMSE, DWR, DSS, and WF tests, along with a number
of other cognitive tests spanning multiple cognitive do-
mains, a neurological examination, and a sample of them
also had brain MRI. Using information collected during
the ARIC-NCS as well as prior cognitive testing, a commit-
tee of experts adjudicated cases of MCI and dementia as pre-
viously described [24]. In addition to a syndromic diagnosis
(normal, MCI, dementia), the adjudication committee also
assigned an etiologic diagnosis when enough information



Table 1

Selected characteristics at the ARIC Brain MRI Study, 2004–2006, by

cognitive status at the ARIC NCS, 2012–2014

Characteristics

Normal

(n 5 126)

Mild

cognitive

impairment

(n 5 77)

Dementia

(n 5 18)

Age, y 70.9 (3.6) 71.3 (3.7) 73.1 (5.0)

African American, % 96.8 96.1 100.0

Female, % 66.7 62.3 77.8

Body mass index, kg/m2 30.0 (4.8) 29.7 (5.4) 29.7 (7.7)

Cholesterol medication, % 35.7 35.1 38.9

Current drinker, % 31.8 29.9 16.7

Current smoker, % 5.6 7.8 11.1

Diabetes, % 31.0 29.9 22.2

High school graduate, % 21.4 32.5 33.3

HDL cholesterol, mg/dL 54.8 (15.9) 55.1 (14.6) 55.5 (18.6)

Hypertension medication, % 64.3 72.7 66.7

Prevalent CHD, % 5.6 6.5 5.6

Prevalent HF, % 5.6 2.6 11.1

Prevalent stroke, % 1.6 2.6 11.1

Systolic blood pressure, mm Hg 130.8 (18.7) 132.3 (19.4) 138.7 (18.9)

Sports index 91.5 (76.7) 78.1 (56.0) 70.1 (52.6)

Total cholesterol, mg/dL 200.8 (35.9) 203.1 (37.9) 203.2 (36.8)

Triglycerides, mg/dL 109.3 (52.5) 105.8 (41.7) 112.2 (41.2)

APOE, %

44 2.4 5.2 16.7

24 or 34 27.0 33.8 22.2

Other 65.9 59.7 55.6

Missing 4.8 1.3 5.6
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was available (AD, frontotemporal dementia, vascular de-
mentia, Lewy-body disease, or other mixed etiologies).

2.3. Targeted metabolomic analysis

The targeted metabolomic analysis has been described
previously [25]. We used the Biocrates Absolute-IDQ
P180 kits (Biocrates, Life Science AG, Innsbruck, Austria),
a validated targeted assay that allows for simultaneous
detection and quantification of 188 metabolites (40 acylcar-
nitines, 21 amino acids, 21 biogenic amines, 15 sphingoli-
pids, 90 glycerophospholipids, and 1 hexose) in 10 mL of
plasma samples in a high-throughput manner. Please refer
to Supplementary Method for the details of the analysis.
We used seven p180 kits to analyze all the plasma samples,
once for each sample. As part of the quality control, three
concentrations of quality controls (1 QC1, 4 QC2, and 1
QC3) were included in each kit to monitor imprecisions
(% coefficient variances [CVs]) of measuring these 188 me-
tabolites. We calculated means, standard deviations (SDs),
and CVs of 3 levels of QCs for all the 188 metabolites,
and imprecisions of .83% of the metabolites were less
than 25% for all three concentrations of quality controls
(Supplementary Table 1). Initial data analysis was per-
formed using the MetIQ software (Biocrates). The targeted
metabolomic profile was measured in blood samples ob-
tained at the ARIC Brain MRI visit in 2004–2006 and
repeated in blood samples obtained at the ARIC visit 5/
ARIC-NCS in 2011–2013.

2.4. Other covariates

Education level, sex, and race were self-reported by the
participant at the study baseline. Information on smoking
and drinking status and medication use was self-reported
at all study visits. Body mass index was defined as weight
in kilograms divided by the square of height in meters
measured with the participant wearing light clothing. A
sports index was calculated based on the number of times
per month that participants engaged in vigorous, moderate,
or light physical activity. Prevalent coronary heart disease,
stroke, and heart failure were defined according to published
criteria [26,27]. Prevalent diabetes was defined as a self-
reported physician diagnosis of diabetes or use of antidia-
betic medication. Total cholesterol, HDL cholesterol, and
triglycerides were measured in blood samples provided at
the ARIC visit 4 (1996–1998).

2.5. Statistical analysis

Metabolite concentrations were log-transformed and
modeled in standard deviation units when possible. For me-
tabolites with,50% of missing values or below the limit of
detection (LOD), we imputed the lowest nonzero measure-
ment to the missing/below LOD for analysis. Nine metabo-
lites with 50%–80% missing or below LOD values were
categorized into three groups: ,LOD, �LOD to ,median,
and �median. Finally, 35 metabolites that had .80%
missing or below LOD or had a failure in model convergence
were excluded (Supplementary Table 2). The primary anal-
ysis focused on 9 of the 10 phospholipids identified in the
previous publication by Mapstone et al. as predictors of con-
version from normal to cognitive impairment (the 10th
metabolite, C16:1-OH, had values below the LOD in all
measurements) [12]. We used a multinomial logistic regres-
sion to assess the prospective association of the individual
metabolites with MCI and dementia (three level dependent
variable: normal, MCI, dementia, n 5 221). The following
variables were used for adjustment in a series of nested
models: model 1: age, race, sex, and APOE genotype; model
2: model 11 educational level, diabetes mellitus, body mass
index, drinking status, smoking status, sports index, systolic
blood pressure, use of antihypertensive medications, preva-
lent coronary heart disease, prevalent heart failure, prevalent
stroke, total cholesterol, HDL cholesterol, and triglycerides.
These covariates (except education level, sex, and race as-
sessed at the ARIC visit 1 in 1987–1989 and blood lipids as-
sessed at ARIC visit 4 in 1996–1998) were assessed at the
ARIC brain MRI visit, which is the baseline when the
plasma samples were taken from the 221 participants. To
measure the ability of this panel of nine phospholipids in
prediction of MCI and dementia, we calculated the C statis-
tic from binary logistic regression models with MCI/demen-
tia (vs normal) as the outcomewith individual phospholipids
modeled as a 1-SD difference in the log-transformed



Table 2

Odds ratios (OR) and 95% confidence interval (CI) of MCI or dementia by baseline phospholipids (log-transformed per 1-SD change), ARIC Brain MRI Study

(2004–2006) and ARIC-NCS (2011–2013)

Phospholipid N

MCI vs. normal,

OR (95% CI)*

Dementia vs.

normal, OR (95% CI)*

MCI and dementia

vs. normal, OR (95% CI)*

PC aa C36:6

Model 0 221 1.03 (0.77–1.38) 0.96 (0.61–1.50) 1.01 (0.77–1.36)

Model 1 221 1.04 (0.77–1.40) 0.97 (0.58–1.62) 1.03 (0.78–1.40)

Model 2 221 1.10 (0.79–1.53) 1.36 (0.49–3.77) 1.11 (0.82–1.62)

PC aa C38:0

Model 0 221 1.04 (0.77–1.41) 0.91 (0.62–1.35) 1.01 (0.76–1.35)

Model 1 221 1.06 (0.77–1.46) 0.86 (0.58–1.28) 1.01 (0.75–1.37)

Model 2 221 1.07 (0.77–1.50) 0.84 (0.51–1.37) 1.02 (0.75–1.44)

PC aa C38:6

Model 0 221 1.10 (0.78–1.56) 1.09 (0.60–1.98) 1.10 (0.83–1.65)

Model 1 221 1.12 (0.79–1.59) 1.05 (0.56–1.97) 1.11 (0.83–1.68)

Model 2 221 1.16 (0.77–1.74) 1.39 (0.38–5.12) 1.18 (0.85–1.99)

PC aa C40:1

Model 0 221 0.98 (0.74–1.30) 0.62 (0.33–1.18) 0.92 (0.69–1.20)

Model 1 221 0.97 (0.73–1.30) 0.63 (0.32–1.23) 0.92 (0.69–1.21)

Model 2 221 1.02 (0.74–1.41) 0.56 (0.24–1.29) 0.95 (0.69–1.29)

PC aa C40:2

Model 0 221 1.11 (0.83–1.49) 0.91 (0.57–1.46) 1.07 (0.82–1.41)

Model 1 221 1.15 (0.85–1.55) 0.91 (0.54–1.52) 1.10 (0.84–1.47)

Model 2 221 1.20 (0.86–1.69) 0.99 (0.50–1.97) 1.16 (0.85–1.62)

PC aa C40:6

Model 0 221 1.07 (0.79–1.45) 1.15 (0.62–2.15) 1.08 (0.82–1.51)

Model 1 221 1.10 (0.80–1.51) 1.11 (0.57–2.16) 1.10 (0.83–1.57)

Model 2 221 1.16 (0.80–1.70) 1.79 (0.63–5.12) 1.20 (0.87–1.87)

PC ae C40:6

Model 0 221 1.14 (0.79–1.65) 1.06 (0.62–1.83) 1.12 (0.84–1.69)

Model 1 221 1.18 (0.79–1.77) 1.00 (0.60–1.65) 1.13 (0.84–1.75)

Model 2 221 1.20 (0.76–1.88) 1.05 (0.45–2.42) 1.17 (0.85–1.99)

Lyso PC a C18:2

Model 0 221 1.50 (1.01–2.23) 1.11 (0.64–1.93) 1.40 (1.00–2.04)

Model 1 221 1.49 (1.00–2.23) 1.11 (0.60–2.06) 1.40 (1.00–2.07)

Model 2 221 1.66 (1.04–2.64) 1.17 (0.52–2.65) 1.52 (1.03–2.37)

Propionyl-L-carnitine (C3)

Model 0 221 0.97 (0.73–1.29) 1.19 (0.73–1.96) 1.01 (0.77–1.32)

Model 1 221 0.98 (0.73–1.30) 1.24 (0.73–2.11) 1.02 (0.77–1.34)

Model 2 221 0.97 (0.69–1.34) 1.21 (0.62–2.35) 0.98 (0.71–1.35)

NOTE. Model 0: Unadjusted logistic regression; Model 1: Logistic regression adjusted for age, race, sex, & APOE. Model 2: Model 1 with additional adjust-

ment for body mass index, cholesterol medications, diabetes mellitus, drinking status, educational level, HDL cholesterol, smoking status, sports index, systolic

blood pressure, total cholesterol, triglycerides, use of antihypertensive medications, and prevalent coronary heart disease, heart failure, or stroke at baseline.

The Table 2 results are showing the association of phospholipid measurements at the MRI visit with incident MCI/dementia at visit 5.

Bold indicates statistical significance.

*OR per 1-SD change in the log (phospholipid).
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phospholipid unless noted. The C statistic is the proportion
of pairs of participants with the outcome and participants
without the outcome in which the participant who experi-
enced the outcome had a higher predicted probability of
the outcome than the participant without the outcome [28].
This statistic corresponds to the area under the receiver oper-
ating characteristic curve (AUC) and is part of the standard
output of PROC LOGISTIC in SAS.

Linear regression analysis was performed to estimate the
association of concentrations of these nine phospholipids
with changes in MMSE, and z scores in DWR, DSS, and
WF tests, and a composite z score for global cognition based
on DWR, DSS, and WF described previously. Also, logistic
regression was performed to determine the association
between the difference of log-transformed phospholipids
levels (log [ARIC-NCS] 2 log [ARIC brain MRI]) and
MCI/dementia status.

In an exploratory, hypothesis-generating analysis, we
repeated the analyses for the rest of 144 metabolites as-
sessed, which excluded the 35 metabolites with .80%
values lower than LOD and nine phospholipids from the
main analysis. This hypothesis-generating analysis adjusted
for the same variables used in model 2 above and was cor-
rected for multiple comparisons using a Bonferroni correc-
tion [29]. Therefore, only associations with a P
value , .000347 (0.05/144 metabolites) were considered
statistically significant. We used SAS v 9.3 (SAS Inc.,
Cary, North Carolina) for the statistical analysis.



Table 3

C-statistic from binary logistic regression models with dementia/MCI (vs

normal) at the ARIC-NCS (2012–2014) as the outcome and individual

phospholipids (modeled as a 1-SD difference in the log-transformed

phospholipid) at the ARIC Brain MRI Study (2004–2006)

Phospholipid

C-statistic

Model 0 Model 1

Model (No Phospholipids) 0.698

Model 1 PC aa C36:6 0.486 0.699

Model 1 PC aa C38:0 0.486 0.698

Model 1 PC aa C38:6 0.487 0.699

Model 1 PC aa C40:1 0.525 0.697

Model 1 PC aa C40:2 0.504 0.700

Model 1 PC aa C40:6 0.493 0.701

Model 1 PC ae C40:6 0.502 0.700

Model 1 Lyso PC a C18:2 0.566 0.717

Model 1 Propionyl-L-carnitine (C3) 0.488 0.698

Model 1 all 9 phospholipids 0.609 0.729

NOTE.Model 0: Unadjusted;Model 1: Adjusted for age, sex, race, APOE

genotype, body mass index, diabetes mellitus, drinking status, educational

level, HDL cholesterol, smoking status, sports index, systolic blood pres-

sure, total cholesterol, triglycerides, use of antihypertensive medications,

and prevalent coronary heart disease, heart failure, or stroke at baseline.
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3. Results

3.1. Baseline characteristics of individuals with MCI and
dementia at the follow-up examination

Of 221 participants (97% African American) cognitively
normal at the ARIC Brain MRI examination included in this
analysis, 77 were classified as having MCI and 18 as having
dementia at the time of the ARIC-NCS examination (mean
follow-up, 7.3 years; range, 5.8–9.6 years). Table 1 lists
the baseline characteristics of included participants by
cognitive status at the follow-up examination. Overall, indi-
viduals who developed dementia were older, more likely to
be female, less likely to be a drinker, and more likely to be a
smoker, had a worse cardiovascular risk profile and a higher
prevalence of APOE ε4/ε4 genotype.
3.2. Prospective associations of baseline plasma
phospholipids/metabolites with MCI and/or dementia

Our primary analysis focused on the 10 metabolites pre-
viously identified by Mapstone et al. Concentrations of
C16:1-OH, one of the 10 metabolites, were lower than
LOD in all participants. Therefore, we excluded this metab-
olite from the analysis. Table 2 shows the results from multi-
nomial logistic models estimating the prospective
association of the remaining 9 phospholipids with MCI
and/or dementia. In the unadjusted model (model 0), higher
concentration of lyso PC a C18:2 was significantly associ-
ated with higher odds of MCI (OR, 1.50; 95% confidence in-
terval [CI], 1.01–2.23) but not of dementia. After adjusting
for covariates in models 1 and 2, the association with MCI
remained significant (model 1, OR, 1.49; 95% CI, 1.00–
2.23 and model 2, OR, 1.66; 95% CI, 1.04–2.64). There
were no significant associations for the other eight phospho-
lipids with MCI/dementia.

Table 3 shows the predictive ability (C statistic, a measure
of AUC) of these nine phospholipids in classifying individ-
uals as remaining normal cognition versus developing MCI/
dementia. Individual baseline phospholipids had C statistics
in the range of 0.486–0.566 in the unadjusted model (model
0). When including all the phospholipids in the unadjusted
model, the C statistic slightly improved to 0.609. A model
including all the covariates and no phospholipids achieved
a C statistic of 0.698. Adding individual phospholipids or
all 9 phospholipids simultaneously led to small improve-
ments in the C statistic (a range of 0.697–0.717 for individ-
ual phospholipids and a 0.729 when adding simultaneously
the nine phospholipids). Furthermore, we also evaluated
the predictive ability of these nine phospholipids in distin-
guishing normal versus MCI/dementia at the ARIC-NCS
visit. The C statistic is 0.607 for model 0 (including the
nine metabolites) and 0.728 for the final multivariable model
(same as model 1 in Table 3). These results were quite
similar to the c statistic from our previous study of cross-
sectional association of these phospholipids with MCI and
dementia (0.602 for model 0 and 0.713 for model 1) [25].
Changes in the nine phospholipids of interest between the
brain MRI and ARIC-NCS visits were not prospectively
associated with MCI or dementia (Table 4).

We also performed hypothesis-generating analysis of the
baseline, prospective association of the remaining 144 me-
tabolites with MCI and dementia (Supplementary Table 3).
Higher levels of 17 of these metabolites were associated
with dementia at the nominal P value ,.05; however, none
of them were significant after applying a correction for mul-
tiple comparisons: arginine, aspartic acid, acetyl-L-carnitine
(C2), octadecenoyl-L-carnitine (C18:1), ornithine, PC aa
C32:3, PC aa C34:1, PC aa C36:1, PC aa C38:5, PC aa
C40:3, PC ae C32:2, PC ae C36:1, SM C18:0, SM C18:1,
SM C20:2, SM 26:0, and SM C26:1 were associated with
higher incidence of dementia. Higher levels of 9 of them
were prospectively associated with MCI (P value,.05): ly-
soPC a C16:0, lysoPC a C16:1, lysoPC a C18:0, lysoPC a
C18:1, PC aa C36:3, PC ae C38:1, PC ae C42:2, SM
C16:0, and SM C20:2. Higher levels of butenyl-
L-carnitine (C4:1) and SM C20:2 were prospectively
associated with both MCI and dementia. Among the 28 me-
tabolites that were associated with either MCI or dementia,
decreases in concentrations of 5 of them (aspartic acid,
acetyl-L-carnitine [C2], butenyl-L-cartinine [C4:1], PC aa
C36:1 and PC ae C38:1) between the brain MRI visit and
the ARIC-NCS were associated with higher rate of MCI or
dementia (P value , .05, Supplementary Table 4).

Furthermore, we also analyzed the baseline, prospective
association of the nine metabolites with changes in neuro-
psychological tests including MMSE, DWR, DSS, and WF
tests (Table 5). After multivariable adjustment, higher levels
of propionyl-L-carnitine (C3) were significantly associated
with slower decline in the global cognitive score



Table 4

Odds ratios (OR) and 95% confidence interval (CI) of MCI or dementia associated with 1-SD change in log-transformed phospholipids levels between ARIC-

NCS and ARIC Brain MRI examination (log [ARIC-NCS] 2 log [ARIC brain MRI])

Phospholipid n

MCI vs. normal,

OR (95% CI)*

Dementia vs.

normal, OR (95% CI)*

MCI & dementia vs.

normal, OR (95% CI)*

PC aa C36:6

Model 0 221 0.89 (0.65–1.22) 0.82 (0.44–1.55) 0.88 (0.63–1.16)

Model 1 221 0.88 (0.64–1.22) 0.71 (0.35–1.45) 0.85 (0.60–1.14)

Model 2 221 0.86 (0.61–1.23) 0.53 (0.21–1.37) 0.84 (0.57–1.15)

PC aa C38:0

Model 0 221 0.87 (0.62–1.21) 1.02 (0.65–1.58) 0.90 (0.65–1.19)

Model 1 221 0.86 (0.62–1.20) 1.03 (0.63–1.68) 0.89 (0.64–1.18)

Model 2 221 0.85 (0.60–1.21) 1.08 (0.60–1.94) 0.88 (0.61–1.18)

PC aa C38:6

Model 0 221 0.74 (0.44–1.25) 0.65 (0.24–1.72) 0.72 (0.42–1.06)

Model 1 221 0.72 (0.42–1.23) 0.52 (0.18–1.51) 0.68 (0.40–1.04)

Model 2 221 0.70 (0.39–1.27) 0.43 (0.12–1.62) 0.66 (0.36–1.04)

PC aa C40:1y

Model 0 221 1.10 (0.82–1.47) 1.12 (0.67–1.86) 1.10 (0.83–1.45)

Model 1 221 1.07 (0.80–1.45) 1.09 (0.63–1.89) 1.08 (0.81–1.44)

Model 2 221 1.08 (0.78–1.50) 1.09 (0.54–2.19) 1.09 (0.79–1.50)

PC aa C40:2

Model 0 221 0.96 (0.73–1.28) 0.95 (0.57–1.56) 0.96 (0.73–1.26)

Model 1 221 0.92 (0.69–1.24) 0.87 (0.50–1.52) 0.92 (0.69–1.21)

Model 2 221 0.91 (0.66–1.26) 0.69 (0.33–1.47) 0.89 (0.65–1.21)

PC aa C40:6

Model 0 221 0.81 (0.56–1.18) 0.65 (0.30–1.38) 0.79 (0.53–1.07)

Model 1 221 0.80 (0.54–1.16) 0.57 (0.25–1.29) 0.76 (0.50–1.05)

Model 2 221 0.77 (0.50–1.17) 0.43 (0.15–1.22) 0.73 (0.46–1.05)

PC ae C40:6

Model 0 221 0.83 (0.55–1.25) 0.86 (0.42–1.73) 0.83 (0.53–1.13)

Model 1 221 0.80 (0.52–1.24) 0.79 (0.33–1.89) 0.80 (0.50–1.11)

Model 2 221 0.79 (0.50–1.26) 0.69 (0.21–2.26) 0.78 (0.46–1.11)

Lyso PC a C18:2

Model 0 221 0.82 (0.58–1.15) 1.05 (0.69–1.60) 0.88 (0.63–1.16)

Model 1 221 0.78 (0.55–1.11) 1.09 (0.70–1.70) 0.85 (0.60–1.13)

Model 2 221 0.78 (0.53–1.16) 1.21 (0.73–2.02) 0.86 (0.59–1.17)

Propionyl-L-carnitine (C3)

Model 0 221 1.12 (0.84–1.50) 0.62 (0.37–1.04) 1.01 (0.77–1.31)

Model 1 221 1.10 (0.82–1.46) 0.60 (0.34–1.05) 0.99 (0.75–1.31)

Model 2 221 1.15 (0.83–1.58) 0.63 (0.32–1.25) 1.07 (0.79–1.45)

NOTE.Model 0: Unadjusted logistic regression;Model 1: Logistic regression adjusted for age, race, sex, andAPOE; Model 2:Model 1 with additional adjust-

ment for body mass index, cholesterol medications, diabetes mellitus, drinking status, educational level, HDL cholesterol, smoking status, sports index, systolic

blood pressure, total cholesterol, triglycerides, use of antihypertensive medications, and prevalent coronary heart disease, heart failure, or stroke at baseline.

*OR per 1-SD change in the log (phospholipid).
yOR for phospholipid as an ordinal variable difference between the MRI visit & visit#5 (below LOD, .LOD2,Median, .Median).
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(b 5 0.11, 95% CI, 0.01–0.22). For the remaining 144 me-
tabolites, the hypothesis-generating analysis indicated,
though none of them were significant after applying a
correction for multiple comparisons, that higher levels of
three metabolites, alpha-aminoadipic acid (alpha-AAA),
DL-carnitine, and valeryl-L-carnitine (C5), were associated
with slower decline in the global cognitive score
(Supplementary Table 5).
4. Discussion

The objective of this study was to investigate the ability
of plasma metabolites to predict individuals who transi-
tioned from normal cognition to cognitive impairment in a
mostly African American cohort. We used a commercially
available, targeted metabolomic kit (Biocrates Absolute-
IDQ P180 kit) to measure 188 plasma metabolites including
amino acids, carnitines, phospholipids, and sphingomye-
lins. Our analysis was unable to replicate Mapstone’s re-
sults, which may be due to key differences in study design
(Table 6). First, by design, our study focused mostly on Af-
rican Americans, whereas the Mapstone study only
included whites. Second, the Mapstone study and our study
were also different in the education and age distribution: the
Mapstone study included individuals who were well
educated (mean education, .15 years) and older (mean
age of normal, baseline converter, and aMCI/AD were
81.6, 80.2, and 82.3, respectively); in contrast, our cohort
was less educated (only 26% had a high school degree)
and younger (mean age of normal, incident MCI, and



Table 5

Association of phospholipids levels (per 1-SD log-transformed) with the change in cognitive scores from the ARIC Brain MRI visit to the ARIC-NCS,

Atherosclerosis Risk in Communities (ARIC) Study, 2004 to 2013

Phospholipid

Delayed word

recall test, Z score

Digit symbol

substitution test,

Z score

Word fluency test,

Z-score Global, Z score

Mini-mental state

examination (MMSE)

n 219 204 218 202 191

PC aa C36:6 b 0.01 20.002 0.03 0.01 20.08

95% CI 20.17 to 0.19 20.07 to 0.07 20.05 to 0.11 20.09 to 0.11 20.45 to 0.29

P value .92 .96 .44 .78 .68

PC aa C38:0 b 0.05 0.02 0.03 0.03 0.01

95% CI 20.14 to 0.23 20.05 to 0.09 20.05 to 0.11 20.07 to 0.13 20.36 to 0.38

P value .60 .58 .47 .54 .96

PC aa C38:6 b 0.04 0.001 0.04 0.03 20.01

95% CI 20.14 to 0.22 20.07 to 0.07 20.04 to 0.12 20.07 to 0.13 20.37 to 0.35

P value .67 .97 .30 .52 .97

PC aa C40:1 b 0.03 0.02 0.03 0.03 0.02

95% CI 20.16 to 0.22 20.06 to 0.09 20.06 to 0.11 20.07 to 0.14 20.39 to 0.43

P value .75 .63 .54 .54 .92

PC aa C40:2 b 20.04 20.01 20.03 20.03 20.11

95% CI 20.23 to 0.15 20.08 to 0.06 20.12 to 0.05 20.14 to 0.07 20.50 to 0.28

P value .69 .75 .46 .53 .56

PC aa C40:6 b 0.01 0.01 0.05 0.03 20.03

95% CI 20.18 to 0.19 20.06 to 0.08 20.03 to 0.13 20.07 to 0.13 20.40 to 0.34

P value .95 .76 .23 .54 .87

PC ae C40:6 b 0.06 0.02 0.03 0.04 20.07

95% CI 20.12 to 0.25 20.05 to 0.09 20.05 to 0.11 20.06 to 0.14 20.43 to 0.30

P value .49 .65 .47 .42 .73

Lyso PC a C18:2 b 0.04 20.01 20.003 0.04 20.24

95% CI 20.14 to 0.22 20.08 to 0.07) 20.08 to 0.08 20.06 to 0.14 20.61 to 0.13

P value .67 .88 .95 .47 .20

C3 b 0.13 0.02 0.05 0.11 20.05

95% CI 20.06 to 0.32 20.06 to 0.09 20.03 to 0.14 0.01–0.22 20.45 to 0.35

P value .18 .67 .22 .03 .81

NOTE. Model 2: adjusted for age, sex, APOE, body mass index, cholesterol medications, diabetes mellitus, drinking status, educational level, HDL choles-

terol, smoking status, sports index, systolic blood pressure, total cholesterol, triglycerides, use of antihypertensive medications, and prevalent coronary heart

disease, heart failure, or stroke at baseline.

Bold indicates statistical significance.
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incident dementia at baseline were 70.9, 71.3, and 73.1,
respectively). Third, although both studies were longitudi-
nal in nature, the Mapstone study used a mixed cohort and
case-control study design. It included 124 samples in its dis-
covery sample set, 36 of them were longitudinal from the
same 18 participants who had converted from cognitive
normal condition to cognitive impairment. The rest of 88
samples were cases (35 of them were individuals who
were either aMCI or AD) and controls (53 of them were in-
dividuals with normal cognitive function). In our study, we
had 221 participants, who at the baseline of the Brain MRI
visit had normal cognition and developed MCI (n5 77) and
dementia (n5 18) at the follow-up of the ARIC-NCS, with
plasma metabolites measured at both time points. Fourthly,
our study had expert adjudicatedMCI and dementia diagno-
ses at the follow-up, where the Mapstone study–derived
composite scores (standardized z scores) for each partici-
pant on cognitive tests and categorized the participants
into a combined, single aMCI/AD group or a cognitive
normal group based on these composite scores. Last but
not least, the duration of the follow-up in our study was in
the range of 5.8–8.6 years, with a mean of 7.3 years,
much longer than the follow-up in the Mapstone study of
1–5 years, with a mean of 2.1 years.

Results from our exploratory analysis showed that higher
concentrations of 28 plasma amino acids, carnitines, phos-
pholipids, and sphingomyelins were prospectively associ-
ated with clinically significant cognitive symptoms such as
MCI or dementia in African Americans. Among the 28 me-
tabolites, decreases in the level of aspartic acid, acetyl-L-
carnitine (C2), butenyl-L-carnitine (C4:1), PC aa C36:1,
and PC ae C38:1 between the brain MRI visit and the
ARIC-NCS were prospective in association with MCI or de-
mentia.

Furthermore, our results showed higher levels of PC and
sphingomyelins were predictive of MCI and dementia. Syn-
apses are comprised of PC, and sphingomyelins make up
half of the total lipid content of myelins. In addition to the
important structural roles, their metabolites function as mes-
sengers that modulate signaling for proper neuron functions.
Presumptively, increases in neurotransmission, mitochon-
drial synthesis, and synaptic plasticity are consistent with
the emerging evidence that there are abnormal increases in
brain activity in individuals that are transitioned from



Table 6

Comparison of participant characteristics, study design, and results between the present study and the Mapstone study [12]

Characteristics Mapstone (discovery) Present study

Participants with normal cognition at

baseline

53 221

Participants with amnestic MCI (aMCI) or

AD at baseline

35 None

Participants with samples collected at both

the baseline (pre) and follow-up (post)

18 (Converters) 221

Partcipants who developed aMCI or AD at

the follow-up

18 (Converters) 95

Characteristics Normal (53) aMCI/AD (35) Converters (18) Normal (126) MCI (77) Dementia (18)

Age (years), baseline 81.6 (3.6) 82.3 (4.8) 80.2 (3.0) 70.9 (3.6) 71.3 (3.7) 73.1 (5.0)

% Female 66.0% 71.4% 55.6% 66.7% 62.3% 77.8%

% African American Not reported 96.8% 96.1% 100.0%

Education

Mean, years 15.68 (2.32) 15.45 (2.19) 15.33 (3.14) Not reported

% high school graduate Not reported 21.40% 32.50% 33.30%

Follow-up interval, mean, years (range) 2.1 (1–5) 7.3 (5.8–8.6)

Sample for metabolomic analysis Plasma Plasma

Metabolomics method p180 kits (Biocrates) p180 kits (Biocrates)

Performance of the 10-metabolite panel

described in the Mapstone study

Normal versus Converter (pre) AUC 0.96 0.609*

Normal versus aMCI/AD AUC 0.827 0.607y

*Including nine metabolites instead of 10 because C16:1-OH levels were lower than LOD in all participants in the present study.
yFor the present study, this reflects normal versus MCI/dementia at the follow-up visit.
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normal cognition to cognitive impairment, with the inflec-
tion point most likely in the presymptomatic and prodromal
stages. In particular, Berchtold et al. showed that in MCI
brains, there were prominent upregulation of genes associ-
ated with protein synthesis, mitochondrial energy genera-
tion, and synaptic genes for central components of the
vesicle function machinery at the synapse, synaptic vesicle
trafficking, neurotransmitter receptors, and synaptic struc-
ture and stabilization [30]. The precise mechanisms of our
findings are not clear: whether the changes in plasma of
these metabolites are a consequence of early brain pathology
in incipient AD, or a systematic peripheral signature in
response to pathophysiological changes in the brain is not
known. Peripheral metabolites can indirectly affect brain
process. Several studies have shown that phosphatidylcho-
lines and sphingomyelins are implicated in the development
of cardiovascular diseases and insulin resistance [31–34].
All these vascular outcomes are known to increase the risk
of MCI and dementia.

The limitations of our study are twofold. First, at the time
of the Brain MRI visit, participants did not undergo full MCI
or dementia assessment; the brain MRI visit did not include
informant interviews nor adjudicated evaluation forMCI and
dementia, as was included at the ARIC-NCS visit. Therefore,
we defined normal cognition at the Brain MRI visit using a
combination of a composite cognitive z-score and the
MMSE, which might lead to missed MCI or even dementia
cases at this earlier visit. Second, we used stored plasma
samples. The potential impact of using stored samples for
phospholipids analysis using the p180 kits has been dis-
cussed previously [35]. Because these samples were
collected and processed using standardized protocols, were
stored at 280�C, and were never thawed before being used
in this study, the specimens were of high quality and consid-
ered to be suitable for plasma phospholipids analysis. In
conclusion, our study demonstrated that higher levels of
certain amino acids, carnitines, phospholipids, and sphingo-
myelins were prospectively associated withMCI and demen-
tia over a mean follow-up of 7.3 years in a cohort of mostly
African Americans with normal cognition at baseline.
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RESEARCH IN CONTEXT

1. Systematic review: Prior studies suggested plasma
levels of phospholipids/metabolites might be useful
in the prediction of incident mild cognitive impair-
ment (MCI) and dementia. However, limited evi-
dence exists in African Americans. We investigated
whether the 10 phospholipids/metabolites that were
prospectively predictive of MCI and dementia in
whites would also be predictive in a mostly
African-American cohort.

2. Interpretation: Our study failed to demonstrate that a
panel of 10 phospholipids/metabolites previously
associated with incident dementia was not predictive
of MCI or dementia in an independent cohort.

3. Future directions: This study does not support the po-
tential of the panel of 10 phospholipids/metabolites
for prediction of cognitive impairment.
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