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Abstract

As increasingly large-scale multiagent simulations are being implemented, new methods are 

becoming necessary to make sense of the results of these simulations. Even concisely 

summarizing the results of a given simulation run is a challenge. Here we pose this as the problem 

of simulation summarization: how to extract the causally-relevant descriptions of the trajectories 

of the agents in the simulation. We present a simple algorithm to compress agent trajectories 

through state space by identifying the state transitions which are relevant to determining the 

distribution of outcomes at the end of the simulation. We present a toy-example to illustrate the 

working of the algorithm, and then apply it to a complex simulation of a major disaster in an urban 

area.
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1 Introduction

Large-scale multiagent simulations are becoming increasingly common in many domains of 

scientific interest, including epidemiology [9], disaster response [23], and urban planning 

[22]. These simulations have complex models of agents, environments, infrastructures, and 

interactions. Often the goal is to study a hypothetical situation or a counter-factual scenario 

in a detailed and realistic virtual setting, with the intention of making policy 

recommendations.

In practice, this is done through a statistical experiment design, where a parameter space is 

explored through multiple simulation runs and the outcomes are compared for statistically 

significant differences.

As simulations get larger and more complex, however, we encounter two kinds of situations 

where it is difficult to apply this methodology. First, if a simulation is too computationally 

intensive to run enough number of times, we don’t obtain the statistical power necessary to 

find significant differences between the cells in a statistical experiment design. Second, if 

the interventions are not actually known ahead of time, we don’t even know how to create a 

statistical experiment. This can be the case, e.g., when the goal of doing the simulation is 

actually to find reasonable interventions for a hypothetical disaster scenario.
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New methodologies and new techniques are needed for the analysis of such complex 

simulations. Part of the problem is that large-scale multiagent simulations can generate 

much more data in each simulation run than goes into the simulation, i.e., we end up with 

more data than we started with. Sense-making in this regime is a challenge.

As a first step towards addressing these kinds of problems, we introduce the problem of 

simulation summarization. The goal of this problem is to come up with a summary 

description of a single large multiagent simulation run. The method we introduce is based on 

a deep theory of causal states in stochastic processes (see Section 3). It is simple to 

implement, which is essential when applying to very large simulations, and is actually more 

meaningful the larger the simulation, since larger numbers of agents give more statistical 

power.

The rest of this paper is organized as follows. First we describe the simulation 

summarization problem and discuss some related work. Then we review the idea of causal 

states for extracting patterns from time series data. After that we describe how we adapt this 

idea to the analysis of the results of large-scale simulations. Then we present a toy example 

to illustrate the effectiveness of our method, before applying it to a large and complex 

simulation of an improvised nuclear detonation in an urban area. We show how our method 

finds a number of meaningful causal patterns in the simulation results, while also greatly 

compressing the results. We end with a discussion of applications and extensions of our 

method.

2 Problem description

What constitutes a good summary? This is a question that has been studied in domains such 

as natural language processing where the goal is to summarize a document or a corpus [16, 

17], but, as far as we know, is entirely novel for multiagent simulations.

Our perspective on summarizing a multiagent simulation is that the summary representation 

should capture the causally-relevant states of the simulation. We use the phrase “causally-

relevant” instead of causal to side-step the well-known problems with finding causality. 

There are many efforts aimed at establishing (various forms of) causality in data [21, 11, 13, 

12, e.g.]. Our goal here is not to establish causality, but to compress the simulation results 

while retaining meaningful states. The intuition is that finding causally-relevant states of the 

simulation is the most meaningful way to compress it.

In line with this intuition, we adapt the approach of “causal states” that has been developed 

over the last several years, as reviewed in the next section. By “causally-relevant”, in this 

context, we mean agent states that are maximally informative about outcomes of interest.

Even in simulation scenarios where the set of interventions or cases to study is not known a 
priori, i.e., simulations which are intended to be exploratory in nature, there is a set of 

outcomes we care about. For instance, in a disaster simulation we explore in sections 6 and 

7, the outcome of interest is the health of the agents. Causally-relevant states in this 

simulation are all the states which have a measurable impact on agent health, even if the 

impact is delayed. For example in this simulation, being exposed to radiation has an impact 
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on health state only after several hours have passed. The summary should be able to reveal 

that it is the exposure to radiation that is the causally-relevant state, not the actual change in 

the agent’s health state (since that follows deterministically once exposure has happened).

Next we describe the formalism of causal states which is more broadly applicable to 

stochastic processes before turning to our approach for simulation summarization.

3 Causal states

Crutchfield and others have developed the theory of minimal causal representations of 

stochastic processes, termed computational mechanics [7, 18]. We briefly review the 

concepts here before describing how we have adapted them for the summarization problem.

Consider a stochastic process as a sequence of random variables Xt, drawn from a discrete 

alphabet, . We will write X← to denote the past of the sequence, i.e., the sequence X−∞ 
… Xt−2Xt−1Xt, and X⃗ to denote the future of the sequence, i.e., the sequence Xt+1Xt+2 … 

X∞, following [6, 8].

The mutual information between the past and the future of the sequence is termed its excess 

entropy:

(1)

This quantifies the amount of information from the past of the process that determines its 

future. For example, E = 0 would mean that the future of the process is independent of the 

past.

Crutchfield and Young [7] suggested a simple method for modeling a stochastic process that 

captures the information being communicated from X← to X⃗: group all the histories that 

predict the same future. This gives rise to a state machine which they call an ε-machine, 

defined in [8]:

(2)

In other words, the states of an ε-machine correspond to sets of histories that are equivalent 

in terms of the probability distributions they assign to the future of the process. ε-machines 

have a number of interesting and useful properties. For instance, causal states are Markovian 

because X← is statistically independent of X⃗ given the current causal state of the process. 

They are also optimally predictive because they capture all of the information in X← that is 

predictive of X⃗.

Shalizi and Shalizi have presented an algorithm for learning ε-machines from time series 

data, known as Causal State Splitting Reconstruction (CSSR) [19]. CSSR learns a function, 

η, that is next-step sufficient and that can be calculated recursively. A next-step sufficient 

function is a function that can predict the next step of the time series optimally. If it is also 
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recursively calculable, then it can be used to predict the entire future of the time series 

optimally.

CSSR learns an ε-machine as a Hidden Markov Model (HMM) in an incremental fashion. 

The HMM is initialized with just one state and, as the algorithm processes the time series, 

more states are added when a statistical test shows that the current set of states is insufficient 

for capturing all the information in the past of the time series.

Informally, the CSSR algorithm works as follows. It tests the distribution over the next 

symbol given increasingly longer past sequences. Let L be the length of the past sequences 

considered so far, and let Σ be the set of causal states estimated so far.

In the next step, CSSR looks at sequences of length L + 1. If a sequence of the form axL, 

where xL is a sequence of length L and a ∈  is a symbol, belongs to the same causal state 

as xL, then we would have [19],

(3)

where Ŝ is the current estimate of the causal state to which xL belongs. This hypothesis can 

be tested using a statistical test such as the Kolmogorov-Smirnov (KS) test. If the test shows 

that the LHS and RHS of equation 3 are statistically significantly different distributions, then 

CSSR tries to match the sequence axL with all the other causal states estimated so far. If 

Pr(Xt|axL) turns out to be significantly different in all cases, a new causal state is created and 

axL is assigned to it. This process is carried out up to some length Lmax.

After this, transient states are removed and the state machine is made deterministic by 

splitting states as necessary. Details of this step can be found in [19] but are not relevant for 

the present work.

4 Our approach

Our approach adapts the causal state formalism by treating the trajectory of each agent in the 

simulation as an instance of the same stochastic process.

In our approach, a multiagent simulation consists of a set of agents, each of which is defined 

by a k-dimensional state vector x(t) = [x1(t), x2(t), … xk(t)]⊤, which evolves over time. Let 

di be the number of possible values xi can take. The simulation proceeds in discrete time 

steps from t = 0 to t = T. Let the number of agents be denoted by N.

We use the term state in a broad sense. It can include, e.g., the action taken by the agent at 

each time step. It can also include historical aggregations of variables, e.g., it might include 

a variable that tracks if an agent has ever done a particular action, or the cumulative value of 

some variable so far.

Our goal is not to learn an ε-machine for a simulation, for two reasons. First, the set of states 

discovered (through CSSR, e.g.), can be hard to interpret. Second, in general, we don’t need 
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to predict every step of the simulation. We only care about particular outcomes and the state 

transitions that are causally-relevant to those outcomes.

Thus, our goal is to compress the trajectory of each agent through state space to a small 

number of important states that have a significant impact on the outcomes we care about. Let 

the outcome variable for agent i be denoted by yi. We assume that yi is an instance of a 

random variable Y. Our algorithm for summarization proceeds as follows.

We divide the agent population into a set of clusters, C(t) = {C1(t)∪C2(t) ∪ … Cm(t)} at 

each time step. Initially, all the agents are grouped into just one cluster, i.e., m = 1 at t = 0. 

At each subsequent time step, the state of each agent changes because at least one of x1, … 

xk changes. The number of ways in which x can change is d = d1 × d2 × … × dk.

Consider an arbitrary cluster of agents, Ci(t). At time step t+1, it can split into up to d 
groups, based on how each agent’s state changes. However, not all of these changes may 

have a significant impact on the outcome. We treat each group derived from Ci(t) as a 

candidate cluster, denoted by CCi,j(t + 1), where j ∈ 1 … d. At each step, we compare Pr(Y |
Ci(t)) with Pr(Y |CCi,j(t+1) using the Kolmogorov-Smirnov (KS) test. Here Pr(Y |Ci(t)) is 

the probability distribution over the final outcomes for all agents that belong to cluster Ci(t) 
at time step t. If Y is a discrete variable, Pr(Y = y|Ci(t)) can be computed as a naive 

maximum likelihood estimate, i.e., ratio of the number of agents who belong to cluster Ci(t) 
at time step t and have final outcome Y = y to the number of agents who belong to cluster 

Ci(t) at time step t. Similarly, Pr(Y |CCi,j(t+1)) is the probability distribution over the final 

outcome for all agents who belong to candidate cluster CCi,j(t+1) at time step t + 1 which is 

a subset of agents who belong to cluster Ci(t) at time step t and can be computed in a similar 

fashion. Our null hypothesis (analogous to equation 3) is,

(4)

We also introduce a parameter δ, which is a threshold on the “effect size”, which we 

measure as the KullbackLeibler divergence (KL-divergence) between Pr(Y |Ci(t)) and Pr(Y |
CCi,j(t+1)). If the null hypothesis is rejected at a level α (say 0.001) and DKL(Pr(Y |Ci(t))||
Pr(Y |CCi,j(t + 1))) > δ, then candidate cluster CCi,j(t + 1) is accepted as a new cluster at 

time step t + 1. The need for the effect size threshold is explained further below. If none of 

the candidate clusters at time step t+1 are accepted, then Ci(t) is added to the set of clusters 

for time step t + 1.

Thus, the entire simulation is decomposed into a tree structure of agent clusters. 

Furthermore, each cluster splits only when the corresponding state change is informative 

about the final outcome of concern.

The trajectory of each agent traces a path through this tree structure. We compress the 

trajectory by retaining only those time steps at which the cluster to which the agent belongs 

splits off from its parent cluster. The parameter δ allows us to control how many new 

clusters are formed at each step, and consequently, how much compression of trajectories we 
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achieve. Setting δ to a high value will retain only the clusters which have a large difference 

in outcomes from their parent clusters. The summarization algorithm is presented using 

pseudo-code in algorithm 1.

Algorithm 1

Simulation Summarization.

The set of compressed agent trajectories ultimately constitutes our summary representation 

of the simulation. It can be queried for various quantities of interest, as will be illustrated in 

the experiments below. We next present a toy example to illustrate the working of the 

algorithm, before turning to a large-scale complex disaster scenario simulation.

5 Experiments with a toy domain

Here, we present results from a toy example where a set of agents do a random walk on a 5-

by-5 grid. There are 100K agents and all of them start at the same location (2, 2) on the grid. 

At each time step, they move to a neighboring cell (including staying at the same cell) at 

random. An agent gets a reward when it reaches cell (5, 5). For simplicity, once an agent 

gets a reward, it does not move.

The condition under which agents obtain reward is unknown to them. Please note that we are 

not actually learning a policy to maximize the reward. It is just a simple process to illustrate 

the functioning of our algorithm and to see if it can identify the states that provide 

information about their chances of getting a reward.

We run this simulation for 30 iterations and about 26500 agents got rewards at the end of the 

simulation. We tried two different values of KL-divergence threshold, δ: 0.3 and 0.5.

Figures 1a, 1b, and 1c show a sample trajectory and corresponding compressed trajectories 

for δ values 0.3 and 0.5, respectively. The high value of δ (0.5) can only identify states that 

cause sudden changes in probability distribution over final outcomes and hence identifies 

cell (5, 5) as the causal state. While the lower δ (0.3) can detect gradual changes and hence 

identifies neighbors of cell (5, 5) also as once an agent reaches cell (5, 4), it is easy to reach 

cell (5, 5).

Figure 2 shows the number of clusters vs. iteration for different threshold values. As small 

values of δ mean identifying gradual changes, the number of clusters are more. As δ 
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increases the number of clusters decreases. Please note that the minimum size of a cluster is 

constrained to be 30 (so that the number of samples in a cluster are enough for performing a 

statistical test) and this poses a limit on splitting and hence identifying states that do not 

appear enough number of times.

Overall compression defined as ratio of average length of compressed trajectory to length of 

uncompressed trajectory is 0.051 and 0.0333 for δ=0.3 and δ=0.5, respectively. As expected, 

higher value of δ leads to higher compression. It also captures the most relevant state (5, 5) 

(Figure 3). Figure 3 shows the number of times a given cell appears in a compressed 

trajectory for δ=0.5. Other cells appear in compressed trajectories only in later iterations. 

These are the cells from which an agent can not reach cell (5, 5) by iteration 30. So the 

values of state variables (cell here) along with the reward probability give information about 

state-reward structure.

6 Large-scale disaster simulation

Now, we turn to a very complex multiagent simulation of a human-initiated disaster 

scenario. Our simulation consists of a large, detailed “synthetic population” [3] of agents, 

and also includes detailed infrastructure models. We briefly summarize this simulation 

below before describing our experiments with summarizing the simulation results and the 

causally-relevant states our algorithm discovers.

6.1 Scenario

The scenario is detonation of 10kT hypothetical improvised nuclear device in Washington 

DC. The fallout cloud spreads mainly eastward and east-by-northeastward. The area that is 

studied is called the detailed study area (DSA; Figure 4) which is the area under the largest 

thermal effects polygon (circle) and the area under the widest boundary of the fallout 

contours within DC region county boundaries (which consists of DC plus surrounding 

counties from Virginia and Maryland).

The blast causes significant damage to roads, buildings, power system, and cell phone 

communication system. The full simulation uses detailed data about each of these 

infrastructures to create models of phone call and text message capacity [5], altered 

movement patterns due to road damage [1], injuries due to rubble and debris, and levels of 

radiation protection in damaged buildings.

6.2 Agent Design and Behavior

The scenario affects all people present in DSA at the time of detonation which includes area 

residents, transients (tourists and business travelers), and dorm students. Health and behavior 

of an individual depends upon its demographics as well as its location in the immediate 

aftermath of the event. This information is obtained from synthetic population [2]. Synthetic 

population is an agent-based representation of a population of a region along with their 

demographic (e.g, age, income, family structure) and activity related information (e.g. type 

of activity, location, start time). Detailed description about creating residents, transients, and 

dorm students can be found in [2, 15, 14]. There are 730,833 people present in DSA at the 

time of detonation which is same as the number of agents in the simulation.
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Apart from demographics and location (as obtained from synthetic population), agents are 

defined by a number of other variables like health (modeled on a 0 to 7 range where 0 is 

dead and 7 corresponds to full health), behavior (described in the next paragraph), whether 

the agent is out of the affected area, whether the agent is the group leader, whether the agent 

has received emergency broadcast (EBR), the agent’s exposure to radiation, etc.

Each agent keeps track of knowledge about family members’ health states which could be 

unknown, known to be healthy, or known to be injured. This knowledge is updated whenever 

it makes a successful call to a family member or meets them in person.

Follow-the-leader behavior is also modeled, i.e., once family members encounter each other, 

they move together from there on. One of them becomes the group leader and others follow 

him. This kind of behavior is well-documented in emergency situations. Similarly when a 

person is rescued by someone he travels with him until he reaches a hospital or meets his 

family members.

Agent behavior is conceptually based on the formalism of decentralized semi-Markov 

decision process (Dec-SMDP) with communication [10] using the framework of options 

[20]. Here, high level behaviors are modeled as options, which are policies with initiation 

and termination conditions. Agents can choose among six options: household reconstitution 

(HRO), evacuation, shelter-seeking (Shelter), healthcare-seeking (HC-seeking), panic, and 

aid & assist. High level behavior options correspond to low level action plans which model 

their dependency with infrastructural systems. These actions are: call, text or move. Whom 

to call or text and where to move depends upon the current behavior option, e.g., in 

household reconstitution option, a person tries to move towards a family member and/or call 

family members while in healthcare-seeking option, a person tries call 911 or move towards 

a hospital. Details of the behavior model can be found in [14].

7 Experiments

Our goal here is to generate a summary for the disaster simulation. Agents and locations that 

they visit are represented by about 40 variables which could take binary, categorical or 

continuous values, leading to a very large state space. Hence, here we focus on subsets of 

these variables for generating summary.

We use data for the first 30 iterations and use the probability distribution over the final 

health state (in iteration 100, 48 hours after the blast) to identify causal states that affect the 

final health state.

7.1 Effect of behavior and emergency broadcast

In first experiment, we only use two variables to split clusters: if received emergency 

broadcast (EBR, 1 if received and 0 otherwise) and behavior. Here, apart from the six 

behavior options mentioned in the previous section, behavior variable also includes two 

categories indicating if an agent is in healthcare location (in HC loc) and if it is out of area.

We try three different values of δ: 1, 2, and 5. Figure 5 shows number of clusters for 

different values of threshold. As higher values of δ can only identify sudden changes in the 
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outcomes, δ=5 only identifies changes when agents die. We compare the causal states 

identified by other two threshold values next.

We save the compressed trajectories in a database table along with the expected value of 

final health state. This table can be used to query any subpopulation for the outcome of 

interest. For example, Identify transitions by iteration 6 (within first hour) where the 

expected final health state is improved, order by expected improvement in descending order. 

Top results for δ=2 and δ=1 are as shown in Tables 1 and 2, respectively.

Here, δ=2 shows that being at healthcare location and out of area are important for 

improving health outcomes. As expected, δ=1 shows more gradual transitions and shows 

that evacuation is also important from health perspective. It is evacuation behavior that leads 

to out of area.

7.2 Effects of other variables

Here, apart from EBR and behavior, we also include current health state, radiation exposure 

level (with four levels: low, medium, high, and very high), if received treatment, and 

distance from ground zero (with three levels (based on damage zones as described in [4]): 

less than 0.6 miles, between 0.6 and 1 mile, and greater than 1 mile). We set δ=5 and 

evaluate four queries as below:

Query 1—Identify top 10 transitions by iteration 10 where current health state remains 

same (so improvement is not due to current health state) but the expected fianl health state is 

improved, order by expected improvement in descending order. Top results are as shown in 

Table 3.

Results show that for agents who are within 1 mile of ground zero, are in health state 4 or 5, 

reaching healthcare location by iteration 10 helps improving health, even if the exposure 

level is high. Here, the value of treatment variable is zero which means that these agents 

have reached healthcare location but have not yet received treatment. This suggests that 

atleast initially (within first 3 hours) there are not long queues at these healthcare locations 

and so once an agent reaches healthcare location, it is quite likely that it will receive 

treatment which leads to an improved health. For agents in healthstate 5 to 7, who are far 

from ground zero though with medium exposure, getting out of area helps. Also, for agents 

in health state 7, who are far from ground zero, with medium exposure, and panicing, 

receiving EBR helps (as it provides information about the event and recommends 

sheltering).

Please note that the algorithm only finds states that affect the final outcomes significantly. 

Interpretation of the results requires some domain knowledge. For example, it is our 

knowledge that suggest that reaching healthcare location helps even if the exposure to 

radiation is high, not receiving high radiation exposure at healthcare location.

Next we identify states that reduce the expected health state by iteration 10.
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Query 2—Identify top 10 transitions by iteration 10 where current health state remains 

same (so reduction is not due to current health state) but the expected final health state is 

reduced, order by expected reduction in descending order. Top results are as shown in Table 

4.

For agents who are currently in a full health, close to ground zero, and have high exposure 

level, doing household reconstitution (HRO) reduces their expected outcome. Even if the 

current health state is good, this accounts for the delayed effect of radiation. For people who 

are already in low health (health state 3), panicing or seeking healthcare (which makes them 

travel to healthcare location and exposed to more radiation) deteriorates expected health 

state, even if far from ground zero.

For people who are close to ground zero (within 0.6 mile from ground zero which is a severe 

damage zone [4]), the likelihood of survival is very low while for people who are further 

than 1 mile (in light damage zone [4]), though they may have minor injuries, they can 

survive by themselves. However, survival is more complicated between 0.6 to 1 mile 

(defined as moderate damage zone) and hence next we run queries to see what people who 

started between 0.6 to 1 mile did that improved or reduced their expected final health.

Query 3—For people who started between 0.6 and 1 mile, identify top 10 transitions where 

current health state remains same and current distance is less than 1 mile (so improvement is 

not due to current health state or current distance) but the expected final health state is 

improved, order by expected improvement in descending order. Top results are as shown in 

Table 5.

Results show that for people who started between 0.6 and 1 mile, reaching healthcare 

location early on (within first hour) helps improving expected final health, even if 

moderately injured (health state 4) and have high radiation exposure. For people with minor 

injury (health state 5) and with medium exposure to radiation, sheltering later on helps. 

Please not that eventhough our algorithm suggests so, it is not just sheltering in these 

particular iterations (14, 23, 24, 25 or 29) that helps but it is sheltering for a long period 

prior to and upto these iterations which improves expected health. This is because currently 

our algorithm does not detect effects of a sequence of particular actions (e.g., sheltering for a 

long period of time) and we would like to adapt it in future for detecting effects of sequential 

actions.

Query 4—For people who started between 0.6 and 1 mile, identify top 10 transitions where 

current health state remains same (so reduction is not due to current health state) but the 

expected final health state is reduced, order by expected reduction in descending order. Top 

results are as shown in Table 6.

For people who started between 0.6 and 1 mile, who are currently in full health (health state 

7) and with medium radiation exposure, household reconstitution and aid & assist reduces 

their expected final health. While for people who are already in low health (health state 3), 

though with low radiation exposure, panicing or seeking healthcare reduces health. This is 
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because these behaviors make them go outside looking for information, family members, 

other injured people, or nearest healthcare locations, exposing them to further radiation.

We see, in the above queries, that a number of meaningful states have been discovered by 

the summary.

8 Conclusion

As large-scale and complex simulations are becoming common, there is a need for methods 

to effectively summarize results from a simulation run. Here, we present a simulation 

summarization problem as a problem of extracting causal states (including actions) from 

agents’ trajectories. We present an algorithm that identifies states that change the probability 

distributions over final outcomes. Such causal states compress agent trajectories in such a 

way that only states that change the distribution of final outcomes significantly are extracted.

These extracted trajectories can be stored in a database and queried. A threshold on effect 

size is used to specify what change is considered significant. Higher value of this threshold 

identify states that cause sudden changes in final outcomes while smaller values can identify 

gradual changes.

We present a toy example to show the effectiveness of our algorithm and then apply it to a 

large-scale simulation of the aftermath of a disaster in a major urban area. It identifies being 

in a healthcare location, sheltering, evacuation, and being out of the area as states that 

improve health outcomes while panic, household reconstitution, and healthcare-seeking as 

states (behaviors) that worsen health.

There are several directions for future work. Summary representations can be used to 

compare simulations with different parameter settings to identify if parameter changes result 

in changes in causal mechanisms. Summary representations can potentially also be used for 

anomaly detection.
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Fig. 1. 
A sample trajectory at various levels of compression.
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Fig. 2. 
Number of clusters vs. iteration
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Fig. 3. 
Frequency distribution for cells in compressed trajectories.
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Fig. 4. 
The detailed study area (DSA).
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Fig. 5. 
Number of clusters when considering EBR and behavior only.
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Table 1

Effect of EBR and behavior, δ =2

Rank Iteration EBR Behavior

1 2 0 out of area

2 3 0 out of area

3 5 0 in HC loc

4 6 0 in HC loc
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Table 2

Effect of EBR and behavior, δ =1

Rank Iteration EBR Behavior

1 2 0 out of area

2 3 0 out of area

3 6 0 in HC loc

4 4 1 out of area

5 4 1 in HC loc

6 3 0 evacuation

7 4 0 out of area

8 2 0 evacuation

9 5 0 in HC loc
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