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Abstract

Matrix completion has attracted significant recent attention in many fields including statistics,
applied mathematics and electrical engineering. Current literature on matrix completion focuses
primarily on independent sampling models under which the individual observed entries are
sampled independently. Motivated by applications in genomic data integration, we propose a new
framework of structured matrix completion (SMC) to treat structured missingness by design.
Specifically, our proposed method aims at efficient matrix recovery when a subset of the rows and
columns of an approximately low-rank matrix are observed. We provide theoretical justification
for the proposed SMC method and derive lower bound for the estimation errors, which together
establish the optimal rate of recovery over certain classes of approximately low-rank matrices.
Simulation studies show that the method performs well in finite sample under a variety of
configurations. The method is applied to integrate several ovarian cancer genomic studies with
different extent of genomic measurements, which enables us to construct more accurate prediction
rules for ovarian cancer survival.
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1 Introduction

Motivated by an array of applications, matrix completion has attracted significant recent
attention in different fields including statistics, applied mathematics and electrical
engineering. The central goal of matrix completion is to recover a high-dimensional low-
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rank matrix based on a subset of its entries. Applications include recommender systems
(Koren et al., 2009), genomics (Chi et al., 2013), multi-task learning (Argyriou et al., 2008),
sensor localization (Biswas et al., 2006; Singer and Cucuringu, 2010), and computer vision
(Chen and Suter, 2004; Tomasi and Kanade, 1992), among many others.

Matrix completion has been well studied under the uniform sampling model, where
observed entries are assumed to be sampled uniformly at random. The best known approach
is perhaps the constrained nuclear norm minimization (NNM), which has been shown to
yield near-optimal results when the sampling distribution of the observed entries is uniform
(Candés and Recht, 2009; Candés and Tao, 2010; Gross, 2011; Recht, 2011; Candes and
Plan, 2011). For estimating approximately low-rank matrices from uniformly sampled noisy
observations, several penalized or constrained NNM estimators, which are based on the
same principle as the well-known Lasso and Dantzig selector for sparse signal recovery,
were proposed and analyzed (Keshavan et al., 2010; Mazumder et al., 2010; Koltchinskii,
2011; Koltchinskii et al., 2011; Rohde et al., 2011). In many applications, the entries are
sampled independently but not uniformly. In such a setting, Salakhutdinov and Srebro
(2010) showed that the standard NNM methods do not perform well, and proposed a
weighted NNM method, which depends on the true sampling distribution. In the case of
unknown sampling distribution, Foygel et al. (2011) introduced an empirically-weighted
NNM method. Cai and Zhou (2013) studied a max-norm constrained minimization method
for the recovery of a low-rank matrix based on the noisy observations under the non-uniform
sampling model. It was shown that the max-norm constrained least squares estimator is rate-
optimal under the Frobenius norm loss and yields a more stable approximate recovery
guarantee with respect to the sampling distributions.

The focus of matrix completion has so far been on the recovery of a low-rank matrix based
on independently sampled entries. Motivated by applications in genomic data integration, we
introduce in this paper a new framework of matrix completion called structured matrix
completion (SMC), where a subset of the rows and a subset of the columns of an
approximately low-rank matrix are observed and the goal is to reconstruct the whole matrix
based on the observed rows and columns. We first discuss the genomic data integration
problem before introducing the SMC model.

1.1 Genomic Data Integration

When analyzing genome-wide studies (GWS) of association, expression profiling or
methylation, ensuring adequate power of the analysis is one of the most crucial goals due to
the high dimensionality of the genomic markers under consideration. Because of cost
constraints, GWS typically have small to moderate sample sizes and hence limited power.
One approach to increase the power is to integrate information from multiple GWS of the
same phenotype. However, some practical complications may hamper the feasibility of such
integrative analysis. Different GWS often involve different platforms with distinct genomic
coverage. For example, whole genome next generation sequencing (NGS) studies would
provide mutation information on all loci while older technologies for genome-wide
association studies (GWAS) would only provide information on a small subset of loci. In
some settings, certain studies may provide a wider range of genomic data than others. For
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example, one study may provide extensive genomic measurements including gene
expression, mMiRNA and DNA methylation while other studies may only measure gene
expression.

To perform integrative analysis of studies with different extent of genomic measurements,
the naive complete observation only approach may suffer from low power. For the GWAS
setting with a small fraction of loci missing, many imputation methods have been proposed
in recent years to improve the power of the studies. Examples of useful methods include
haplotype reconstruction, A-nearest neighbor, regression and singular value decomposition
methods (Scheet and Stephens, 2006; Li and Abecasis, 2006; Browning and Browning,
2009; Troyanskaya et al., 2001; Kim et al., 2005; Wang et al., 2006). Many of the haplotype
phasing methods are considered to be highly effective in recovering missing genotype
information (Yu and Schaid, 2007). These methods, while useful, are often computationally
intensive. In addition, when one study has a much denser coverage than the other, the
fraction of missingness could be high and an exceedingly large number of observation would
need to be imputed. It is unclear whether it is statistically or computationally feasible to
extend these methods to such settings. Moreover, haplotype based methods cannot be
extended to incorporate other types of genomic data such as gene expression and miRNA
data.

When integrating multiple studies with different extent of genomic measurements, the
observed data can be viewed as complete rows and columns of a large matrix A and the
missing components can be arranged as a submatrix of A. As such, the missingness in A is
structured by design. In this paper, we propose a novel SMC method for imputing the
missing submatrix of A. As shown in Section 5, by imputing the missing miRNA
measurements and constructing prediction rules based on the imputed data, it is possible to
significantly improve the prediction performance.

1.2 Structured Matrix Completion Model

Motivated by the applications mentioned above, this paper considers SMC where a subset of
rows and columns are observed. Specifically, we observe m < p; rows and m, < p, columns
of a matrix A € RP1*2 and the goal is to recover the whole matrix. Since the singular values
are invariant under row/column permutations, it can be assumed without loss of generality
that we observe the first /7 rows and 7, columns of A which can be written in a block
form:

ma  p2—ma
A=| An  Ap P
Ao Ax 1)

mi

where Aq1, A1, and Ay are observed and the goal is to recover the missing block A. See
Figure 1(a) in Section 2 for a graphical display of the data. Clearly there is no way to
recover Ay, if Ais an arbitrary matrix. However, in many applications such as genomic data
integration discussed earlier, A is approximately low-rank, which makes it possible to
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recover Ay, with accuracy. In this paper, we introduce a method based on the singular value
decomposition (SVD) for the recovery of Ay, when A is approximately low-rank.

It is important to note that the observations here are much more “structured” comparing to
the previous settings of matrix completion. As the observed entries are in full rows or full
columns, the existing methods based on NNM are not suitable. As mentioned earlier,
constrained NNM methods have been widely used in matrix completion problems based on
independently observed entries. However, for the problem considered in the present paper,
these methods do not utilize the structure of the observations and do not guarantee precise
recovery even for exactly low-rank matrix A (See Remark 1 in Section 2). Numerical results
in Section 4 show that NNM methods do not perform well in SMC.

In this paper we propose a new SMC method that can be easily implemented by a fast
algorithm which only involves basic matrix operations and the SVD. The main idea of our
recovery procedure is based on the Schur Complement. In the ideal case when A is exactly

low rank, the Schur complement of the missing block, AQrAQlAhAn, is zero and thus
Asy A{l Ao Can be used to recover Ay, exactly. When A is approximately low rank,

Ao AL A5 cannot be used directly to estimate Ay,. For this case, we transform the observed
blocks using SVD; remove some unimportant rows and columns based on thresholding
rules; and subsequently apply a similar procedure to recover A,.

Both its theoretical and numerical properties are studied. It is shown that the estimator
recovers low-rank matrices accurately and is robust against small perturbations. A lower
bound result shows that the estimator is rate optimal for a class of approximately low-rank
matrices. Although it is required for the theoretical analysis that there is a significant gap
between the singular values of the true low-rank matrix and those of the perturbation,
simulation results indicate that this gap is not really necessary in practice and the estimator
recovers A accurately whenever the singular values of A decay sufficiently fast.

1.3 Organization of the Paper

The rest of the paper is organized as follows. In Section 2, we introduce in detail the
proposed SMC methods when A is exactly or approximately low-rank. The theoretical
properties of the estimators are analyzed in Section 3. Both upper and lower bounds for the
recovery accuracy under the Schatten-g norm loss are established. Simulation results are
shown in Section 4 to investigate the numerical performance of the proposed methods. A
real data application to genomic data integration is given in Section 5. Section 6 discusses a
few practical issues related to real data applications. For reasons of space, the proofs of the
main results and additional simulation results are given in the supplement (Cai et al., 2014).
Some key technical tools used in the proofs of the main theorems are also developed and
proved in the supplement.
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2 Structured Matrix Completion: Methodology

In this section, we propose procedures to recover the submatrix Ay, based on the observed
blocks Aq1, A1p, and Ayq. We begin with basic notation and definitions that will be used in
the rest of the paper.

For a matrix U, we use Uq q,] to represent its sub-matrix with row indices Q; and column
indices Q,. We also use the Matlab syntax to represent index sets. Specifically for integers a
< b “a b’ represents {a a+ 1, -, b}; and “:” alone represents the entire index set.
Therefore, U]: 1.4 stands for the first 7columns of Uwhile Uy +1):p,;] Stands for the {rm
+1, ..., ;3 rows of U. For the matrix A given in (1), we use the notation A.; and A;. to

denote[ A/, , AQTl}T and [Aq1, A1o], respectively. For a matrix B€ R™”, et

B=UY V'=3" 0i(B)uiv; bethe SVD, where X = diag{c1(B), o2(B), ...} with oy(B) =
o»(B) = -+ 2 0 being the singular values of Bin decreasing order. The smallest singular value
Omin(m,n)» Which will be denoted by omin(58), plays an important role in our analysis. We also

. L T
define Bmax(r)zzzzlgi(B)uiv; and B- max(r):B_Bmax(r):Z@Tﬂai(B)“i“i .Forls<
g < oo, the Schatten-g norm [|Bl|4 is defined to be the vector g-norm of the singular values of

1/
Bie.|Bll,=3_ ol (B)) !, Three special cases are of particular interest: when g =1, ||B|;
=X, o;(B) is the nuclear (or trace) norm of Band will be denoted as || Bl|x; when g= 2,

1B1l2= \/ Zi,jBiQJ is the Frobenius norm of Band will be denoted as ||B]| £ when g= oo, ||
Bl = o1(B) is the spectral norm of Bthat we simply denote as || 8)|. For any matrix U €
R we use Py = U(UTU)T UT € RPP to denote the projection operator onto the column
space of U. Throughout, we assume that A is aoproximately rank rin that for some integer 0
< r<min(my, ny), there is a significant gap between o/ A) and o1(A) and the tail

1/q
1A maxol,= 2~ 1, 74(4) " is small. The gap assumption enables us to provide a
theoretical upper bound on the accuracy of the estimator, while it is not necessary in practice
(see Section 4 for more details).

2.1 Exact Low-rank Matrix Recovery

We begin with the relatively easy case where A is exactly of rank r. In this case, a simple
analysis indicates that A can be perfectly recovered as shown in the following proposition.

Proposition 1—Suppose A is of rank 7, the SVD of Ay is Ayq = UZ VT, where U € RPL*,
Y € R™ and VE R If

All

rank([ A;;  Aje ])=rank <[ Aoy }) =rank(A)=r,

then rank(A11) = rand Ay, is exactly given by
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-1
App=As (A1) A=A V(Y)) U Ap. @)
Remark 1—Under the same conditions as Proposition 1, the NNM

P Ay Ap
Agp=arg min|| A B |
B 21 . @)

fails to guarantee the exact recovery of Ay,. Consider the case where Aisa p; X p» matrix
with all entries being 1. Suppose we observe arbitrary /m rows and m, columns, the NNM

would yield Ay, € R (PL=m)*(22=m) wjith all entries being (1 A /Mﬁ) (See
Lemma 4 in the Supplement). Hence when mym, < (p1 — my)(p» — ), i.e., when the size of
the observed blocks are much smaller than that of A, the NNM fails to recover exactly the

missing block Aj,. See also the numerical comparison in Section 4. The NNM (3) also fails

to recover Ay, with high probability in a random matrix setting where A—pB, B with B; €
RP*"and B, € RP2* being i.i.d. standard Gaussian matrices. See Lemma 3 in the
Supplement for further details. In addition to (3), other variations of NNM have been
proposed in the literature, including penalized NNM (Toh and Yun, 2010; Mazumder et al.,
2010),

~PN . 1 .
A" =arg min {5 Z (Zik”jk.—Aik’jk)Z—i-tZ|*} ;
7 (ik.7K)E (4)

and constrained NNM with relaxation (Cai et al., 2010),

Aiksjk:‘ < tfor (ix, jr) € 2},

~CN
A =argmin {||Z||.:|Z;, i, —
gZ {” ||*| k:Jk (5)

where Q = {(/x J): Ajyji Observed, 1 < ig< py, 1 < jx < po} and is the tunning parameter.
However, these NNM methods may not be suitable for SMC especially when only a small
number of rows and columns are observed. In particular, when m < py, m, K pp, Ais well
spread in each block Ai1, A1, Az1, Ao, We have ||[[A11 Aa]llx K ||All, [Ar2]* K [JA||*.
Thus,

A A Ay
< A <
| |: Ay O :| ”* <l |: Asy } ||*+H[ 12] . l

All A12 H
Ao A '
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In the other words, imputing Ay, with all zero yields a much smaller nuclear norm than
imputing with the true A,, and hence NNM methods would generally fail to recover Ay
under such settings.

Proposition 1 shows that, when A is exactly low-rank, A, can be recovered precisely by
A1(A11)T Ara. Unfortunately, this result heavily relies on the exactly low-rank assumption
that cannot be directly used for approximately low-rank matrices. In fact, even with a small
perturbation to A, the inverse of A;; makes the formula Ay;(A11)T A1 unstable, which may
lead to the failure of recovery. In practice, A is often not exactly low rank but approximately
low rank. Thus for the rest of the paper, we focus on the latter setting.

2.2 Approximate Low-rank Matrix Recovery

Let A= Uz VT be the SVD of an approximately low rank matrix A and partition U €
RAPI*PL V& RP2*P2 and 3. € RP*P2 into blocks as

[ r p1—r [ T p2—T [ T p2—r -‘
U=| Un U plﬂ—lvlnl V=1 Vi Vi p;:linz D= X 0 plr—r
U U Var Voo 0 >

(6)

Then A can be decomposed as A = Amax() + A-max() Where Amax(p is of rank rwith the
largest rsingular values of A and A-max(p is general but with small singular values. Then

ma p2—m2
Amax(r):UﬂZlVJ: Un¥iVii UndiVay pL—mm1
UnYiVii UnSiVay

" ) and A_ n]ax(r):U'QZQVo—Zr'

()

Here and in the sequel, we use the notation U.xand Uy to denote [/} , UQTk}T and [Ug,
Ugol, respectively. Thus, Amax(p can be viewed as a rank-rapproximation to A and
obviously

~1
U2121V£:{U21ZlVJ}{UnZIVJ} {U1121V£}.

We will use the observed A;;, A1 and A, to obtain estimates of L., Vi1 and Z; and

subsequently recover Ay, using an estimated U2121V£.
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When ris known, i.e., we know where the gap is located in the singular values of A, a
simple procedure can be implemented to estimate Ay as described in Algorithm 1 below by
estimating U.; and V41 using the principal components of A.; and Aj..

Algorithm 1

Algorithm for Structured Matrix Completion with a given r

1 Input Ay € R™M*M2, A, € R (P1=mixm2, 4, € RM2-m),
2 Calculate the SVD of A.; and A,. to obtain A.; = UVZO VDT, 4., = Az AT,
3 Suppose M, N are orthonormal basis of Uyq, V4;. We estimate the column space of Uy, and V44
72—y
by AJ*U[:.,I:T] ’ Nivv[:,lzr].
4 Finally we estimate A, as

~ ~ ~T ~ =1 ~T
Ay =AyNM A N) M A, (8)

However, Algorithm 1 has several major limitations. First, it relies on a given rwhich is
typically unknown in practice. Second, the algorithm need to calculate the matrix divisions,
which may cause serious precision issues when the matrix is near-singular or the rank ris
mis-specified. To overcome these difficulties, we propose another Algorithm which
essentially first estimates rwith 7and then apply Algorithm 1 to recover Ay,. Before
introducing the algorithm of recovery without knowing 7 it is helpful to illustrate the idea
with heat maps in Figures 1 and 2.

Our procedure has three steps.

1 First, we move the significant factors of A.; and A;. to the front by
rotating the columns of A.; and the rows of A;. based on the SVD,

Aq=UOY OyoT g @S @yer,

After the transformation, we have 211, Z12, 21,

Zn=UPTApVE Z2p=UPT Ay, Zy=AnVY,  Zyp=Anp.

Clearly A and Zhave the same singular values since the transformation is
orthogonal. As shown in Figure 1(b), the amplitudes of the columns of
Za=[2};, ZQTl]T and the rows of Z;. = [ 21, Z15] are decaying.

2. When A is exactly of rank 7, the {r+ 1, --, m}* rows and {r+ 1, -, mp}
columns of Zare zero. Due to the small perturbation term A_max(p, the
back columns of Z1 and rows of Z;. are small but non-zero. In order to
recover Amax(s, the best rank rapproximation to A, a natural idea is to
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1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

Caietal. Page 9

first delete these back rows of Z;. and columns of Z4, i.e. the {r+1, -,
m Y rows and {r+ 1, -, my}* columns of Z,

However, since ris unknown, it is unclear how many back rows and
columns should be removed. It will be helpful to have an estimate for , 7,
and then use 21 [ 1:4, £11,[1:7.1:4 and Z1o[1:7:] t0 recover Ay,. It will be
shown that a good choice of 7would satisfy that 231 [1:71:4 is non-singular

and || Za1,[1:7,1:4] Zﬂf[lzmzf] < T, where TRis some constant to be
specified later. Our final estimator for rwould be the largest 7that satisfies
this condition, which can be identified recursively from min(my, m) to 1
(See Figure 2).

3. Finally, similar to (2),A,, can be estimated by

A —1
A22=291[: 1:4) 211 [1:6, 1.7 D12, 11741 » ©)

The method we propose can be summarized as the following algorithm.

Algorithm 2

Algorithm of Structured Matrix Completion with unknown r

2 Input: Aj; € R, A’{; X<P27m2), qul 7m1)><m2. Thresholding level:
Tg (or To).

b Calculate the SVD A, = UDZO VDT, A, = (AT@ T.

c Calculate 2, € R™M*m, 7,, € RMX(P2-m), 7, € RPL-m)xm2
Zu=UPT A v Z,=U®T A, Zoy=An V.

d for s = min(my, m): —1: 1 do (Use iteration to find 7)

e Caltculate Dg s € RLI=M)*S (or D s € R™W2-m2)) by solving linear equation
system,

DR,s:ZQL[Hl:S]Zlil%[l:s,l:s] (Ol“ DC,S :Zﬂ%[l:s,lzs] Z12’[1¢57:])

—

if Z11 [1:51:4 1S not singular and ||Dr d| < Tz (or [|Dcdl < T¢) then

g 7= s, break from the loop;

h end if

i end for

j if (7is not valued) then 7= 0.
k end if

| Finally we calculate the estimate as

~ -1
A2 = Zo1 1 1AL R 1 FZI2 [, 1

It can also be seen from Algorithm 2 that the estimator 7is constructed based on either the
row thresholding rule ||Dr d| < 7 or the column thresholding rule || D¢ d| < 7. Discussions
on the choice between Dg sand D¢ sare given in the next section. Let us focus for now on
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the row thresholding based on D, . =Z21[: 1. Zﬂ%uzs,ts]- It is important to note that Z1. 1.
and Zy1 [1:11:4 approximate (k17 and Xy, respectively. The idea behind the proposed 7is
that when s> 7, 211 1.9 and 211 [1:5,1:4 are nearly singular and hence Dg s may either be
deemed singular or with unbounded norm. When s= 7, 211 [1:51:4 is non-singular with ||

Dp {| bounded by some constant, as we show in Theorem 2. Thus, we estimate 7as the
largest 7such that 211 [1:51:4 IS non-singular with || Dg d| < 7r.

3 Theoretical Analysis

In this section, we investigate the theoretical properties of the algorithms introduced in
Section 2. Upper bounds for the estimation errors of Algorithms 1 and 2 are presented in
Theorems 1 and 2, respectively, and the lower-bound results are given in Theorem 3. These
bounds together establish the optimal rate of recovery over certain classes of approximately
low-rank matrices. The choices of tuning parameters 7pand 7. are discussed in Corollaries
land2.

Theorem 1—Suppose A is given by the procedure of Algorithm 1. Assume

7r1(A) £ 50 (A) - GuinU10) - min(Vir), g

Then forany 1 < g< oo,

. 1 1
Ay Al < 3| A_ maxr (1+ ) <1+ )
H 22 22Hq || ax( )Hq Gmin(U11> Umin(vll) (11)

Remark 2—It is helpful to explain intuitively why Condition (10) is needed. When A is
approximately low-rank, the dominant low-rank component of A, Amax(p, serves as a good
approximation to A, while the residual A-pyax(p is “small”. The goal is to recover Amax(p
well. Among the three observed blocks, Aj; is the most important and it is necessary to have

Amax(p dominating A-max(p in Ap1. Note that A1y = Amax(n),[1:mm,1:mp] + A-max(d),[1:m1,1:mp]

UT(Amax(r),[lzml,l:mg])zar(Ullzl‘/1—{) > Umin(Ull)UT(A)Unlin(Vll)v
||A—max(7’),[1:m1,lzmz]||:HU12ZQVIEH < Orp1 (A)

We thus require Condition (10) in Theorem 1 for the theoretical analysis.

Theorem 1 gives an upper bound for the estimation accuracy of Algorithm 1 under the
assumption that there is a significant gap between o{A) and o+1(A) for some known r. It is
noteworthy that there are possibly multiple values of rthat satisfy Condition (10). In such a
case, the bound (11) applies to all such rand the largest ryields the strongest result.
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We now turn to Algorithm 2, where the knowledge of ris not assumed. Theorem 2 below
shows that for properly chosen 7por 7, Algorithm 2 can lead to accurate recovery of Ay,.

Theorem 2—Assume that there exists 7€ [1, min(s, /m»)] such that

1
< Zo, O . .
0r+1(A) >~ 407 (A) 0H11n<U11)0n11n(V11) (12)
Let 7pand 7. be two constants satisfying
1.36 1.36
> —— 4035 and T, > —————+0.35.
7 omin(Un1) 7 omin(Vi1)

Then for 1 < g< oo, Ay, given by Algorithm 2 satisfies

| A=A, < 65T, (mtvmy ) 1A= maxtr

o'min(

or [ An=Anll, <657, (Gtrm+1) 14 maoll, (3

Omin (Ull

when 7is estimated based on the thresholding rule ||Dp d| < Tgor [|[Dc d| < T¢, respectively.

Besides g{A) and o1(A), Theorems 1 and 2 involve omin(U11) and omin( V1), two

important quantities that reflect how much the low-rank matrix Amax(r)=Use1 ZlV.I is
concentrated on the first /77, rows and /7, columns. We should note that ojn(U11) and

omin( V11) depend on the singular vectors of A and o{A) and o1(A) are the singular values
of A. The lower bound in Theorem 3 below indicates that ommin(U11), omin(V41), and the
singular values of A together quantify the difficulty of the problem: recovery of Ay gets
harder as opin(Ui1) and omin( V41) become smaller or the {r+ 1, ---, min(py, p)}* singular
values become larger. Define the class of approximately rank-rmatrices #(My, M») by

mir U ) 2 ]\41 Omi (Vll) 2 ]\{2
Fr (M , Mo)= A € RP1XP2. g 1( 11 , Omin , .
r( 1 2) { O'H»l(A) < %UT(A)O'min(Ull)Umin(Vn) (14)

Theorem 3 (Lower Bound)—Suppose r< min(my, iy, py — my, po — mp) and 0 < My,
M, <1, thenforall 1< g< oo,

R () ()
A22A€37,»(]W],]\/[2)HA—Inax(’r‘)”q74 M,y My ' (15)
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Remark 3—Theorems 1, 2 and 3 together immediately yield the optimal rate of recovery
over the class 7 (M M),

Agp—A 1 1
inf  sup [Az2=Azll, _ ( +1) (—+1) for 0 < My, Ma<1,1 < q < oo.

Az A F.(M1,Ms3) ||A7 max(r) ||q A My My (16)

Since Uy1 and V4, are determined by the SVD of A and onin(Ui1) and omin(V41) are
unknown based only on Aj1, A1p, and Ay, it is thus not straightforward to choose the tuning
parameters 7pand 7¢in a principled way. Theorem 2 also does not provide information on
the choice between row and column thresholding. Such a choice generally depends on the
problem setting. We consider below two settings where either the row/columns of A are
randomly sampled or A is itself a random low-rank matrix. In such settings, when A is
approximately rank rand at least O(rlog 7) number of rows and columns are observed,
Algorithm 2 gives accurate recovery of A with fully specified tuning parameter. We first
consider in Corollary 1 a fixed matrix A with the observed /7, rows and /7, columns
selected uniformly randomly.

Corollary 1 (Random Rows/Columns)—Let A= Uz VT be the SVD of A € RPL*/2,
Set

LetQ; C {1, -, pi}and Q, C {1, -, ;} be respectively the index set of the observed m;
rows and /m, columns. Then A can be decomposed as

A=A, 0.), A21=A[: 0.), A12=A[q, 05, A=A 0 (18)

1 Let Q; and Q, be independently and uniformly selected from {1, ---, ;1 }
and {1, .-, ;} with or without replacement, respectively. Suppose there
exists 7< min(sm, /mp) such that

1 mims
A) < =0 (A) | —.
or+1(4) < Gar( ) D1p2

and the number of rows and number of columns we observed satisfy

my > 12.5rW M (log(r)+c),  ma > 12.50W @ (log(r)+c),  for some constant c>1.
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Algorithm 2 with either column thresholding with the break condition ||
Drdl < Trwhere T};=2 /L or row thresholding with the break

condition || D¢ d| < Tcwhere T, =2 , / 22 satisfies, for all 1 < g< oo,

with probability > 1—4exp(—c).

2 p1p2
1422 = Azlly < 290 A-maxll /55

2. If Qq is uniformly randomly selected from {1, -, ;1 } with or without
replacement (Q, is not necessarily random), and there exists r< . such
that

1 m
0r41(4) < £0r(A)Tmin(Vin) —
P1

and the number of observed rows satisfies

my > 12.5rW M (log(r)+¢)  for some constant ¢>1, (19)

then Algorithm 2 with the break condition || Dg | < 7 where

T,>2, [ satisfies, forall 1 < g< oo,

N 1
|Ag2—Asl|, < 6.5||A_max(r)||qTR ( )—1—1) with probability > 1—2exp(—c).

Omin (Vl 1

3. Similarly, if Qo is uniformly randomly selected from {1, .-, g} with or
without replacement (Qq is not necessarily random) and there exists r< mp
such that

1 me
UT+I(A) S FO.T(A)O-II]iH(Ull) _27
9 P2

and the number of observed columns satisfies

mgy > 12.5rW 3 (log(r)+¢)  for some constant ¢>1, (20)

then Algorithm 2 with the break condition || D¢ | < 7o where
7. > 2,2 L
c = ma satisfies, for all 1 < g< oo,

||/122—A22||q < 6.5||A,max<r)|\qTC ( with probability > 1—2exp(—c).

1
7“)
gmin(Ull)
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Remark 4—The quantities 1! and /() in Corollary 1 measure the variation of

amplitude of each row or each column of Apax(s. When 1) and 17,2 become larger, a
small number of rows and columns in Amax() Would have larger amplitude than others,
while these rows and columns would be missed with large probability in the sampling of Q,
which means the problem would become harder. Hence, more observations for the matrix

with larger 1M and 1/,2) are needed as shown in (19).

We now consider the case where A is a random matrix.

Corollary 2 (Random Matrix)—Suppose A € R”1*A2 is a random matrix generated by A
= Uz VT, where the singular values T and singular space Vare fixed, and { has orthonormal
columns that are randomly sampled based on the Haar measure. Suppose we observe the

first /m rows and first /7 columns of A. Assume there exists <1 min( ) such that

miy,ma

1 m
Or4+1 (A) S FO'T(A)O'min(Vll) _1
9 D1
Then there exist uniform constants ¢, § > 0 such that if /7, > cr, Ay, is given by Algorithm 2

with the break condition ||Dg d| < 7, where T, > 2., /71, we have for all 1 < g< oo,

N 1 ) . -5
[[A22—As2ll, < 6.5||A_max(r)||qTR (m—i—l) with probability at least 1—e™ "1,

Parallel results hold for the case when Uis fixed and Vhas orthonormal columns that are
randomly sampled based on the Haar measure, and we observe the first /7 rows and first 72,

columns of A. Assume there exists r<imin(my,ms) such that
1 mo
U7’+1(A) < gUT(A)Umin(Ull) —_—
b2

Then there exist unifrom constants ¢, §> 0 such that if 77 > cr, Ay, is given by Algorithm 2

with column thresholding with the break condition || D¢ | < 7¢, where T,, > 2, /22, we
have for all 1 < g< 00,

| Ago—Agg l, <650 A_ max(r) Hch ( with probability at least 1—e™0™2 .

1
7“)
Olnin(Ull)
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4 Simulation

In this section, we show results from extensive simulation studies that examine the
numerical performance of Algorithm 2 on randomly generated matrices for various values of
P, o, My and mp. We first consider settings where a gap between some adjacent singular
values exists, as required by our theoretical analysis. Then we investigate settings where the
singular values decay smoothly with no significant gap between adjacent singular values.
The results show that the proposed procedure performs well even when there is no
significant gap, as long as the singular values decay at a reasonable rate.

We also examine how sensitive the proposed estimators are to the choice of the threshold
and the choice between row and column thresholding. In addition, we compare the
performance of the SMC method with that of the NNM method. Finally, we consider a
setting similar to the real data application discussed in the next section. Results shown below
are based on 200-500 replications for each configuration. Additional simulation results on
the effect of /m, m, and ratio py/rm are provided in the supplement. Throughout, we
generate the random matrix A from A = UZ V, where the singular values of the diagonal
matrix X are chosen accordingly for different settings. The singular spaces Uand Vare
drawn randomly from the Haar measure. Specifically, we generate i.i.d. standard Gaussian
matrix O € RPL*MiN(LA2) and 7 € RP2XMIN(PLL2), then apply the QR decomposition to I
and Vand assign Uand V/with the Q part of the result.

We first consider the performance of Algorithm 2 when a significant gap between the /7 and
(r+ 1)% singular values of A. We fixed p; = p», = 1000, /m; = m, = 50 and choose the
singular values as

{1,---,1, 9717t g7tot .oy g=1,2,---,10, r=4,12and20.
¥ (21)

Here ris the rank of the major low-rank part Amax(p, 9= agi{?)a) is the gap ratio between the

rand (r+ 1)% singular values of A. The average loss of Ay, from Algorithm 2 with the row
thresholding and 77, =2 1/p1/m1 under both the spectral norm and Frobenius norm losses
are given in Figure 3. The results suggest that our algorithm performs better when rgets
smaller and gap ratio g = o{A)/o,+1(A) gets larger. Moreover, even when g = 1, namely
there is no significant gap between any adjacent singular values, our algorithm still works
well for small r. As will be seen in the following simulation studies, this is generally the case
as long as the singular values of A decay sufficiently fast.

We now turn to the settings with the singular values being {/¢, j=1, 2, ..., min(py, p»)}and
various choices of a, p; and p,. Hence, no significant gap between adjacent singular values
exists under these settings and we aim to demonstrate that our method continues to work
well. We first consider p; = p» = 1000, /7, = nm» = 50 and let a range from 0.3 to 2. Under
this setting, we also study how the choice of thresholds affect the performance of our
algorithm. For simplicity, we report results only for row thresholding as results for column
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thresholding are similar. The average loss of Ay, from Algorithm 2 with

Ty, € {c\/m1/p1,c € [1,6]} under both the spectral norm and Frobenius norm are given in
Figure 4. In general, the algorithm performs well provided that a is not too small and as
expected, the average loss decreases with a higher decay rate in the singular values. This
indicates that the existence of a significant gap between adjacent singular values is not
necessary in practice, provided that the singular values decay sufficiently fast. When
comparing the results across different choices of the threshold, ¢ = 2 as suggested in our
theoretical analysis is indeed the optimal choice. Thus, in all subsequent numerical analysis,
we fix c= 2.

To investigate the impact of row versus column thresholding, we let the singular value decay
rate be a = 1, p = 300, p» = 3000, and /m and m», varying from 10 to 150. The original
matrix A is generated the same way as before. We apply row and column thresholding with

T,=2+/p1/m1 and T,.=2 1/p2/ma. It can be seen from Figure 5 that when the observed
rows and columns are selected randomly, the results are not sensitive to the choice between

row and column thresholding.

We next turn to the comparison between our proposed SMC algorithm and the penalized
NNM method which recovers A by (4). The solution to (4) can be solved by the spectral
regularization algorithm by Mazumder et al. (2010) or the accelerated proximal gradient
algorithm by Toh and Yun (2010), where these two methods provide similar results. We use
5-fold cross-validation to select the tuning parameter £ Details on the implementation can be
found in the Supplement.

We consider the setting where p; = p» =500, m = m, =50, 100 and the singular value
decay rate a ranges from 0.6 to 2. As shown in Figure 6, the proposed SMC method
substantially outperform the penalized NNM method with respect to both the spectral and
Frobenius norm loss, especially as a increases.

Finally, we consider a simulation setting that mimics the ovarian cancer data application
considered in the next section, where p; = 1148, p, = 1225, my = 230, n» = 426 and the
singular values of A decay at a polynomial rate a. Although the singular values of the full
matrix are unknown, we estimate the decay rate based on the singular values of the fully
observed 552 rows of the matrix from the TCGA study, denoted by {o;, j=1, ..., 522}. A
simple linear regression of {log(o), /=1, ..., 522} on {log(y), /=1, ..., 522} estimates a as
0.8777. In the simulation, we randomly generate A € RPL*P2 such that the singular values
are fixed as {j~8777, j=1, 2, -~-}. For comparison, we also obtained results for a = 1 as well
as those based on the penalized NNM method with 5-cross-validation. As shown in Table 1,
the relative spectral norm loss and relative Frobenius norm loss of the proposed method are
reasonably small and substantially smaller than those from the penalized NNM method.

5 Application in Genomic Data Integration

In this section, we apply our proposed procedures to integrate multiple genomic studies of
ovarian cancer (OC). OC is the fifth leading cause of cancer mortality among women,
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attributing to 14,000 deaths annually (Siegel et al., 2013). OC is a relatively heterogeneous
disease with 5-year survival rate varying substantially among different subgroups. The
overall 5-year survival rate is near 90% for stage | cancer. But the majority of the OC
patients are diagnosed as stage I11/1V diseases and tend to develop resistance to
chemotherapy, resulting a 5-year survival rate only about 30% (Holschneider and Berek,
2000). On the other hand, a small minority of advanced cancers are sensitive to
chemotherapy and do not replapse after treatment completion. Such a heterogeneity in
disease progression is likely to be in part attributable to variations in underlying biological
characteristics of OC (Berchuck et al., 2005). This heterogeneity and the lack of successful
treatment strategies motivated multiple genomic studies of OC to identify molecular
signatures that can distinguish OC subtypes, and in turn help to optimize and personalize
treatment. For example, the Cancer Genome Atlas (TCGA) comprehensively measured
genomic and epigenetic abnormalities on high grade OC samples (Cancer Genome Atlas
Research Network, 2011). A gene expression risk score based on 193 genes, ¢, was trained
on 230 training samples, denoted by TCGA(®, and shown as highly predictive of OC
survival when validated on the TCGA independent validation set of size 322, denoted by
TCGAW), as well as on several independent OC gene expression studies including those
from Bonome et al. (2005) (BONO), Dressman et al. (2007) (DRES) and Tothill et al.
(2008) (TOTH).

The TCGA study also showed that clustering of miRNA levels overlaps with gene-
expression based clusters and is predictive of survival. It would be interesting to examine
whether combining miRNA with ¢ could improve survival prediction when compared to ¢
alone. One may use TCGA(" to evaluate the added value of miRNA. However, TCGA() is
of limited sample size. Furthermore, since mMiRNA was only measured for the TCGA study,
its utility in prediction cannot be directly validated using these independent studies. Here,
we apply our proposed SMC method to impute the missing miRNA values and subsequently
construct prediction rules based on both ¢ and the imputed miRNA, denoted by , srx A for
these independent validation sets. To facilitate the comparison with the analysis based on
TCGAM alone where miRNA measurements are observed, we only used the miRNA from
TCGAW for imputation and reserved the miRNA data from TCGA( for validation
purposes. To improve the imputation, we also included additional 300 genes that were
previously used in a prognostic gene expression signature for predicting ovarian cancer
survival (Denkert et al., 2009). This results in a total of /77, = 426 unique gene expression
variables available for imputation. Detailed information on the data used for imputation is
shown in Figure 7. Prior to imputation, all gene expression and miRNA levels are log
transformed and centered to have mean zero within each study to remove potential platform
or batch effects. Since the observable rows (indexing subjects) can be viewed as random
whereas the observable columns (indexing genes and miRNAS) are not random, we used row

thresholding with threshold 7', =2 1/p1/m1 as suggested in the theoretical and simulation
results. For comparison, we also imputed data using the penalized NNM method with tuning
parameter ¢selected via 5-fold cross-validation.

We first compared |, 7 A to the observed miRNA on TCGA(. Our imputation yielded a
rank 2 matrix for , ;RN A and the correlations between the two right and left singular
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vectors ;RN A to that of the observed miRNA variables are .90, .71, .34, .14, substantially
higher than that of those from the NNM method, with the corresponding values 0.45, 0.06,
0.10, 0.05. This suggests that the SMC imputation does a good job in recovering the leading
projections of the miRNA measurements and outperforms the NNM method.

To evaluate the utility of | s A for predicting OC survival, we used the TCGAW to select
117 miRNA markers that are marginally associated with survival with a nominal p-value
threshold of .05. We use the two leading principal components (PCs) of the 117 miRNA

markers, miRNAPC=(miRNAPC, miRNAFC)”, as predictors for the survival outcome in
addition to G. The imputation enables us to integrate information from 4 studies including
TCGAW, which could substantially improve efficiency and prediction performance. We first
assessed the association between {miRNAPC, ¢} and OC survival by fitting a stratified Cox
model (Kalbfleisch and Prentice, 2011) to the integrated data that combines TCGA(Y and
the three additional studies via either the SMC or NNM methods. In addition, we fit the Cox
model to (i) TCGA( set alone with miRNAFC obtained from the observed miRNA: and (ii)
each individual study separately with imputed miRNAFC. As shown in Table 2(a), the log
hazard ratio (logHR) estimates for miRNAPC from the integrated analysis, based on both
SMC and NNM methods, are similar in magnitude to those obtained based on the observed
miRNA values with TCGA(. However, the integrated analysis has substantially smaller
standard error (SE) estimates due the increased sample sizes. The estimated logHRs are also
reasonably consistent across studies when separate models were fit to individual studies.

We also compared the prediction performance of the model based on ¢ alone to the model
that includes both ¢ and the imputed miRNAPC. Combining information from all 4 studies
via standard meta analysis, the average improvement in C-statistic was 0.032 (SE = 0.013)
for the SMC method and 0.001 (SE = 0.009) for the NNM method, suggesting that the
imputed miRNAPC from the SMC method has much higher predictive value compared to
those obtained from the NNM method.

In summary, the results shown above suggest that our SMC procedure accurately recovers
the leading PCs of the miRNA variables. In addition, adding miRNAPC obtained from
imputation using the proposed SMC method could significantly improve the prediction
performance, which confirms the value of our method for integrative genomic analysis.
When comparing to the NNM method, the proposed SMC method produces summaries of
miRNA that is more correlated with the truth and yields leading PCs that are more predictive
of OC survival.

6 Discussions

The present paper introduced a new framework of SMC where a subset of the rows and
columns of an approximately low-rank matrix are observed. We proposed an SMC method
for the recovery of the whole matrix with theoretical guarantees. The proposed procedure
significantly outperforms the conventional NNM method for matrix completion, which does
not take into account the special structure of the observations. As shown by our theoretical
and numerical analyses, the widely adopted NNM methods for matrix completion are not
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suitable for the SMC setting. These NNM methods perform particularly poorly when a small
number of rows and columns are observed.

The key assumption in matrix completion is the matrix being approximately low rank. This
is reasonable in the ovarian cancer application since as indicated in the results from the
TCGA study (Cancer Genome Atlas Research Network, 2011), the patterns observed in the
miRNA signature are highly correlated with the patterns observed in the gene expression
signature. This suggests the high correlation among the selected gene expression and
miRNA variables. Results from the imputation based on the approximate low rank
assumption given in Section 5 are also encouraging with promising correlations with true
signals and good prediction performance from the imputed miRNA signatures. We expect
that this imputation method will also work well in genotyping and sequencing applications,
particularly for regions with reasonably high linkage disequilibrium.

Another main assumption that is needed in the theoretical analysis is that there is a
significant gap between the /7and (r+ 1) singular values of A. This assumption may not
be valid in real practice. In particular, the singular values of the ovarian dataset analyzed in
Section 5 is decreasing smoothly without a significant gap. However, it has been shown in
the simulation studies presented in Section 4 that, although there is no significant gap
between any adjacent singular values of the matrix to be recovered, the proposed SMC
method works well as long as the singular values decay sufficiently fast. Theoretical analysis
for the proposed SMC method under more general patterns of singular value decay warrants
future research.

To implement the proposed Algorithm 2, major decisions include the choice of threshold
values and choosing between column thresholding and row thresholding. Based on both the-

oretical and numerical studies, optimal threshold values can be set as 7. =2 1/ p2/ms2 for

column thresholding and 7, =2 1/p1/m1 for row thresholding. Simulation results in Section
4 show that when both rows and columns are randomly chosen, the results are very similar.
In the real data applications, the choice between row thresholding and column thresholding
depends on whether the rows or columns are more \homogeneous”, or closer to being
randomly sampled. For example, in the ovarian cancer dataset analyzed in Section 5, the
rows correspond to the patients and the columns correspond to the gene expression levels
and miRNA levels. Thus the rows are closer to random sample than the columns,
consequently it is more natural to use the row thresholding in this case.

We have shown both theoretically and numerically in Sections 3 and 4 that Algorithm 2
provides a good recovery of A,,. However, the naive implementation of this algorithm
requires min(/my, /mp) matrix inversions and multiplication operations in the for loop that
calculates ||Dg d| (or |Dcdl), S€ {7, 7+ 1, -, min(sm, my)}. Taking into account the
relationship among D s (or D¢ 5) for different ss, it is possible to simultaneously calculate
all |Dr I (or || D¢ d|) and accelerate the computations. For reasons of space, we leave
optimal implementation of Algorithm 2 as future work.
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Z_22(=A_22)

(a) heatmap of block-wise A (b) heatmap of block-wise Z after rotation
Figure 1.
Ilustrative example with A € R39%30, m, = my, = 10. (A darker block corresponds to larger
magnitude.)
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Z_11[1:9, 1:9] Z_12[1:9,:] Z_11[1:4,1:4] Z_12[1:4,:]
E -
z21 - z_21
& 191E Z 22(=A_22) ['“]I z_22(=A_22)
(a) Intermediate step when 7 =9 (b) Identify the position to truncate at # = 4

Figure 2.
Searching for the appropriate position to truncate from 7= 10 to 1.
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Figure 3.
Spectral norm loss (left panel) and Frobenius norm loss (right panel) when there is a gap

between o/ A) and o1(A). The singular value values of A are given by (21), ;1 = p» =
1000, and mm = m, = 50.
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Spectral norm loss (left panel) and Frobenius norm loss (right panel) as the thresholding
constant ¢ varies. The singular values of Aare {/7¢, j=1, 2, ...} with a varying from 0.3 to
2, pp = p» =1000, and rm = m, = 50.
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(c) Spectral norm loss; row thresholding (d) Frobenius norm loss; row thresholding
Figure5.

Spectral and Frobenius norm losses with column/row thresholding. The singular values of A
are {/1,j=1,2, ...}, p =300, p» = 3000, and /7, m, = 10, ..., 150.
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Comparison of the proposed SMC method with the NNM method with 5-cross-validation for

= p» =500, and /m = m, =50 or 100.
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Imputation scheme for integrating multiple OC genomic studies.
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Table 1
Relative spectral norm loss (|| A2 — Ax|l/||A2]]) and Frobenius norm loss (|| Az, — Al Al A2l A for p1 =
1148, p, = 1225, my = 230, m, = 426 and singular values of Abeing {/"%: /=1, 2, --}.

Relative spectral norm loss  Rélative Frobenius norm loss

SMC NNM SMC NNM
a=0.8777 0.1253 0.4614 0.2879 0.6122
a=1 0.0732 0.4543 0.1794 0.5671
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