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Abstract

Matrix completion has attracted significant recent attention in many fields including statistics, 

applied mathematics and electrical engineering. Current literature on matrix completion focuses 

primarily on independent sampling models under which the individual observed entries are 

sampled independently. Motivated by applications in genomic data integration, we propose a new 

framework of structured matrix completion (SMC) to treat structured missingness by design. 

Specifically, our proposed method aims at efficient matrix recovery when a subset of the rows and 

columns of an approximately low-rank matrix are observed. We provide theoretical justification 

for the proposed SMC method and derive lower bound for the estimation errors, which together 

establish the optimal rate of recovery over certain classes of approximately low-rank matrices. 

Simulation studies show that the method performs well in finite sample under a variety of 

configurations. The method is applied to integrate several ovarian cancer genomic studies with 

different extent of genomic measurements, which enables us to construct more accurate prediction 

rules for ovarian cancer survival.
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1 Introduction

Motivated by an array of applications, matrix completion has attracted significant recent 

attention in different fields including statistics, applied mathematics and electrical 

engineering. The central goal of matrix completion is to recover a high-dimensional low-
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rank matrix based on a subset of its entries. Applications include recommender systems 

(Koren et al., 2009), genomics (Chi et al., 2013), multi-task learning (Argyriou et al., 2008), 

sensor localization (Biswas et al., 2006; Singer and Cucuringu, 2010), and computer vision 

(Chen and Suter, 2004; Tomasi and Kanade, 1992), among many others.

Matrix completion has been well studied under the uniform sampling model, where 

observed entries are assumed to be sampled uniformly at random. The best known approach 

is perhaps the constrained nuclear norm minimization (NNM), which has been shown to 

yield near-optimal results when the sampling distribution of the observed entries is uniform 

(Candés and Recht, 2009; Candés and Tao, 2010; Gross, 2011; Recht, 2011; Candes and 

Plan, 2011). For estimating approximately low-rank matrices from uniformly sampled noisy 

observations, several penalized or constrained NNM estimators, which are based on the 

same principle as the well-known Lasso and Dantzig selector for sparse signal recovery, 

were proposed and analyzed (Keshavan et al., 2010; Mazumder et al., 2010; Koltchinskii, 

2011; Koltchinskii et al., 2011; Rohde et al., 2011). In many applications, the entries are 

sampled independently but not uniformly. In such a setting, Salakhutdinov and Srebro 

(2010) showed that the standard NNM methods do not perform well, and proposed a 

weighted NNM method, which depends on the true sampling distribution. In the case of 

unknown sampling distribution, Foygel et al. (2011) introduced an empirically-weighted 

NNM method. Cai and Zhou (2013) studied a max-norm constrained minimization method 

for the recovery of a low-rank matrix based on the noisy observations under the non-uniform 

sampling model. It was shown that the max-norm constrained least squares estimator is rate-

optimal under the Frobenius norm loss and yields a more stable approximate recovery 

guarantee with respect to the sampling distributions.

The focus of matrix completion has so far been on the recovery of a low-rank matrix based 

on independently sampled entries. Motivated by applications in genomic data integration, we 

introduce in this paper a new framework of matrix completion called structured matrix 
completion (SMC), where a subset of the rows and a subset of the columns of an 

approximately low-rank matrix are observed and the goal is to reconstruct the whole matrix 

based on the observed rows and columns. We first discuss the genomic data integration 

problem before introducing the SMC model.

1.1 Genomic Data Integration

When analyzing genome-wide studies (GWS) of association, expression profiling or 

methylation, ensuring adequate power of the analysis is one of the most crucial goals due to 

the high dimensionality of the genomic markers under consideration. Because of cost 

constraints, GWS typically have small to moderate sample sizes and hence limited power. 

One approach to increase the power is to integrate information from multiple GWS of the 

same phenotype. However, some practical complications may hamper the feasibility of such 

integrative analysis. Different GWS often involve different platforms with distinct genomic 

coverage. For example, whole genome next generation sequencing (NGS) studies would 

provide mutation information on all loci while older technologies for genome-wide 

association studies (GWAS) would only provide information on a small subset of loci. In 

some settings, certain studies may provide a wider range of genomic data than others. For 
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example, one study may provide extensive genomic measurements including gene 

expression, miRNA and DNA methylation while other studies may only measure gene 

expression.

To perform integrative analysis of studies with different extent of genomic measurements, 

the naive complete observation only approach may suffer from low power. For the GWAS 

setting with a small fraction of loci missing, many imputation methods have been proposed 

in recent years to improve the power of the studies. Examples of useful methods include 

haplotype reconstruction, k-nearest neighbor, regression and singular value decomposition 

methods (Scheet and Stephens, 2006; Li and Abecasis, 2006; Browning and Browning, 

2009; Troyanskaya et al., 2001; Kim et al., 2005; Wang et al., 2006). Many of the haplotype 

phasing methods are considered to be highly effective in recovering missing genotype 

information (Yu and Schaid, 2007). These methods, while useful, are often computationally 

intensive. In addition, when one study has a much denser coverage than the other, the 

fraction of missingness could be high and an exceedingly large number of observation would 

need to be imputed. It is unclear whether it is statistically or computationally feasible to 

extend these methods to such settings. Moreover, haplotype based methods cannot be 

extended to incorporate other types of genomic data such as gene expression and miRNA 

data.

When integrating multiple studies with different extent of genomic measurements, the 

observed data can be viewed as complete rows and columns of a large matrix A and the 

missing components can be arranged as a submatrix of A. As such, the missingness in A is 

structured by design. In this paper, we propose a novel SMC method for imputing the 

missing submatrix of A. As shown in Section 5, by imputing the missing miRNA 

measurements and constructing prediction rules based on the imputed data, it is possible to 

significantly improve the prediction performance.

1.2 Structured Matrix Completion Model

Motivated by the applications mentioned above, this paper considers SMC where a subset of 

rows and columns are observed. Specifically, we observe m1 < p1 rows and m2 < p2 columns 

of a matrix A ∈ ℝp1×p2 and the goal is to recover the whole matrix. Since the singular values 

are invariant under row/column permutations, it can be assumed without loss of generality 

that we observe the first m1 rows and m2 columns of A which can be written in a block 

form:

(1)

where A11, A12, and A21 are observed and the goal is to recover the missing block A22. See 

Figure 1(a) in Section 2 for a graphical display of the data. Clearly there is no way to 

recover A22 if A is an arbitrary matrix. However, in many applications such as genomic data 

integration discussed earlier, A is approximately low-rank, which makes it possible to 
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recover A22 with accuracy. In this paper, we introduce a method based on the singular value 

decomposition (SVD) for the recovery of A22 when A is approximately low-rank.

It is important to note that the observations here are much more “structured” comparing to 

the previous settings of matrix completion. As the observed entries are in full rows or full 

columns, the existing methods based on NNM are not suitable. As mentioned earlier, 

constrained NNM methods have been widely used in matrix completion problems based on 

independently observed entries. However, for the problem considered in the present paper, 

these methods do not utilize the structure of the observations and do not guarantee precise 

recovery even for exactly low-rank matrix A (See Remark 1 in Section 2). Numerical results 

in Section 4 show that NNM methods do not perform well in SMC.

In this paper we propose a new SMC method that can be easily implemented by a fast 

algorithm which only involves basic matrix operations and the SVD. The main idea of our 

recovery procedure is based on the Schur Complement. In the ideal case when A is exactly 

low rank, the Schur complement of the missing block, , is zero and thus 

 can be used to recover A22 exactly. When A is approximately low rank, 

 cannot be used directly to estimate A22. For this case, we transform the observed 

blocks using SVD; remove some unimportant rows and columns based on thresholding 

rules; and subsequently apply a similar procedure to recover A22.

Both its theoretical and numerical properties are studied. It is shown that the estimator 

recovers low-rank matrices accurately and is robust against small perturbations. A lower 

bound result shows that the estimator is rate optimal for a class of approximately low-rank 

matrices. Although it is required for the theoretical analysis that there is a significant gap 

between the singular values of the true low-rank matrix and those of the perturbation, 

simulation results indicate that this gap is not really necessary in practice and the estimator 

recovers A accurately whenever the singular values of A decay sufficiently fast.

1.3 Organization of the Paper

The rest of the paper is organized as follows. In Section 2, we introduce in detail the 

proposed SMC methods when A is exactly or approximately low-rank. The theoretical 

properties of the estimators are analyzed in Section 3. Both upper and lower bounds for the 

recovery accuracy under the Schatten-q norm loss are established. Simulation results are 

shown in Section 4 to investigate the numerical performance of the proposed methods. A 

real data application to genomic data integration is given in Section 5. Section 6 discusses a 

few practical issues related to real data applications. For reasons of space, the proofs of the 

main results and additional simulation results are given in the supplement (Cai et al., 2014). 

Some key technical tools used in the proofs of the main theorems are also developed and 

proved in the supplement.
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2 Structured Matrix Completion: Methodology

In this section, we propose procedures to recover the submatrix A22 based on the observed 

blocks A11, A12, and A21. We begin with basic notation and definitions that will be used in 

the rest of the paper.

For a matrix U, we use U[Ω1,Ω2] to represent its sub-matrix with row indices Ω1 and column 

indices Ω2. We also use the Matlab syntax to represent index sets. Specifically for integers a 
≤ b, “a: b” represents {a, a + 1, ···, b}; and “:” alone represents the entire index set. 

Therefore, U[:,1:r] stands for the first r columns of U while U[(m1+1):p1,:] stands for the {m1 

+ 1, …, p1}th rows of U. For the matrix A given in (1), we use the notation A•1 and A1• to 

denote  and [A11, A12], respectively. For a matrix B ∈ ℝm×n, let 

 be the SVD, where Σ = diag{σ1(B), σ2(B), …} with σ1(B) ≥ 

σ2(B) ≥ ··· ≥ 0 being the singular values of B in decreasing order. The smallest singular value 

σmin(m,n), which will be denoted by σmin(B), plays an important role in our analysis. We also 

define  and . For 1 ≤ 

q ≤ ∞, the Schatten-q norm ||B||q is defined to be the vector q-norm of the singular values of 

B, i.e. . Three special cases are of particular interest: when q = 1, ||B||1 

= Σi σi (B) is the nuclear (or trace) norm of B and will be denoted as ||B||*; when q = 2, 

 is the Frobenius norm of B and will be denoted as ||B||F; when q = ∞, ||

B||∞ = σ1(B) is the spectral norm of B that we simply denote as ||B||. For any matrix U ∈ 
ℝp×n, we use PU ≡ U (U⊤U)† U⊤ ∈ ℝp×p to denote the projection operator onto the column 

space of U. Throughout, we assume that A is approximately rank r in that for some integer 0 

< r ≤ min(m1, m2), there is a significant gap between σr(A) and σr+1(A) and the tail 

 is small. The gap assumption enables us to provide a 

theoretical upper bound on the accuracy of the estimator, while it is not necessary in practice 

(see Section 4 for more details).

2.1 Exact Low-rank Matrix Recovery

We begin with the relatively easy case where A is exactly of rank r. In this case, a simple 

analysis indicates that A can be perfectly recovered as shown in the following proposition.

Proposition 1—Suppose A is of rank r, the SVD of A11 is A11 = UΣV⊤, where U ∈ ℝp1×r, 

Σ ∈ ℝr×r, and V ∈ ℝp2×r. If

then rank(A11) = r and A22 is exactly given by
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(2)

Remark 1—Under the same conditions as Proposition 1, the NNM

(3)

fails to guarantee the exact recovery of A22. Consider the case where A is a p1 × p2 matrix 

with all entries being 1. Suppose we observe arbitrary m1 rows and m2 columns, the NNM 

would yield Â22 ∈ ℝ (p1−m1)×(p2−m2) with all entries being  (See 

Lemma 4 in the Supplement). Hence when m1m2 < (p1 − m1)(p2 − m2), i.e., when the size of 

the observed blocks are much smaller than that of A, the NNM fails to recover exactly the 

missing block A22. See also the numerical comparison in Section 4. The NNM (3) also fails 

to recover A22 with high probability in a random matrix setting where  with B1 ∈ 
ℝp1×r and B2 ∈ ℝp2×r being i.i.d. standard Gaussian matrices. See Lemma 3 in the 

Supplement for further details. In addition to (3), other variations of NNM have been 

proposed in the literature, including penalized NNM (Toh and Yun, 2010; Mazumder et al., 

2010),

(4)

and constrained NNM with relaxation (Cai et al., 2010),

(5)

where Ω = {(ik, jk): Aik,jk observed, 1 ≤ ik ≤ p1, 1 ≤ jk ≤ p2} and t is the tunning parameter. 

However, these NNM methods may not be suitable for SMC especially when only a small 

number of rows and columns are observed. In particular, when m1 ≪ p1, m2 ≪ p2, A is well 

spread in each block A11, A12, A21, A22, we have ||[A11 A12]||* ≪ ||A||*, [A12]* ≪ ||A||*. 

Thus,
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In the other words, imputing A22 with all zero yields a much smaller nuclear norm than 

imputing with the true A22 and hence NNM methods would generally fail to recover A22 

under such settings.

Proposition 1 shows that, when A is exactly low-rank, A22 can be recovered precisely by 

A21(A11)† A12. Unfortunately, this result heavily relies on the exactly low-rank assumption 

that cannot be directly used for approximately low-rank matrices. In fact, even with a small 

perturbation to A, the inverse of A11 makes the formula A21(A11)† A12 unstable, which may 

lead to the failure of recovery. In practice, A is often not exactly low rank but approximately 

low rank. Thus for the rest of the paper, we focus on the latter setting.

2.2 Approximate Low-rank Matrix Recovery

Let A = UΣV⊤ be the SVD of an approximately low rank matrix A and partition U ∈ 
ℝp1×p1, V ∈ ℝp2×p2 and Σ ∈ ℝp1×p2 into blocks as

(6)

Then A can be decomposed as A = Amax(r) + A−max(r) where Amax(r) is of rank r with the 

largest r singular values of A and A−max(r) is general but with small singular values. Then

(7)

Here and in the sequel, we use the notation U•k and Uk• to denote  and [Uk1, 

Uk2], respectively. Thus, Amax(r) can be viewed as a rank-r approximation to A and 

obviously

We will use the observed A11, A12 and A21 to obtain estimates of U•1, V•1 and Σ1 and 

subsequently recover A22 using an estimated .
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When r is known, i.e., we know where the gap is located in the singular values of A, a 

simple procedure can be implemented to estimate A22 as described in Algorithm 1 below by 

estimating U•1 and V•1 using the principal components of A•1 and A1•.

Algorithm 1

Algorithm for Structured Matrix Completion with a given r

1 Input A11 ∈ ℝm1×m2, A12 ∈ ℝ (p1−m1×m2, A21 ∈ ℝm1×(p2−m2).

2 Calculate the SVD of A•1 and A1• to obtain A•1 = U(1)Σ(1)V(1)⊤, A1• = U(2)Σ(2)V(2)⊤.

3 Suppose M, N are orthonormal basis of U11, V11. We estimate the column space of U11 and V11 

by .

4 Finally we estimate A22 as

A22 = A21N(M⊤A11N)
−1

M⊤A12 . (8)

However, Algorithm 1 has several major limitations. First, it relies on a given r which is 

typically unknown in practice. Second, the algorithm need to calculate the matrix divisions, 

which may cause serious precision issues when the matrix is near-singular or the rank r is 

mis-specified. To overcome these difficulties, we propose another Algorithm which 

essentially first estimates r with r̂ and then apply Algorithm 1 to recover A22. Before 

introducing the algorithm of recovery without knowing r, it is helpful to illustrate the idea 

with heat maps in Figures 1 and 2.

Our procedure has three steps.

1. First, we move the significant factors of A•1 and A1• to the front by 

rotating the columns of A•1 and the rows of A1• based on the SVD,

After the transformation, we have Z11, Z12, Z21,

Clearly A and Z have the same singular values since the transformation is 

orthogonal. As shown in Figure 1(b), the amplitudes of the columns of 

 and the rows of Z1• = [Z11, Z12] are decaying.

2. When A is exactly of rank r, the {r + 1, ···, m1}th rows and {r + 1, ···, m2}th 

columns of Z are zero. Due to the small perturbation term A−max(r), the 

back columns of Z•1 and rows of Z1• are small but non-zero. In order to 

recover Amax(r), the best rank r approximation to A, a natural idea is to 
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first delete these back rows of Z1• and columns of Z•1, i.e. the {r + 1, ···, 

m1}th rows and {r + 1, ···, m2}th columns of Z.

However, since r is unknown, it is unclear how many back rows and 

columns should be removed. It will be helpful to have an estimate for r, r̂, 
and then use Z21,[:,1:r̂], Z11,[1:r̂,1:r̂] and Z12[1:r̂,:] to recover A22. It will be 

shown that a good choice of r̂ would satisfy that Z11,[1:r̂,1:r̂] is non-singular 

and , where TR is some constant to be 

specified later. Our final estimator for r would be the largest r̂ that satisfies 

this condition, which can be identified recursively from min(m1, m2) to 1 

(See Figure 2).

3. Finally, similar to (2),A22 can be estimated by

(9)

The method we propose can be summarized as the following algorithm.

Algorithm 2

Algorithm of Structured Matrix Completion with unknown r

a
Input: A11 ∈ ℝm1×m2, . Thresholding level: 
TR, (or TC).

b Calculate the SVD A•1 = U(1)Σ(1)V(1)⊤, A1• = U(2)Σ(2)V(2)⊤.

c Calculate Z11 ∈ ℝm1×m2, Z12 ∈ ℝm1×(p2−m2), Z21 ∈ ℝ(p1−m1)×m2 

d for s = min(m1, m2): −1: 1 do (Use iteration to find r̂)

e Calculate DR,s ∈ ℝ(p1−m1)×s (or DC,s ∈ ℝs×(p2−m2)) by solving linear equation 
system, 

f if Z11,[1:s,1:s] is not singular and ||DR,s|| ≤ TR (or ||DC,s|| ≤ TC) then

g r̂ = s; break from the loop;

h end if

i end for

j if (r̂ is not valued) then r̂ = 0.

k end if

l Finally we calculate the estimate as

A22 = Z21, [: , 1:r ]Z11, [1:r , 1:r ]
−1 Z12, [1:r , : ]

It can also be seen from Algorithm 2 that the estimator r̂ is constructed based on either the 

row thresholding rule ||DR,s|| ≤ TR or the column thresholding rule ||DC,s|| ≤ TC. Discussions 

on the choice between DR,s and DC,s are given in the next section. Let us focus for now on 
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the row thresholding based on . It is important to note that Z21[:,1:r] 

and Z11,[1:r,1:r] approximate U21Σ1 and Σ1, respectively. The idea behind the proposed r̂ is 

that when s > r, Z21[:,1:s] and Z11,[1:s,1:s] are nearly singular and hence DR,s may either be 

deemed singular or with unbounded norm. When s = r, Z11,[1:s,1:s] is non-singular with ||

DR,s|| bounded by some constant, as we show in Theorem 2. Thus, we estimate r̂ as the 

largest r such that Z11,[1:s,1:s] is non-singular with ||DR,s|| < TR.

3 Theoretical Analysis

In this section, we investigate the theoretical properties of the algorithms introduced in 

Section 2. Upper bounds for the estimation errors of Algorithms 1 and 2 are presented in 

Theorems 1 and 2, respectively, and the lower-bound results are given in Theorem 3. These 

bounds together establish the optimal rate of recovery over certain classes of approximately 

low-rank matrices. The choices of tuning parameters TR and TC are discussed in Corollaries 

1 and 2.

Theorem 1—Suppose Â is given by the procedure of Algorithm 1. Assume

(10)

Then for any 1 ≤ q ≤ ∞,

(11)

Remark 2—It is helpful to explain intuitively why Condition (10) is needed. When A is 

approximately low-rank, the dominant low-rank component of A, Amax(r), serves as a good 

approximation to A, while the residual A−max(r) is “small”. The goal is to recover Amax(r) 

well. Among the three observed blocks, A11 is the most important and it is necessary to have 

Amax(r) dominating A−max(r) in A11. Note that A11 = Amax(r),[1:m1,1:m2] + A−max(r),[1:m1,1:m2],

We thus require Condition (10) in Theorem 1 for the theoretical analysis.

Theorem 1 gives an upper bound for the estimation accuracy of Algorithm 1 under the 

assumption that there is a significant gap between σr(A) and σr+1(A) for some known r. It is 

noteworthy that there are possibly multiple values of r that satisfy Condition (10). In such a 

case, the bound (11) applies to all such r and the largest r yields the strongest result.
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We now turn to Algorithm 2, where the knowledge of r is not assumed. Theorem 2 below 

shows that for properly chosen TR or TC, Algorithm 2 can lead to accurate recovery of A22.

Theorem 2—Assume that there exists r ∈ [1, min(m1, m2)] such that

(12)

Let TR and TC be two constants satisfying

Then for 1 ≤ q ≤ ∞, Â22 given by Algorithm 2 satisfies

(13)

when r̂ is estimated based on the thresholding rule ||DR,s|| ≤ TR or ||DC,s|| ≤ TC, respectively.

Besides σr(A) and σr+1(A), Theorems 1 and 2 involve σmin(U11) and σmin(V11), two 

important quantities that reflect how much the low-rank matrix  is 

concentrated on the first m1 rows and m2 columns. We should note that σmin(U11) and 

σmin(V11) depend on the singular vectors of A and σr(A) and σr+1(A) are the singular values 

of A. The lower bound in Theorem 3 below indicates that σmin(U11), σmin(V11), and the 

singular values of A together quantify the difficulty of the problem: recovery of A22 gets 

harder as σmin(U11) and σmin(V11) become smaller or the {r + 1, ···, min(p1, p2)}th singular 

values become larger. Define the class of approximately rank-r matrices (M1, M2) by

(14)

Theorem 3 (Lower Bound)—Suppose r ≤ min(m1, m2, p1 − m1, p2 − m2) and 0 < M1, 

M2 < 1, then for all 1 ≤ q ≤ ∞,

(15)
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Remark 3—Theorems 1, 2 and 3 together immediately yield the optimal rate of recovery 

over the class (M1M2),

(16)

Since U11 and V11 are determined by the SVD of A and σmin(U11) and σmin(V11) are 

unknown based only on A11, A12, and A21, it is thus not straightforward to choose the tuning 

parameters TR and TC in a principled way. Theorem 2 also does not provide information on 

the choice between row and column thresholding. Such a choice generally depends on the 

problem setting. We consider below two settings where either the row/columns of A are 

randomly sampled or A is itself a random low-rank matrix. In such settings, when A is 

approximately rank r and at least O(r log r) number of rows and columns are observed, 

Algorithm 2 gives accurate recovery of A with fully specified tuning parameter. We first 

consider in Corollary 1 a fixed matrix A with the observed m1 rows and m2 columns 

selected uniformly randomly.

Corollary 1 (Random Rows/Columns)—Let A = UΣV⊤ be the SVD of A ∈ ℝp1×p2. 

Set

(17)

Let Ω1 ⊂ {1, ···, p1} and Ω2 ⊂ {1, ···, p2} be respectively the index set of the observed m1 

rows and m2 columns. Then A can be decomposed as

(18)

1. Let Ω1 and Ω2 be independently and uniformly selected from {1, ···, p1} 

and {1, ···, p2} with or without replacement, respectively. Suppose there 

exists r ≤ min(m1, m2) such that

and the number of rows and number of columns we observed satisfy
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Algorithm 2 with either column thresholding with the break condition ||

DR,s|| ≤ TR where  or row thresholding with the break 

condition ||DC,s|| ≤ TC where  satisfies, for all 1 ≤ q ≤ ∞,

2. If Ω1 is uniformly randomly selected from {1, ···, p1} with or without 

replacement (Ω2 is not necessarily random), and there exists r ≤ m2 such 

that

and the number of observed rows satisfies

(19)

then Algorithm 2 with the break condition ||DR,s|| ≤ TR where 

 satisfies, for all 1 ≤ q ≤ ∞,

3. Similarly, if Ω2 is uniformly randomly selected from {1, ···, p2} with or 

without replacement (Ω1 is not necessarily random) and there exists r ≤ m2 

such that

and the number of observed columns satisfies

(20)

then Algorithm 2 with the break condition ||DC,s|| ≤ TC where 

 satisfies, for all 1 ≤ q ≤ ∞,

Cai et al. Page 13

J Am Stat Assoc. Author manuscript; available in PMC 2017 August 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Remark 4—The quantities  and  in Corollary 1 measure the variation of 

amplitude of each row or each column of Amax(r). When  and  become larger, a 

small number of rows and columns in Amax(r) would have larger amplitude than others, 

while these rows and columns would be missed with large probability in the sampling of Ω, 

which means the problem would become harder. Hence, more observations for the matrix 

with larger  and  are needed as shown in (19).

We now consider the case where A is a random matrix.

Corollary 2 (Random Matrix)—Suppose A ∈ ℝp1×p2 is a random matrix generated by A 
= UΣV⊤, where the singular values Σ and singular space V are fixed, and U has orthonormal 

columns that are randomly sampled based on the Haar measure. Suppose we observe the 

first m1 rows and first m2 columns of A. Assume there exists  such that

Then there exist uniform constants c, δ > 0 such that if m1 ≥ cr, Â22 is given by Algorithm 2 

with the break condition ||DR,s|| ≤ TR, where , we have for all 1 ≤ q ≤ ∞,

Parallel results hold for the case when U is fixed and V has orthonormal columns that are 

randomly sampled based on the Haar measure, and we observe the first m1 rows and first m2 

columns of A. Assume there exists  such that

Then there exist unifrom constants c, δ > 0 such that if m2 ≥ cr, Â22 is given by Algorithm 2 

with column thresholding with the break condition ||DC,s|| ≤ TC, where , we 

have for all 1 ≤ q ≤ ∞,
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4 Simulation

In this section, we show results from extensive simulation studies that examine the 

numerical performance of Algorithm 2 on randomly generated matrices for various values of 

p1, p2, m1 and m2. We first consider settings where a gap between some adjacent singular 

values exists, as required by our theoretical analysis. Then we investigate settings where the 

singular values decay smoothly with no significant gap between adjacent singular values. 

The results show that the proposed procedure performs well even when there is no 

significant gap, as long as the singular values decay at a reasonable rate.

We also examine how sensitive the proposed estimators are to the choice of the threshold 

and the choice between row and column thresholding. In addition, we compare the 

performance of the SMC method with that of the NNM method. Finally, we consider a 

setting similar to the real data application discussed in the next section. Results shown below 

are based on 200–500 replications for each configuration. Additional simulation results on 

the effect of m1, m2 and ratio p1/m1 are provided in the supplement. Throughout, we 

generate the random matrix A from A = UΣV, where the singular values of the diagonal 

matrix Σ are chosen accordingly for different settings. The singular spaces U and V are 

drawn randomly from the Haar measure. Specifically, we generate i.i.d. standard Gaussian 

matrix Ũ ∈ ℝp1×min(p1,p2) and Ṽ ∈ ℝp2×min(p1,p2), then apply the QR decomposition to Ũ 
and Ṽ and assign U and V with the Q part of the result.

We first consider the performance of Algorithm 2 when a significant gap between the rth and 

(r + 1)th singular values of A. We fixed p1 = p2 = 1000, m1 = m2 = 50 and choose the 

singular values as

(21)

Here r is the rank of the major low-rank part Amax(r),  is the gap ratio between the 

rth and (r + 1)th singular values of A. The average loss of Â22 from Algorithm 2 with the row 

thresholding and  under both the spectral norm and Frobenius norm losses 

are given in Figure 3. The results suggest that our algorithm performs better when r gets 

smaller and gap ratio g = σr(A)/σr+1(A) gets larger. Moreover, even when g = 1, namely 

there is no significant gap between any adjacent singular values, our algorithm still works 

well for small r. As will be seen in the following simulation studies, this is generally the case 

as long as the singular values of A decay sufficiently fast.

We now turn to the settings with the singular values being {j−α, j = 1, 2, …, min(p1, p2)}and 

various choices of α, p1 and p2. Hence, no significant gap between adjacent singular values 

exists under these settings and we aim to demonstrate that our method continues to work 

well. We first consider p1 = p2 = 1000, m1 = m2 = 50 and let α range from 0.3 to 2. Under 

this setting, we also study how the choice of thresholds affect the performance of our 

algorithm. For simplicity, we report results only for row thresholding as results for column 
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thresholding are similar. The average loss of Â22 from Algorithm 2 with 

 under both the spectral norm and Frobenius norm are given in 

Figure 4. In general, the algorithm performs well provided that α is not too small and as 

expected, the average loss decreases with a higher decay rate in the singular values. This 

indicates that the existence of a significant gap between adjacent singular values is not 

necessary in practice, provided that the singular values decay sufficiently fast. When 

comparing the results across different choices of the threshold, c = 2 as suggested in our 

theoretical analysis is indeed the optimal choice. Thus, in all subsequent numerical analysis, 

we fix c = 2.

To investigate the impact of row versus column thresholding, we let the singular value decay 

rate be α = 1, p1 = 300, p2 = 3000, and m1 and m2 varying from 10 to 150. The original 

matrix A is generated the same way as before. We apply row and column thresholding with 

 and . It can be seen from Figure 5 that when the observed 

rows and columns are selected randomly, the results are not sensitive to the choice between 

row and column thresholding.

We next turn to the comparison between our proposed SMC algorithm and the penalized 

NNM method which recovers A by (4). The solution to (4) can be solved by the spectral 

regularization algorithm by Mazumder et al. (2010) or the accelerated proximal gradient 

algorithm by Toh and Yun (2010), where these two methods provide similar results. We use 

5-fold cross-validation to select the tuning parameter t. Details on the implementation can be 

found in the Supplement.

We consider the setting where p1 = p2 = 500, m1 = m2 = 50, 100 and the singular value 

decay rate α ranges from 0.6 to 2. As shown in Figure 6, the proposed SMC method 

substantially outperform the penalized NNM method with respect to both the spectral and 

Frobenius norm loss, especially as α increases.

Finally, we consider a simulation setting that mimics the ovarian cancer data application 

considered in the next section, where p1 = 1148, p2 = 1225, m1 = 230, m2 = 426 and the 

singular values of A decay at a polynomial rate α. Although the singular values of the full 

matrix are unknown, we estimate the decay rate based on the singular values of the fully 

observed 552 rows of the matrix from the TCGA study, denoted by {σj, j = 1, …, 522}. A 

simple linear regression of {log(σj), j = 1, …, 522} on {log(j), j = 1, …, 522} estimates α as 

0.8777. In the simulation, we randomly generate A ∈ ℝp1×p2 such that the singular values 

are fixed as {j−.8777, j = 1, 2, ···}. For comparison, we also obtained results for α = 1 as well 

as those based on the penalized NNM method with 5-cross-validation. As shown in Table 1, 

the relative spectral norm loss and relative Frobenius norm loss of the proposed method are 

reasonably small and substantially smaller than those from the penalized NNM method.

5 Application in Genomic Data Integration

In this section, we apply our proposed procedures to integrate multiple genomic studies of 

ovarian cancer (OC). OC is the fifth leading cause of cancer mortality among women, 
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attributing to 14,000 deaths annually (Siegel et al., 2013). OC is a relatively heterogeneous 

disease with 5-year survival rate varying substantially among different subgroups. The 

overall 5-year survival rate is near 90% for stage I cancer. But the majority of the OC 

patients are diagnosed as stage III/IV diseases and tend to develop resistance to 

chemotherapy, resulting a 5-year survival rate only about 30% (Holschneider and Berek, 

2000). On the other hand, a small minority of advanced cancers are sensitive to 

chemotherapy and do not replapse after treatment completion. Such a heterogeneity in 

disease progression is likely to be in part attributable to variations in underlying biological 

characteristics of OC (Berchuck et al., 2005). This heterogeneity and the lack of successful 

treatment strategies motivated multiple genomic studies of OC to identify molecular 

signatures that can distinguish OC subtypes, and in turn help to optimize and personalize 

treatment. For example, the Cancer Genome Atlas (TCGA) comprehensively measured 

genomic and epigenetic abnormalities on high grade OC samples (Cancer Genome Atlas 

Research Network, 2011). A gene expression risk score based on 193 genes, , was trained 

on 230 training samples, denoted by TCGA(t), and shown as highly predictive of OC 

survival when validated on the TCGA independent validation set of size 322, denoted by 

TCGA(v), as well as on several independent OC gene expression studies including those 

from Bonome et al. (2005) (BONO), Dressman et al. (2007) (DRES) and Tothill et al. 

(2008) (TOTH).

The TCGA study also showed that clustering of miRNA levels overlaps with gene-

expression based clusters and is predictive of survival. It would be interesting to examine 

whether combining miRNA with  could improve survival prediction when compared to 

alone. One may use TCGA(v) to evaluate the added value of miRNA. However, TCGA(v) is 

of limited sample size. Furthermore, since miRNA was only measured for the TCGA study, 

its utility in prediction cannot be directly validated using these independent studies. Here, 

we apply our proposed SMC method to impute the missing miRNA values and subsequently 

construct prediction rules based on both  and the imputed miRNA, denoted by  for 

these independent validation sets. To facilitate the comparison with the analysis based on 

TCGA(v) alone where miRNA measurements are observed, we only used the miRNA from 

TCGA(t) for imputation and reserved the miRNA data from TCGA(v) for validation 

purposes. To improve the imputation, we also included additional 300 genes that were 

previously used in a prognostic gene expression signature for predicting ovarian cancer 

survival (Denkert et al., 2009). This results in a total of m1 = 426 unique gene expression 

variables available for imputation. Detailed information on the data used for imputation is 

shown in Figure 7. Prior to imputation, all gene expression and miRNA levels are log 

transformed and centered to have mean zero within each study to remove potential platform 

or batch effects. Since the observable rows (indexing subjects) can be viewed as random 

whereas the observable columns (indexing genes and miRNAs) are not random, we used row 

thresholding with threshold  as suggested in the theoretical and simulation 

results. For comparison, we also imputed data using the penalized NNM method with tuning 

parameter t selected via 5-fold cross-validation.

We first compared  to the observed miRNA on TCGA(v). Our imputation yielded a 

rank 2 matrix for  and the correlations between the two right and left singular 
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vectors  to that of the observed miRNA variables are .90, .71, .34, .14, substantially 

higher than that of those from the NNM method, with the corresponding values 0.45, 0.06, 

0.10, 0.05. This suggests that the SMC imputation does a good job in recovering the leading 

projections of the miRNA measurements and outperforms the NNM method.

To evaluate the utility of  for predicting OC survival, we used the TCGA(t) to select 

117 miRNA markers that are marginally associated with survival with a nominal p-value 

threshold of .05. We use the two leading principal components (PCs) of the 117 miRNA 

markers, , as predictors for the survival outcome in 

addition to G. The imputation enables us to integrate information from 4 studies including 

TCGA(t), which could substantially improve efficiency and prediction performance. We first 

assessed the association between {miRNAPC, } and OC survival by fitting a stratified Cox 

model (Kalbfleisch and Prentice, 2011) to the integrated data that combines TCGA(v) and 

the three additional studies via either the SMC or NNM methods. In addition, we fit the Cox 

model to (i) TCGA(v) set alone with miRNAPC obtained from the observed miRNA; and (ii) 

each individual study separately with imputed miRNAPC. As shown in Table 2(a), the log 

hazard ratio (logHR) estimates for miRNAPC from the integrated analysis, based on both 

SMC and NNM methods, are similar in magnitude to those obtained based on the observed 

miRNA values with TCGA(v). However, the integrated analysis has substantially smaller 

standard error (SE) estimates due the increased sample sizes. The estimated logHRs are also 

reasonably consistent across studies when separate models were fit to individual studies.

We also compared the prediction performance of the model based on  alone to the model 

that includes both  and the imputed miRNAPC. Combining information from all 4 studies 

via standard meta analysis, the average improvement in C-statistic was 0.032 (SE = 0.013) 

for the SMC method and 0.001 (SE = 0.009) for the NNM method, suggesting that the 

imputed miRNAPC from the SMC method has much higher predictive value compared to 

those obtained from the NNM method.

In summary, the results shown above suggest that our SMC procedure accurately recovers 

the leading PCs of the miRNA variables. In addition, adding miRNAPC obtained from 

imputation using the proposed SMC method could significantly improve the prediction 

performance, which confirms the value of our method for integrative genomic analysis. 

When comparing to the NNM method, the proposed SMC method produces summaries of 

miRNA that is more correlated with the truth and yields leading PCs that are more predictive 

of OC survival.

6 Discussions

The present paper introduced a new framework of SMC where a subset of the rows and 

columns of an approximately low-rank matrix are observed. We proposed an SMC method 

for the recovery of the whole matrix with theoretical guarantees. The proposed procedure 

significantly outperforms the conventional NNM method for matrix completion, which does 

not take into account the special structure of the observations. As shown by our theoretical 

and numerical analyses, the widely adopted NNM methods for matrix completion are not 
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suitable for the SMC setting. These NNM methods perform particularly poorly when a small 

number of rows and columns are observed.

The key assumption in matrix completion is the matrix being approximately low rank. This 

is reasonable in the ovarian cancer application since as indicated in the results from the 

TCGA study (Cancer Genome Atlas Research Network, 2011), the patterns observed in the 

miRNA signature are highly correlated with the patterns observed in the gene expression 

signature. This suggests the high correlation among the selected gene expression and 

miRNA variables. Results from the imputation based on the approximate low rank 

assumption given in Section 5 are also encouraging with promising correlations with true 

signals and good prediction performance from the imputed miRNA signatures. We expect 

that this imputation method will also work well in genotyping and sequencing applications, 

particularly for regions with reasonably high linkage disequilibrium.

Another main assumption that is needed in the theoretical analysis is that there is a 

significant gap between the rth and (r + 1)th singular values of A. This assumption may not 

be valid in real practice. In particular, the singular values of the ovarian dataset analyzed in 

Section 5 is decreasing smoothly without a significant gap. However, it has been shown in 

the simulation studies presented in Section 4 that, although there is no significant gap 

between any adjacent singular values of the matrix to be recovered, the proposed SMC 

method works well as long as the singular values decay sufficiently fast. Theoretical analysis 

for the proposed SMC method under more general patterns of singular value decay warrants 

future research.

To implement the proposed Algorithm 2, major decisions include the choice of threshold 

values and choosing between column thresholding and row thresholding. Based on both the-

oretical and numerical studies, optimal threshold values can be set as  for 

column thresholding and  for row thresholding. Simulation results in Section 

4 show that when both rows and columns are randomly chosen, the results are very similar. 

In the real data applications, the choice between row thresholding and column thresholding 

depends on whether the rows or columns are more \homogeneous”, or closer to being 

randomly sampled. For example, in the ovarian cancer dataset analyzed in Section 5, the 

rows correspond to the patients and the columns correspond to the gene expression levels 

and miRNA levels. Thus the rows are closer to random sample than the columns, 

consequently it is more natural to use the row thresholding in this case.

We have shown both theoretically and numerically in Sections 3 and 4 that Algorithm 2 

provides a good recovery of A22. However, the naive implementation of this algorithm 

requires min(m1, m2) matrix inversions and multiplication operations in the for loop that 

calculates ||DR,s|| (or ||DC,s||), s ∈ {r̂, r̂ + 1, ···, min(m1, m2)}. Taking into account the 

relationship among DR,s (or DC,s) for different s’s, it is possible to simultaneously calculate 

all ||DR,s|| (or ||DC,s||) and accelerate the computations. For reasons of space, we leave 

optimal implementation of Algorithm 2 as future work.

Cai et al. Page 19

J Am Stat Assoc. Author manuscript; available in PMC 2017 August 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Illustrative example with A ∈ ℝ30×30, m1 = m2 = 10. (A darker block corresponds to larger 

magnitude.)
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Figure 2. 
Searching for the appropriate position to truncate from r̂ = 10 to 1.
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Figure 3. 
Spectral norm loss (left panel) and Frobenius norm loss (right panel) when there is a gap 

between σr(A) and σr+1(A). The singular value values of A are given by (21), p1 = p2 = 

1000, and m1 = m2 = 50.
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Figure 4. 
Spectral norm loss (left panel) and Frobenius norm loss (right panel) as the thresholding 

constant c varies. The singular values of A are {j−α, j = 1, 2, …} with α varying from 0.3 to 

2, p1 = p2 = 1000, and m1 = m2 = 50.
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Figure 5. 
Spectral and Frobenius norm losses with column/row thresholding. The singular values of A 
are {j−1, j = 1, 2, …}, p1 = 300, p2 = 3000, and m1, m2 = 10, …, 150.
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Figure 6. 
Comparison of the proposed SMC method with the NNM method with 5-cross-validation for 

the settings with singular values of A being {j−α, j = 1, 2, …} for α ranging from 0.6 to 2, p1 

= p2 = 500, and m1 = m2 = 50 or 100.
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Figure 7. 
Imputation scheme for integrating multiple OC genomic studies.
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Table 1

Relative spectral norm loss (||Â22 – A22||/||A22||) and Frobenius norm loss (||Â22 – A22||F/||A22||F) for p1 = 

1148, p2 = 1225, m1 = 230, m2 = 426 and singular values of A being {j−α: j = 1, 2, ···}.

Relative spectral norm loss Relative Frobenius norm loss

SMC NNM SMC NNM

α = 0.8777 0.1253 0.4614 0.2879 0.6122

α = 1 0.0732 0.4543 0.1794 0.5671
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